Sonargraph User Manual
Version 15.0.0

Sonargraph User Manual: Version 15.0.0
Copyright © 2024 hello2morrow GmbH

Table of Contents

1. Motivation TOr Coae QUEIITYciiiieeeeiit ettt e ettt e e ettt e e et e e e et e et e e e ra s 1
A 1] IS = (= O SOPPTTSPPPTR 8
I I [o1= o] o o TP PP TR PPPPT 13
3.1. Getting an AcCtivation COOE OF @ LICENSEiiiii ittt e e e e s 13

3.2. Activation Code BaSEU LICENSINGcceirtueeiitieeteti ettt ettt e e e et e ettt et et e et et e e e e rb e e eraa s 13

R A e (0 VS L1110 PP PP TPPPR 14

34, LIiCENSE SEIVES SEIINGS .. evtuetietti ettt ettt ettt ettt ettt e et e et et bt e et et s e et et e et e et r et e et e e e nn e ennas 14

A, INItEAI CONFIQUIBLION ... ettt ettt ettt e ettt e e et b o et e et e et e e b e et e et e et e st e e e e nba e eeennes 15
A1, INStAllAtON BN UPBLIESceeitieeeiit ettt ettt ettt e ettt e e et et e e et et reeeeetnaeeeeabanaeeenes 15

N o = [o RO PUPPPTTRPPPIN 15

A.3. EQIOr PrafEIENCESieeiti ettt ettt ettt ettt e s 16

A4, LiCENSE SEIVES PrEfEIENCES ittt ettt ettt et ettt e ettt e ettt e e e et e e e b 17

N e (o) YA 1= 1= 1= 116 PP P PP TPPPTT 17

4.6. UPUALE SITE PrEfEIONCES ittt et e et e et e et e e et et e e e e et e e e eebaaaaee 18

4.7. CICH+ CoMPIlEr DEFINITIONSceutuiieiit ettt e et e e et e e et et e et eet e e e enta e eeentnaaeees 18

4.8. Search Path CONFIQUIBLIONceutiiieiii ettt ettt e e ettt e ettt e e e ee b reeeentneeeenbaeeees 20

4.9. C/C++ Parser DaemOon CONFIQUIBLIONScceutieeiitiie ettt et e et e et e et et eeeaaa s 20
A.00. CH CONFIGUIBLION ... eeete ettt ettt ettt ettt e et e et et e et et e e e e et e e et et e e e e et e e et et e e eeenanes 21

410, Python CONFIQUIBLIONv.iieiiti ettt ettt e e et e e ettt e e et et e et ettt e et e st r e e ettt reeeeabn e e eeentnaeeeen 22

5. Getting Familiar with the Sonargraph System MOEcooiiiiiiii e 23
5.1 PhYSICEl FIlE SITUCIUIE ...ttt ettt e e et e et e et et e e e et e e e era s 23

5.2. Language INdependent MOTE! ittt ettt 24

5.3. Language SPECITIC MOTEIScoiiii et e et e e 25
5.3.1. JAVAIKOIN IMOUELottt e e ettt e ettt e e e e et e e eena e eeen 25

5.3.2. KON SPECITIC ISSUES ...ttt ettt e et e et e e e e 26

B.3.3. G IMOUED ..ottt e e e e et e e e e e eae 27

B34 CH MOOEL ..ot 29

B5.3.5. PYLNON MOGED ...ttt 29

B4, LOGICAl MOUEIS ...ttt ettt ettt e ettt e e ettt e ettt e et et e et e e e e erb e aeee 30
5.4.1. System-Based LOgIiCal MOOE]coouiiiiiii et 31

5.4.2. Module-Based LogiCal MOGEooiiiiiiiiiii et 31

B. CrEaALING 8 SY SO ..ttt ettt et e ettt e et et e et e 33
6.1, Creating @ JAVA SYSEEIMuueiiiti ettt ettt et e et e et et ettt et e e e e e e aa e e enans 33

6.2, Creating @ CH SYSIEIM ...iiiii ittt ettt ettt eaaas 33

6.3, Creating C/CHt SYSIEITIS . outuiiiiiti ettt ettt e et e e et et e e et et e e et et e e et et e e et et e e e e aaa s 33

B.4. QUAELTIEY IMOOEL ... ettt e et e ettt e e et e et e e et e e e 35
6.4.1. Importing & QUalITY MOGELuieiiii e 36

6.4.2. Exporting @ QUalITY MOGELuiiiiiii e 36

7. AddiNG CONLENE 1O @ SYSLEITI ... eiit ettt ettt ettt e et e et e et e et e et et b e et e nb e e e enaa e e eennes 37
7.1. Creating or Importing @ JaVa MOTUIEoouuiiiiii ettt e e e e e et e e 37
7.1.1. Importing Java Modules Using an EclipSe WOIKSPACEuuieiiiiiieiiiis ettt 37

7.1.2. Import Modules using the Sonargraph Gradle PIUGINooviiiiiiii e 38

7.1.3. Import Modules using the Sonargraph Maven PIUGINccoouiiiiiiiii e 39

7.1.4. Importing Java Modules Using & Bazel WOIKSPACEuiiiiiiiieeiiiii e 40

7.1.5. Import Modules Using the Build Unit(S) IMPOIEriiiiiiiieiiie e 42

7.1.6. Creating a Java Module ManUaITYiiiiiiiii e 44

7.2. Creating or Importing @ CH+ MOUUIEouuniii et eer e e eees 45
7.2.1. Importing C++ Modules from Visual Studio FIleScooouiiiiiiiiii e 45

7.2.2. Importing C++ ModuleS Via CMaKe OF CCSPYcvvrrniiiiiiinieeeeii et e et ettt e e e e eenens 45

7.2.3. Creating a C++ Module ManUAITYuuiiiiiiiiiii e e eeaans 45

7.2.4. CICH+ MOdule CONFIGUIBLIONceuuuieiiiiie ettt ettt ettt e e et e e e e e e et e eenanas 46

7.3. Creating or IMporting @ CH MOGUIE oottt e e et e e et e e ea e e e eraaeeees 47
7.3.1. Importing C# Modules Using a Visual Studio Solution File ... 47

8. INEraCting With 8 SYSIEIM ...t et ettt ettt e ettt e et et e ettt e e e 48
8.1, User INtErfaCe COMPONENEScieeeeieeitii ettt ettt et et et e ettt e et et e et et et et et e e e ebe e e et et e e e e eba s 48

Sonargraph User Manual

ST I 1V = o LU T PSP 48

S0 2 I o I 2 - PP 48

ST I A N[0] o= o] 3= PP 49

ST S 1= o PP 49

8.2. COmMMON INLEIACHION PaILEINS ittt e e et e e et e e e et e e e eaa e e e eaa e e eesen s aeeennns 50
8.2.1. Special GraphiC Elements DECOTatiONSuuiiiinieiiiieiie et e e e e e e e e e e e e e e e et e e e e e e e eaenns 50

8.3. SoNargraph WOTKDENCKo e e e e 51
TGN I N LAY A = 52

8.4. Getting @ QUICK IMIPIESSION . ..uuiiiiiii e et e e e e e e e e e e e e e e e et e e et e e et e e aa e e et e e et e eetn e eateaanneeeenns 54
8.5. Navigating through the System COMPONENEScouuiiiiieii e e e e e e e e et e e e e e eeaen 55
8.6. EXPloring the SySteM NaMESPACESuuuiiiiieii et e e e e e e e e e et e e et e e et e e et e e aaneeeanns 56
8.7. Managing the SYStEM FlESiiiiiiii e e e e e et e e e e e e e e et e e et e e et e e et e eanaees 57
8.8. MaNaging the WOIKSPACEuuiiii i it e e e e e e e e et e e et e e et e et e e et e e et e e et e e et e eeannns 58
8.8.1. Definition of Filters, Modules and ROOt DIF€CIOMESuvunieiiiiieeeeii e e e 58
8.8.2. Managing Module DEPENUENCIESc.uuiiiii i e e e e e e et e e e e et e e e eanns 59
8.8.3. Creating Workspace Profiles for Build ENVIFONMENESoiiiiiiiiii e eee e e e e e 60

8.9. ANAlYZEr EXECULION LEVELiiiiiiiiii it e e e e e e e e e e e et e e et e e et e e et e eaaeeannaaes 62
ST O AN o= v oo B 1Y = 63
8.10.1. REVISING CYCIE GIOUPSuuiiieiiieeii e e e e et e et e e e e e e e e e e et e e et e e et e e et estn e eateeaaneeeens 63
8.10.2. InSPECting CYCliC ElBMENES ... i e e e e e e e e e e aaaas 64
8.10.3. Breaking UP CYCIES ...ouiiiiiiii it e e e e e et e e e et e e e e et e e e eaes 66

ST o] Lo g To R 1 SISV (= 1 0 PP 69
300 I o o) o = (o) YA TV 69

ST 2 = o) I Y AT T PR 78
8.11.3. Treemap-Based System EXPlOrationccouiiiiiiiiiii e e e e e e aens 20
8.11.4. Tabular System EXPIOIGtioNoiiuiiiii e e e e e e e e e e et e et e e et eeaaeeaens 95

S = v o g To [= = o PN 97
8.12.1. Searching ElEmMENtS iN VIBWS ... couniiiiii et e e e e et e et e e aan e eens 98

8.13. DeteCting DUPIICAIE COUEcieeeiit i eiii et e et e e e e e e e e e e e e e et e e et e e et e e et s e et e eaa e eetnaeeanaeennaes 99
8.13.1. Configuration of Duplicate Code Blocks COMPULALIONccuuieiiiieiiieeii e e e e e e e 100

8.14. EXamining the SOUICE COUEccuuiiiiieii et e e e e e e e e e e e e e et e e et e et e et e e et e e eaneeeenaas 101
8.14.1. Interaction With AUXITIANY VIBWSuiiii e e e e e e eeas 102

8.15. EXaminiNg METCS RESUILS ... ceeniiii it e e e e e e e e e et e e et e et e e aaneeaenns 103
8.16. Analyzing C++ INClude DEPENUENCIESu.iiiiieii e e e e e e e e e e e e e et e e et e e et e e aanaes 106
ST O =" g o = T = oo PN 107
9. HandliNg DELECIEA ISSUES ... cuuuiiiiieiiiieii e e e e e e e e e e e e e e e e e et e e ettt e e et e e et e e e ta e e aa e e st e e etn e e et e eetneeannaeennaaes 108
9.1. Using Virtual Models for RESOIULIONSiiiiiiiiiciie e e e e e e e e et e e e e e aanees 108
S A ez 0 1T a1 o S 1= 109
9.2.1. Identifying the Most ReElevant 1SSUES t0 FiXccuuiiiiiiiiiicci e e e e 111
9.2.2. 1dentifying ISSUE HOLSPOLS ... ceveeiiiieii e e e e e e e e e e et e e et e e et e e e aaneaaanaees 113

LS G o a0 T o S U= 115
9.4. DefiniNg FiX aNd TODO TaSKS ...uuiuuuiiiiiieiieetiietie e et e e e e e et e e et e e et e e et e e et e et e eat e eatn e e et e eetneerneeannns 115
LS R o 1T o =S o) 11T S 115
9.6. Details about Sonargraph's Resolution MatChingcocouuiiiiiiiiii e e 116
OIS T g 1W = g To T = = o (o) 1 o 118
10.1. Creating DeElEte REFACIONNGScvvvuieiriieiiiei et e e e e e e e e e e e e e e et e e et e e et e e et e e e e eatneesanaeeenses 118
10.2. Creating Move/ReNamMe REFACIONNGSuu.iiiiiiiii e e e e e e e e e e et e e e e e eanaeeaes 118
I =g =T 1 o T L = (o 10 119
O oY= o (o= SRR 119
I = T o THgTe = T AN oo = (1 = 121
11.1. Models, Components and ATLITACESiiiiiiiiie e e e e e e e e aa e eaaas 122
11.1.1. Using other criteria to assign components to artifaCtSccvveiiiiiiii i 125
11.1.2. List of predefined attribDULE FEITTEVErScove i 126

11.2. INLErfAaCeS AN CONNECLOISiiiiii ettt e et e et e e et e e et e e et et n e e e et e e et et e e e e et e e e e st e eeeannnas 130
11.3. REUSING ATChItECIUINE ASPECES ...uuiiiiiii e et et e e e e e e e e e e e e e e et e e e e e et e et e e e e e et e eeanaeeannas 136
11.4. Extending ASPECt Based AIfaCtS ... ciuu i e 139
11.5. Extending INterfaces OF COMNECIOISuiiiuneiii et e e e e e e e e e e e e e e et e et e e et e e et e e e e e e ta e e et eeennnas 140
11.6. Adding Transitive or Deprecated CONNECLIONSueiuiuiiii i e e e e e e e e e e e e et e e e e e et e e st e e eraeeaneens 141

Sonargraph User Manual

12.
13.

14.
15.

16.

17.

18.
19.
20.

11.7. RESIICHNG DEPENAENCY TYPES ovuiitiieiii ettt ettt e et e et e e e e e e et e e et e e et e e e et e e et e eet s e et e etn e eatnaaaaneeeenss 143
11.8. ConNeCting ComPIEX ATTITACESuuuiiii e e e e e e e e e e e e et e e et e et e e et e e aanaas 144
11.9. Introducing CONNECLION SCNEIMESiiiiiiii et e e e e e e e e et e et e e et e e et e e et eeaaeeanns 146
N OB N 4 1) - ot B =SSP 148
11.11. HOW tO Organize€ YOUI COUEuuiiiteiiieeii e ettt e et e e e e e e e et e e et e e et e e et e e et e e ett e e st e aatneeetnaeeanaees 152
11.12. Designing Generic Architectures USiNg TEMPIAIESccovniiiiiieii i e e e 155
11.12.1. Using unrestricted generated artifatSoiiiiiiiiiii i e 157
11.12.2. Using connection schemes to regulate acCessibilityooovuiiiiiiiiii e 157

T = 1= o o= SSPRR 159
11.14. Architecture DSL Language SPECITICAIIONoieuu it e e e e e e e e e e aa s 160
ViSUAliZING ATCHITECIUrE ASPECES . .uuiiiii i eiii e e e e et e e e e e e e e et e e e e e et e e et e e et e e et e et eetn e eeaneeennnas 163
Interactive Restructuring and Code OrganiZationcceuuiiiiieiie e ee e e e e e e e e e e et e e et e e et e eaaaaees 168
13.1. AsSigning Elements t0 Artifattsiiii i 170
e T T o O 7= o == 172
D= gL aTo T @ 0= Y = (=P 176
15.1. Creating QUAEIITY GaLESuuiiiiiieiiiieii et e et e e e e e e e e e e et e e e e e e tt e e et e e et e ee e et e e tn e e et e eaanaas 177
15.2. Using Quality Gates in the Continuous Integration (ClI) BUildccocouiiiiiiiiiiiii e 181
15.3. Current Quality Gate LIMItalioNSociuuiiiiiieii e e e e e e e e e e e e e e et e e e e eanas 182
EXteNding the StAtiC ANGIYSISiiii i e e e e e e e e e e e et e e et e et e e aaa s 183
16.1. Interaction With AUXIIIANY VIBWSuuiiii e e e e e e e e e e e e e et r e et e e aa e aens 183
16.2. Groovy Scripts from QUality MOOE]ccouniiiiii e 184
16.3. Creating @ NEW GIOOVY SCHIPEciuunieiieeii et e ettt e et e e e e e e s e et e e et e e et e e et e e s e e et e e et e e st e eaaeeannaeeenss 184
16.3.1. Default Parameters iN @ SCrPLuiiiiieiii et e e e e e e e e e e et e e et e e et e e st e e aaeeanaees 185

SR T2 Ao (o 1o [o= = 1111 (= £ 185

16.3.3. Creating RUN COoNfIQUIALIONSiiiiiiiii e e e e e e e e e e e e e e e e e e et e e et e e eanaeees 187

S o T o I W o)A o 1 N 187
0t I AU o I @) 11 =1 o o P 187

16.4.2. ComMPIliNg @ GIrOOVY SCIPL ..ivuuiiiiiieiii e e et e e e e e e e e e e e e e et e e et e e et e e et e e et e eranaeeanaees 188

16.5. Producing ReSUITS With GrOOVY SCIIPLSiiiiiiiiiiiii e e e e e e e e e e et e e e e ean s 188
16.6. Running a Groovy Script AULOMELICAIIYiveniiii e e e e e e e e e et e aan s 190
16.7. MaNaGiNG GIOOVY SCHIPLS ...evuueiiueiiiiieiieeti e et e e e e st e e et e e st r e e et e e et e e et teeaa e ean e eatneesaneeetn e eaneesnneeeen 190
16.8. GroOoVY SCrIPt BESE PraCliCeS ..uuiii it e e e e e e e e e e e e e e e et e e e e et e e et e e et e eenaas 190
16.8.1. Only Visit What iS NEEUEAceiiiiiiiiiiie i e e e s e e e e e et e e e e e e e e es et aaeeaaeaanee 190

16.8.2. FINA TEXE 1N COUE ...ttt e e et e et et e e e e et e e e e et e e e e eran s 192

WS T 0o Ao o [N o) 7= 1o T N 193
5 I = 10 o1 T @)T 0 1 o PP 193
17.2. SPring MICTOSEIVICES PLUGIN . ..uuiiiiiii e e e e e e e e e e e e et e e et e e et e e et e e ean e eanas 193
G T V= o o = gl 1o P 195
s oo 1 =0 o o 0o 1 195
ST 1V 1 = T o PPNt 195
17.6. 1SSUES IMPOIEr PlUGIN ...ovvn et e e e e e e e r e e e e e e et e e et e e e ta e e e et e e et e e et e eaneeannaees 195
Investigating MiCrOSErVICE DEPENUENCIESuuiiiii et e e e e e e e e e e e e e e et e e et e et e et e e aaneeeanaas 196
L0 TH Lo IS =AYl F g1 =" | 1o o 198
T R 1 <o = 1 o o 199
2 I T 1 1= = o 1 PN 199
20.1.10. ASSIONING A SYSIOIM .ottt it et e e e e e e e e e e e et e et e e e e e e e e e e et e et ra et 200

20.1.2. Displaying ISSUES @N TASKSucieuueiiiieiiiieeie et e e e e e e e e e et e e et e e e e e st e e et e e e ean e aetneeennnas 200

20.1.3. Suspending / Resuming Quality MONITOIINGuuiiiunieiiieii e e e e e e e e e e e eaans 203

20.1.4. Setting Analyzer EXECULION LEVEDcouiiiiii e e 203

20.1.5. Getting Back In Sync with Manual Refreshoiiiiiiiiii e 203

b ST e 4 T T T O 7= g T= P 204

20.1.7. Execute REfACtONNGS IN ECHPSE .ovui ittt e e e e e e e et e e e e eaaes 205

20 2 Vg (= | TN I 1 o PP 206
20.2.1. ASSIONING @ SYSIOIM .ouuiii ittt e et e e e e e e e e e e e e e e e e e e et e e r e ra et 206

20.2.2. Displaying ISSUES @NG TASKSucveuueiiiieiiieeie e e e e et e e e e e e e e e et e e e e e et e e et e e e aan e e et e eennnas 207

20220 T oo o 208

20.2.4. Getting Back In Sync with Manual Refreshoiiiiiiiii e 208

20.2.5. EXAMINING ChANGES .. cevuiiiiiieii et e e e e e e e e e e e e e et e e et e e et e e e et e e et e e et s e eaa e etn e eatneeennnns 209

Sonargraph User Manual

20.2.6. Execute Refactorings in INtEIIoiiiiii e e e e e e 209

20.3. Collaboration between Sonargraph and IDEcouuiiiiiiiiii e e e e e e 211

b Y (ol T T Tl (o g PSP 214
21.1. Language INAEPENAENT IMIELTICSuuuiiiiieiiie e e e e e e e e e e e et e e e e e e e e et e e et e e et e e et s eeaneaannaees 214

A N - V= UYL (oSSR 233

P G I - |V = 1 o= PP 235

P O O |V [1 o= PSP 238

b TS T Y1 0 T =1 ot P 241

22, HOW 0 RESOIVE ISSUES ... eeeiieieiiiie ettt ettt e et e e et e e et et e e e e et e e et et e e e e at e e e e et e e e e et e eaestnnns 243
22.1. Language INAEPENAENT ISSUEScvuiiiiieiiie e e e et e e e e e e e e e et e e e e e et s e e et e e et e e etn s e ean e etn e eetnaeannees 243

22.2. JAVA SPECITIC ISSUBS . .ovuiiiiieiii et e et e e e e e e e et e e e e et e e et e e e et e e et e e et s e et e e aa e e et e e eaneeernnas 243

G R O S o 1< o ol oS == 243

224, CICH+ SPECITIC ISSUES ...vuiiiiieiii et e e e e e e e e et e e et e e et e et e e et e e et e e et e e rt e eanneeeens 243

22 T N PRSP 245
23.1. Out Of MEMOIY EXCEPLIONSoviiiiiiii e e e e e e e e e e e et e e et e e et e e et e e et e eaneeaes 245

b T € o)A = 1 o] = (= 245

23.3. MSBuild Error (MSB4019) during Analysis of Visual Studio C# Projectcocvvvveiiiiiiiiieiii e, 245

24, REFEIBINCES ...ttt ettt ettt ettt e e h et et e et et eh e e et e e b et e et b e e e e ean s 246
25. Trademark Attributions, Library License Texts, and SOUrCE COUEcvvuiiiiiiiiiii e e e e 247
ST o = I L1 o= 248
L 105 249
A. Walk Through TULOME (JAVA)cievnieiiieiiii e e e e e e e e e e et e e et e e e et e e et e e et s e et estn e e et e eeaneeeanss 250
N B VY4 & o= oY I L= 1T v o o 250

A2, BaASIC ANBIYSIS ..ouiiiiii i e e e e e e 250

YN o V7 g o= o [N 7= Y £ 252

A.4. Architecture: Artifacts, Aspects Files and Standard COnNNECLIONSccvviiiiiiiiiiiiic e 252

A.5. Architecture: Explicit Interfaces and CONNECLOIScvuuiiiii e e e e e e e e eaens 253

A.6. Architecture: AQVaNCEd COMNECHIONScvevuueeeiiiieeeeit e ettt e e e et e e e et e e e ettt e e eeatn s eeeestnaeeeestnaeeeenenaaaaes 254

A.7. Architecture: AdvanCced ASPECE FIlESuui i 254

A.8. Architecture: Referencing external Artifacts in ASPeCt FIl€Soivviiiiiiii e 255

A.9. Headless Check with Sonargraph-BuUildc.couuiiiiiiiii e e e e 256
A.10. Check at Development Time with Sonargraph Eclipse INtegrationcciveviiiiiiii i 256

T T Lo = N = (Y7 PPN 258
B.1. SEtUpP the SOftWaArE SYSIEIM ... e e e e e e e e e et e e et e e e e et e e e e e et 258
B.1.1. Create a NeW SOfIWAre SYSLEIMieiii i e e e e e e e e e e et e e e e e e e e eanes 258

B.1.2. DEfINE the WOIKSPACE ... cvuiiiiiiiii ettt e e e e e e e et e e et e e et e e et e e et eeanaeeaes 258

B.1.3. Define Module DEPENAENCIESccuuiiiiieiie et e e e e e e e e e et e e e e et e e et e e eanaas 260

B.1.4. Parse the WOIKSPAEEuuiiiiicii et e et e e e e e e e e e e et e e e e e e e et e e et e e e eeanaas 260

2 T 1 o AN = Y =t 260
B.2.1. Detect Problems Using Standard MELTICScuuiiiniiiii e e e e e e e et e e eees 260

B.2.2. Adjust MEtriC ThreShOlaScccuuiiii e e e e e e e aens 261

TR = ol o] = 4 TN o £ 261
2T T I e 1 4 1 T O =P 262

B.3.2. EXamMiNg DUPIICAIE COUEcevuiiiiieii et e e e e e e e e e et e et e aaaeeenen 263

B.3.3. HANAIE ISSUESv ittt et ettt e et e e e et s e e e et n e e e et e e e et e e aaanns 264

B.4. Detailed DePendenCy ANBIYSISciuuiiiii et e e e e e e e e e e e aaa 265
B.4.1. EXPIOre DEPENUENCIESuuiiiiiieii e e e e e e e e e e e e e e et e e et e e e et e e aa e e et e e e eeaneenen 265

B.4.2. Check how Elements are Connected via Graph VIeWooviiiiiiiiiiciin e, 266

B.4.3. Check how Elements are Connected via the DependencieS VIeWcouveviieiiiiiiiiie e, 267

R = o o I (o g = = 007 0| £ PSP 268

B.5. Advanced ANalYSIS WIth SCIIPES ... i e e e e e e e e e e et e e et e e et e eaaeees 268
RN I O (=T W N [Yo T o) 268

B.5.2. EXECULE EXISHING SCIIPL . evtuiiiiiiiiiieii it e e e e e e e e e e et e e et e e e et e e et e e et s e e et e ean e estneeennanes 269

R S = LI R L= U | £SO 270
B.6.1. WOrk With SNapShiotScovuiiiiicii e e e e e aa s 270

B.6.2. Define Quality Standards using Quality MOEISc..oiviiiiiiiii e 270

IS T o oo A (0 TN (o= 270

LT U o= P 271

Vi

Sonargraph User Manual

C.1. Setup the SOfIWEAIE SYSIEIM .. ouuiiiii i et e e e e e et e e e e e et e e et e e et e e et e e et e eaneeaneenen 271
LT U 41 G 1= o = 273
D T o = I O P 274
D.1. Setup the Software System - Compiler DEfiNItIONSccoiuiiiiiii e 274
D.2. Setup the Software System - Capture Compile Commands With CCSPYoevviiiiiiiiiiiiiiiir e 274
D.3. Setup the Software System - Visual Studio IMPOITooviiiii e 275
D e 1 = G (o = P 276
E. Sonargraph Script APl DOCUMENTAIONuiiiiiiii e e e e e e e e e e e e e e e e et e e et e e ea e e eta e eaaneean e estnaeennaaees 277
g0 (= PP 278

Vil

Chapter 1. Motivation for Code Quality

The main idea behind Sonargraph has always been to provide a tool that eases the creation and maintenance of high-quality
software. Creating high-quality software is difficult: Y ou need to know where the pain-points are and how to solve them.

For any serious project that must live longer than a couple of months, it isactually cheaper to spend part of your resourcesto keep
your software constantly at a good level of quality than using all your time to create new features. Martin Fowler explains this
very well in hisarticle"IsHigh Quality Worth the Cost?'. The bottom lineis, that apart from the very early development stages,
high-quality software is actually cheaper to develop, because it allows adding new features at almost constant speed, whereas it
becomes more and more time consuming to add new features into a code base with low quality.

We at hello2morrow believe that a consistent architecture is a fundamental part of software quality. When we use the term
"architecture”, wethink of it in terms of the |IEEE 1471 standard:

"The fundamental organization of a system embodied in its components, their relationships to each other, and
to the environment, and the principles guiding its design and evolution.”

This chapter describes why architectural design as an activity is needed, why conformance checks need to be done automatically
by atool and how Sonargraph supports you as a developer and architect during these activities.

= Standalone

EDE

EswT

= Documentation

E= Build

= Edlipse {:
ELP

Bl = Core

EI!-,-,com.hellc-E MOIMOW.s onargraph.core

A

Bl £8 com hello2morrow s onargraph_core
£H application

&
I £ command A TLAANSE
£ controller {/l , \ \ \‘.‘G}

confrollerinterface
fH persistence

£ model l '|I \ \—-"""ﬁ}
T —

£ foundation common
= Remoting
EscM
£ Plugin
= License
= Ccommen
2 Integration-Acces s
B Groowy
[H e External [Java]

Figure 1.1. Visualizing Defined Ar chitecture and Existing Dependenciesin the Architectural View

1 "IsHigh Quality Worth the Cost?" , https://martinfowler.com/articles/is-quality-worth-cost.html, 2019

https://martinfowler.com/articles/is-quality-worth-cost.html

Motivation for Code Quality

The Need for Architecture

Martin Fowler wrote an excellent article "Is Design Dead?'? back in 2004. He argues that for anything serious, you cannot just
code along and hope for the best, but need “planned design”:

"If you want to build a doghouse, you can just get some wood together and get a rough shape. However if you
want to build a skyscraper, you can't work that way - it'll just collapse before you even get half way up."

- Martin Fowler

Heis not arguing to design everything up front, but rather making the design activity part of the agile development process. As
a consequence, the architecture evolves together with the code base and the knowledge of the team.

If you take the definition for architecture mentioned at the start of the chapter, then the top-level architecture should contain
the main components and their dependencies. As with construction architectures for large buildings, no single diagram exists
that contains all information for a large-scale software system. There is an upper limit of elements that our brain can process,
especidly if there are also interconnections of different types between elements. Thus, if the system grows beyond a certain size,
abstractions are needed which can be thought of as maps at different scale. Simon Brown gives an example of this with the C4
model®. Where details are needed, additional di agrams can be created.

Of course, severa viewpoints for software architecture exists as described by "The 4+1 ViewModel "4 This"static" architecture
that describes the decomposition of a system in its parts is the foundation for the "dynamic" aspects like information flow: If
there is no direct dependency between two components or between them and any of their commonly shared components, there
cannot be any information flow between them.

Consistency of the diagrams now becomes a challenge: Higher-level abstractions must not be violated at the lower level: There
must not be a secret tunnel at the detailed level where the higher level puts aclear barrier between components.

The last decades of agile software development have shown that it is impossible and impractical to do a big design upfront.
Not only the requirements from the outside (read 'business) may change, but most certainly the developers understanding of
the domain improves over time and thus the architecture likely also needs to be adapted as a consequence. The effort needed to
change a functionality and the effects this change causes for the rest of the system very much depend on the number of usages
of this functionality.

Design for changeability therefore means to minimize coupling (i.e. the number of dependencies) between elements, because
elements with low coupling can be more easily re-arranged. Especially bad for coupling are cyclic dependencies that may cause
mental challengesin form of hen-and-egg problems and also make it harder to understand a system'’s structure if alarge number
of elements are involved. You want to avoid an entangled mess as shown in the following picture (where green arcs represent
dependencies between Java packages and the direction of dependenciesis counter-clockwise) that is often described as "big ball
of mud":

2 "|sDesign Dead?" , https:/martinfowler.com/articles/designDead.html, 2004

3 C4 Model , https://cAmodel .com/

4 »Architectural Blueprints—The '4+1' ViewModel of Software Architecture” by Philippe Kruchten, https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-
architecture.pdf, 1995

https://martinfowler.com/articles/designDead.html
https://c4model.com/

Motivation for Code Quality

E|&jenkins-core

Bl /. Jothers/jenkins/core/sre/main/java

|2
¥ 'v'
i

N

NS

Figure 1.2. To Avoid: " Big Ball of Mud" Dependency Structure

As a consequence, we think that spending effort on a clean and consistent software architecture and controlling dependenciesis
essential to code quality aswell as regularly cleaning up other code smells.

Motivation for Code Quality

Our experiences match those of well-known experts. Here is an incomplete list of resources that we found affirmative to our
thinking. They haven't lost any importance despite dating back a couple of years.

* 'IsHigh Quality Worth the Cost' by Martin Fowler, https://martinfowler.com/articles/is-quality-worth-cost.html, 2019

* 'Sustainable Software Architecture: Analyze and Reduce Technical Debt' by Dr Carola Lilienthal, dpunkt.verlag, 2020
* 'IsDesign Dead' by Martin Fowler, https.//martinfowler.com/arti cles/designDead.html, 2004

» 'Domain Driven Design' by Eric Evans, Addison-Wesley, 2004

 'Large-Scale C++ Software Design' by John Lakos, Addison-Wesley, 1996

* 'The Pragmatic Programmer: From Journeyman to Master' by Andrew Hunt and David Thomas, Addison-Wesley, 1999
 'Structured Design' by Edward Y ourdon and Larry L. Constantine, Prentice-Hall, 1979

» "Your Code as a Crime Scene' by Adam Tornhill, Pragmatic Programmers, 2015

» 'Applying UML And Patterns by Craig Larman, Prentice Hall, 2000

 'Refactoring to Patterns' by Joshua Kerievsky, Addison-Wesley, 2005

* 'Agile Software Development' by Robert C. Martin, Prentice Hall, 2003

Automating Checks

Manually tracking the evolution of the internal structure of a software system is not efficiently manageable. With thousands of
classesand millions of dependenciesthisisimpossiblefor any large system. Y ou need atool that automatically reports deviations
in the implementation from your envisioned architecture. We think that the lack of proper tool support is the reason why so
many projects suffer from software rot. There are many static analysistools and linters that report errors and problems at source-
file level, but most are missing out on the big picture: Tracking dependencies across source files and validating if the structure
matches the envisioned design.

As aresult, most systems contain a large number of cycle groups, elements are tightly coupled, no clear structure exists and if
documentation exists, it is not up-to-date. New devel opers have a hard time to know how they should structure new functionality,
where to place the new code and how it should interact with the existing code. Once you have lost control, the structural quality
typically spirals downwards quickly and the softwareendsup ina"big ball of mud". Regular quality initiativesfeel like Sisyphean
tasks, because problems are created faster than they can be fixed.

Therefore, quality checks must be executed automatically by the Continuous Integration (Cl) build, whenever new code is
committed. Even better, quality checks should be executed while programming, so that those problems never get into the version
control system.

Setting the Focus

Starting a new project with automated architecture checks in place is very practicable to maintain quality at a high level. It is
way harder to sustainably improve quality for existing projects. Resources are scarce, and new features need to be implemented,
soitisnot feasibleto ssimply stop all work and clean up everything first.

For any quality improvements, it isimportant to spend efforts where it supports the current work: This makes the positive effects
visible, and the enthusiasm for code quality will stay and won't fade away quickly.

For thisreason, Sonargraph offersto compare the current state of the system against apreviously run analysis. This'System Diff'
identifies where quality was improved and worsened, making it ideal to support code and sprint reviews. Additionally, quality
gates can be defined that ensure that quality trendsin the right direction. A ranking algorithm highlights those i ssues where fixes
provide high benefit, i.e. that are urgent and important: Issues that were added recently, that have a high impact on the system
and where involved files have been changed recently.

Motivation for Code Quality

The Sonargraph Product Family

Architects and devel opers are supported by Sonargraph to maintain and improve the quality of their software. Its focus is on
architecture and dependencies, but it offers also a large number of metrics, duplicate code checks and additional rules that can
be activated as needed, e.g. to detect unused code. Sonargraph is built upon the experiences that hello2morrow gained during
the development and support of the predecessor products Sonargraph 7, SotoGraph and SotoArc. Sonargraph is lightweight
and integrates smoothly with different IDEs, build and quality infrastructures (e.g. Eclipse, IntelliJ, SonarQube, Jenkins, Ant,
Maven, ...).

Sonargraph consists of several productsthat help to ensure quality throughout the software devel opment as showninthefollowing
image:

Integration of Sonargraph into Workflow

SONAR . SONAR

ARCHITECT :@r ' DEVELOPER @H
\) Sk
i

Version Control
System

SONAR
BUILD

(&> grad lg ‘(““ﬁ - Maven

o & SONARGR. @ sonarqubﬁ

Enterprise

Reports METRIC HISTORY CI Server METRIC HISTORY
Snapshots + Baselines

Figure 1.3. Sonargraph Products

 Sonargraph-Architect allows code exploration and definition of rules, i.e. architectures, metrics, anti-patterns, thresholds, tasks,
refactorings. It offers additional analyzers. e.g. to detect code duplications and to provide custom metrics and issues.

» Sonargraph-Developer areintegrationsinto | DEs that provide early feedback to devel opers. With a Developer licenseitisalso
possible to start the Sonargraph-Architect application and use its advanced visualization and exploration possibilities.

» Sonargraph-Enterprise is aweb application that provides the history of metrics for multiple Sonargraph systems.
» Sonargraph-Build are integrations for various environments to run the quality checks on the continuous integration server.
* Further plugins exist that allow the integration of Sonargraph into SonarQube and Jenkins.

We host an Open Source project on GitHub that provides easy accessto al information contained in a Sonargraph XML report
and can be used for custom post-processing: https://github.conm/sonar graph/sonar graph-integration-access

https://github.com/sonargraph/sonargraph-integration-access

Motivation for Code Quality

Use Cases and Key Functionality

The following describes key functionality of Sonargraph and typical uses cases. This is just a summary, the rest of the user
manual provides more details.

Architecture Definition

Sonargraph uses a Domain Specific Language (DSL) approach to describe the architecture. A system's architecture can consist
of multiple architecture aspects which are checked in parallel. Alternatively, the architecture can be defined interactively.
Architecture diagrams can be generated allowing to investigate connections between architecture artifacts.

Simulate Refactorings

Sonargraph allows the simulation of refactorings. For this, you can create multiple so-called virtual models. A virtual model is
a space where the model from the parser(s) can be modified by refactorings and detected issues can be transformed into tasks or
ignored (called resolutions). This allows the simulation of different approaches to change an existing structure. A virtual model
can be based on another virtual model making it possible to reuse common refactorings and resolutions.

The 'cycle-breakup' analyzer proposes refactorings to find an efficient way to eliminate a cycle. It takes into account defined
architectures and allows to interactively fine-tune the solution.

NOTE: A virtual model might affect metric values since the structure of the system can be changed with refactorings and issues
can be transformed into tasks or ignored.

Hotspot Visualization

Sonargraph analyzes information from Source-Control Management (SCM), currently Git. The combination of issues and code
changes and the visualization as software maps (a.ka. "Code Cities") alows the visual identification of hotspots.

Tracking Changes in Quality

If Sonargraph is used in existing projects there might be an overwhelming number of reported issues. The 'System Diff' analyzer
alows focussing on changes, making it the ideal companion during reviews. Quality gates can be defined on the current system
state or in comparison to a baseline, making it easy to follow the '‘Boyscout Rule' and gradually improving the system's quality.
The'lIssue Ranking' view recommends issues that are both urgent and important to fix.

Great Parser Model Detail, Little Memory Consumption

Dependencies are tracked down to method and field level offering more detailed exploration. Sonargraph has little memory
consumption, as only the model coming from the different parsersis held in memory and all 'derived' structural elements (e.g.
alayer) and their dependencies are calculated on demand.

Snapshots

The complete model of asystemis stored in acompact binary format. This enables fast startup times (the last snapshot isused if
available) without having to perform afull re-parse. Furthermore complete systems might be compared and historically analyzed
- even passed around to enable reviews based on them - by directly loading the snapshot.

Fast Execution

Analyzers calculate metrics and analyze dependency structures (e.g. cycles) and content of source files (e.g. duplicated code).
These analyzers run in parallel in a multi-threaded environment providing more speed while not blocking user interaction. Once
an analyzer hasfinished, it’s results are available to the user.

Extensible Analysis

The user can extend Sonargraph's functionality by writing Groovy scripts accessing the model created by Sonargraph. These
scripts can either simply act as custom queries finding artifacts with specific characteristics and/or to create issues pointing to
potential problems in the system or create additional metrics.

Motivation for Code Quality

Sonargraph also offers a plugin APl to integrate external analyzers and to extend the parser model by custom elements. The
currently existing plugins are 'Spotbugs and 'PM D' for further file-local issues and 'Swagger' and 'Spring Microservices to reveal
web service dependencies.

Multiple Language Support
Sonargraph supports different languages depending only on the license without the need to have different installations. Thereis
a unified approach (i.e. one user interface) to explore and monitor systems implemented in different languages. Systems have

a module structure where each module can have a different language. A generic component approach is used for all supported
languages - currently JavalKotlin, C#, C/C++, Python.

Flexible Exploration of Dependency Structures

Y ou are free to decide how to explore dependencies. Sonargraph offers atree-like explorer, a graph viewer and a simple table-
based viewer.

Automated Updates and Flexible User Interface

Automated updates and a flexible user interface (layout and customization) are provided as Sonargraph is built upon the Eclipse
Rich Client Platform (RCP). Sonargraph-Build plugins for Maven and Gradle can also be configured to update automatically.

Exchangeable Quality Artifacts

The software system analysis comes with a multiple file approach. The software system is comprised of a main software system
file, analyzer configurations, user defined scripts, different architecture aspects and so forth. The approach makesit easy to share
valuable aspects of the analysis between software systems as well as to centralize common aspectsin bigger companies.

Chapter 2. Getting Started

Y ou are reading this, because you care about the quality of your code base and that's great!

Sonargraph identifies problematic areas and supports you to gradually improve your code base. Be aware that thisis not an easy
task, especidly if no static code analysis checks have been executed for along time on your project! It is very likely that there
will be an overwhelming amount of issues that would take too long to be al fixed. But Sonargraph will steer you towards those
issues where fixes provide the most benefit.

Don't Panic!
Not all issues will be easy to fix. Some, like huge cycle groups, might be really hard to solve.

Our advice isto treat "quality improvement” not as a short-term "sprint" but rather as necessary and integral part of software
development that needs to be done continuously. The best you can do is to accept the current state of quality, look forward and
gradually get rid of issues where code needs to be modified. If you cannot eliminate a big cycle group in one go, at least make
sure that it does not get worse and free elements from it piece by piece.

The benefitswill be great, because it not only improves the code base but these efforts will also make you a better programmer /
architect, since you will be forced to think alot about good solutions for the problems identified by Sonargraph.

" A Fool with aTool is still a Fool"

This applies for Sonargraph, too. Programming and architecting skills need time, a lot of reading (see our
recommendations at the end of the previous chapter) and deliberate practice.

Sonargraph is an excellent tool to tell you about the existing problems in your code. Finding good solutions is till
your task!

This chapter is meant to be a quick reference on how to get started with Sonargraph. Links are provided to other chapters of the
user manual, where you find more details.

Motivation and Key Concepts

In caseyou skipped Chapter 1, Mativation for Code Quality, we urge you to go back and read it. It provides convincing arguments
about the usefulness of high-quality software, in case you need to convince someone else in your organization that these efforts
arewell spent. Wea so included alist of our favorite booksthat hel ped us write better software. Asanext step, we recommend to
get familiar with the key concepts used within Sonargraph by skimming Chapter 5, Getting Familiar with the Sonargraph System
Model, so you know what we mean when we talk about "module”, "root directory", "namespace”, "component"”, "physical”,
"logical”, "issue", etc.

Initial Configuration

Before you can analyze your code base, you need have alicense. Check Chapter 3, Licensing for details on how to activate your
license on Sonargraph.

If you want to analyse C/C++, C# or Python code, you probably need to configure some preferences, so that Sonargraph
finds the code of the corresponding platforms on your machine. This is required to correctly resolve dependencies. Check
chapters Section 4.7, “ C/C++ Compiler Definitions’, Section4.10, “ C# Configuration”, and Section 4.11, “ Python Configuration”
respectively.

Getting Started

Help!

Y ou will need some time to know your way around Sonargraph. We do our best to make the interactions as obvious as
possible, but our intuition might differ fromyoursin someplaces. If you get stuck and don't know what to do next, simply
press F1 and some guidance will be provided in the context help with additional pointersto more detailed information.

In casethat is not sufficient, please send us afeedback viathe menu "Help" — "Send Feedback..." and we will get back
to you as soon as possible for further support.

Setup Sonargraph System and Define the Scope of Analysis

Having resolved al the initial tasks, it is now time to import your code to Sonargraph. We implemented several importers that
shouldlet you create a Sonargraph system based on code devel oped with Eclipse, Intellij IDEA or Visua Studio. Check Chapter 6,
Creating a Systemfor details. In case the automatic import is not possible, amanual setup is also supported. When the import has
finished, hit "refresh” and let Sonargraph analyze your code. Afterwards, the Workspace view lists all modules and directories
where code has been found. In case you want to exclude code from the analysis or simply ignoreissuesin certain areas, configure
the workspace filters accordingly as described in Section 8.8, “Managing the Workspace”.

In case your workspace in your | DE has changed and new modul es/projects have been created, you can also create new modules
viaseveral different importers as described in Chapter 7, Adding Content to a System.

Initial Assessment

If you are like us, you will be keen on seeing some dependencies now. For this, you can either click the Exploration view quick
access tool item in the main tool bar or select any number of elements (e.g. modules, files...) from the "Navigation view", open
the context menu viaright-click and select " Show in Exploration View". The view shows the dependencies as green arcs as they
have been derived from the code.

&0 @ 49 = Z == & °m Modifiable.vm r 4
= Navigation | % Namespaces | %= Files = O || w Open Exploration view ‘Physical' |0 | &% 15:03:30 p. m., 18/11/21 2 =B8]
SRal 1] 8
5;com.hell02morrow.sonar<;rai)h.bu iId.cIient_r-\-mven [=, com.hello2morrow.sonargraph.standalone.cplusplus =i
=i com.helloZmorrow.sonargraph.build.cplusplus [=) com.hello2morrow.sonargraph.standalone..csharp =i
Ei com.helloZmorrow.sonargraph.build.csharp acom.heIIoZmorrow.sonarglaph.standalone.java =i
Bt com.hello2morrow.sonargraph.build.java [=, com.hello2morrow.sonargraph.standalone python =i

WOV OV W W W Y WOV Y Y Y W Y Y Y Y Y Y Y Y Y Y Y W Y Y Y Y Y Y Y

= com.helloZmorrow.sonargraph.build.python

=, com.hello2merrow.sonargraph.client.eclipse

=i, com.helloZmorrow.sonargraph.core

=i, com.helloZmorrow.sonargraph.ide.eclipse

=, com.helloZmorrow.sonargraph.ide.intellij

=i, com.helloZmorrow.sonargraph.integration.access
=i, com.hello2morrow.sonargraph.language.provider.
=i, com.helloZmorrow.sonargraph.language.provider.
=, com.hello2morrow.sonargraph. language. provider,|
=i, com.helloZmorrow.sonargraph.language.provider,
=i, com.helloZmorrow.sonargraph.plugin.api

=i, com.hello2morrow.sonargraph.plugin.api.cplusplu
=i, com.helloZmorrow.sonargraph.plugin.api.csharp
=, com.hello2morrow.sonargraph.plugin.api.java

=i, com.helloZmorrow.sonargraph.plugin.api.python
=i, com.helloZmorrow.sonargraph.plugin.manager
= com.helloZmorrow.sonargraph.plugin.pmd

= com.helloZmorrow.sonargraph.plugin.spotbugs
=, com.hello2morrow.sonargraph.plugin.swagger

=i, com.helloZmorrow.sonargraph.remoting

=i, com.helloZmorrow.sonargraph.standalone

=, com.hello2Zmorrow.sonargraph.standalene.cpluspl
=i, com.helloZmorrow.sonargraph.standalone.csharp
=i, com.hello2morrow.sonargraph.standalone.documi
=i, com.helloZmorrow.sonargraph.standalone.java
=, com.hello2morrow.sonargraph.standalone.python
=i, com.helloZmorrow.sonargraph.ui.swi

sp External [Java)

E?‘,com.heIIoZmorrmv.sonargraph.ide.eclipse
acom.heIIoZmormw.sonargraph.slandalone

\

acom.helloZmormw.sonargmph.huiIcI
E?‘,c:om.heIIoZmorrow.sanarglaph.build.cplusplus
acom.heIIoZmorrow.sonarglaph.build.csharp
acom.heIIaZrnorraw.sanarglaph.build.java
E?‘,com.heIIoZmorrow.sanarglaph.build.prm‘)n
=i, com. hello2Zmorrow.sonargraph.ide.intellij
acom.heIIaZmorraw.sanarglaph.ui.swt

ERRppEERDD

Egﬁcom.heIIoZmorrow.sonarglaph.client_eclipse
EG},...l’com.helanmormw.sonargraph.client.eclipse.l’src!main.fgmow
E| EE}com.heIIoZmorrow_sonargmph.cIienLecIipse.application
|J| Eclipsefpplication java

BundleControllerjava
EclipseLogListenerjava

[J| EclipseRelease java

|ExceptionHandler java

LanguageProviderExtension.java
E?ﬁc:om.heIIoZmorrow.sonarglaph.Ianguage.provider.cplusplus
acom.heIIoZmorrow.sonarglaph.Ianguage.pm\aider.mharp
acom.heIIoZmorrow.sanarglaph.Ianguage.pm\aider.java

acom.heIIoZmorrow.sonarglaph.Ianguage.pm\aid er.python

[= com.hello2morrow. sem. git
acom.helloZmorrow.sonargraph.core

Figure 2.1. Exploration View

ﬂ? L

Getting Started

Selecting a node or dependency, the "Parser Dependencies View (Out)" view displays the details. We dedicated awhole chapter
about how to explore the code and make the best use of the powerful functionalities: Section 8.11, “Exploring the System”

In caseyou started with static code analysisfor an existing project, itislikely that the"Issues" view showsahugelist of problems.
Of course, you can apply filters: Either by selecting elements in the tree view shown in the upper part or by selecting the issue
types you are interested in. Section 9.2, “Examining Issues’ describes all the possible interactions.

Not all issues should be treated equally. Some are more relevant to the future development than others and refactoring efforts
should be focussed on them. We implemented an agorithm based on the "Eisenhower Method" to identify issues that are both
important and urgent to fix. The suggested ranking can be examined in the "Ranking" view, the "Properties’ view shows details
of theindividual parameters and how they contribute to the computed score. Check Section 9.2.1, “Identifying the Most Relevant
Issuesto Fix” for details.

Most likely cycle group issues will be among the most relevant issues. We have seen groups involving hundreds of elements,
so their impact on the code base and the architecture is huge. Reducing the amount of code involved in cycles will have avery
positive effect on the maintainability. How Sonargraph helps to investigate and to eliminate cyclesis described in Section 8.10,
“Analyzing Cycles” and Section 8.10.3, “Breaking Up Cycles’.

Duplicate code aso has a negative impact, since it bloats the code base and makes bug fixing more difficult, because you need
to know where the duplicates exist you need to repeat the fix at all occurrences. The inner workings and configuration options
of the duplicate code analyzer are described in Section 8.13, “Detecting Duplicate Code”.

Of course, Sonargraph also computes a lot of metrics. The Metrics view as described in Section 8.15, “Examining Metrics
Results’ alows to search for outliers. This gets more convenient if you configure metric thresholds for those metrics that you
find interesting. We prepared some thresholds for you, that can be imported as a quality model (check Section 6.4, “Quality
Model” for details).

Define Meaningful Thresholds

Agreeing on "sensible" thresholds can be a matter of tough debates. Our advice is to not take them too serious. But, most of the
times, you will find that the code is easier to understand after you applied a refactoring to eliminate the issue. In case it is not,
you should talk to a colleague and maybe she will come up with a better refactoring proposal.

To identify hotspots, you can use treemaps as described in Section 9.2.2, “Identifying Issue Hotspots’. Simply looking at the
code base from a different perspective can reveal suprising insights. Give it atry!

TIP

The best place for a Sonargraph system definition is next to the code base. If you haven't done it yet, share the system
definition with the team and add it to your version control system. All information that makes up a Sonargraph system
definition is contained in plain text files that are easy to read and to track their changes.

Define Architectures

One of the main ideas behind Sonargraph isto detect unwanted dependencies within the code base, so that the "big ball of mud"
can be prevented. An architecture defines how parts of the system can reference each other. Sonargraph makes the architecture
"actionable" by automatically verifying that the implementation matches the definition. Chapter 11, Defining an Architecture
describes the rationale behind the implementation of the architecture as a Domain-Specific Language (DSL), and demonstrates
the features using an example scenario.

The architecture DSL is tremendously powerful and allows to define complex structures with minimal effort. But it needs time
to learn al constructs and how to combine them efficiently. That's why modeling the architecture interactively during system
exploration was implemented in the "Architectural” view. It also alows defining refactorings while modeling, and it is fun to
see how the system's structure is improving. Chapter 13, Interactive Restructuring and Code Organization describes details.
(Note: No code is changed in this process, only tasks are created that need to be executed in your IDE.) The "Architectural"
view is a sandbox. Once you are happy with the results, the architecture definition and tasks can be transferred and will then
be actively checked.

10

Getting Started

TIP

The transfer creates a file containing the architecture defined with the DSL. If you have repetitive structures in your
architecture, you should use DSL constructs to eliminate them, for example via "aspects' as described in Section 11.3,
“Reusing Architecture Aspects”’.

A lot of users like architecture representations as box-and-line diagrams. Since our architecture meta-model was derived from
UML component diagrams, this is the implemented visualization that shows how the defined artifacts are interconnected. The
hierarchical layout of elements follows the approach that is consistently implemented within Sonargraph: High-level elements
with outgoing connections are above low-level elements with incoming connections. See Chapter 12, Visualizing Architecture

Aspects.
Define Resolutions and Tasks

Knowing where the problems are isimportant. Sometimes, you decide you want to live with them, so Sonargraph lets create you
"Ignore" definitions to move these problems out of focus. Sometimes, you find them important enough to be fixed, so you can
define "Fix" definitions and recommend possible solutions. Using the Sonargraph IDE integrations for Eclipse or IntelliJ IDEA,
those fix definitions will show up in the editor and help the devel oper to implement the solution.

Sonargraph also allowsthe simulation of refactorings: Y ou can evaluate the effects of "move”, "rename” and "del ete” refactorings
before they are implemented. The Sonargraph IDE integrations make it dead-easy to execute "move" and "rename” refactorings
by delegating theseto the IDE's builtin refactoring functionalities. The functionality of theintegrationsis described in Chapter 20,
IDE Integration.

NOTE

Sonargraph task definitions should have a short life span. Otherwise there is the risk that tasks and the underlying code
base get out of sync.

Continuously Check the Quality

The more frequent the quality is checked, the faster is the feedback about new problems and the easier it is to fix them. That's
why SonargraphBuild can be integrated into your Continuous Integration (CI). It is up to you how to react on the results, either
let the build fail or only send an email out to the devel opers. We have a dedicated user manual for this product that details al the
configuration options: https://eclipse.hello2morrow.com/doc/build/content/index.html

Incremental Quality Improvements

Big-bang approachesrarely work. We proposethat you accept the current state, move forward and ensurethat the quality improves
over time. Sonargraph lets you focus on changes and highlights added, worsened, improved and removed issues in the " System
Diff" view. You create a baseline that the system’s quality will be compared against, as described in Chapter 14, Examining
Changes. We recommend to define goals that you want to achieve, e.g. during the next sprint or until the end of the next release.
Sonargraph lets you define those as quality gates for metrics and issues (see Chapter 15, Defining Quality Gates) and checks
them automatically.

Once you have completed the above steps and got familiar with Sonargraph's features, it's time for a recap. Y ou should think
about when and how you want to use Sonargraph to check that you are still on track. Baselines can support reviews for features
and releases and ensure that no additional problems are introduced.

Apart from ensuring that no new issues are introduced, we recommend to regularly look at the ranked issues and select some of
them to be fixed. It is also worth to check for hotspots using treemaps, so that areas for larger refactorings can be identified.

Using Special Checks

Y ou can extend Sonargraph by writing additional checks and compute futher metricsvia Groovy scripts. A number of predefined
scripts exist that can be imported from the built-in quality models. They check for "dead code", compute metrics like "Depth

11

https://eclipse.hello2morrow.com/doc/build/content/index.html

Getting Started

of Inheritance", identify code that has the most impact on coupling ("ACD Top Scorer") and detect patterns like "Singleton” to
name afew examples. Chapter 16, Extending the Static Analysis provides more details.

Stay Up-To-Date

No software is perfect and Sonargraph is no exception. We heavily use assertions to check for internal consistency. Sonargraph
will let you know if one of them fails and we kindly ask you to send us the error report. Bug fixes have high priority for us and
we frequently release updates that the application will offer you to install at startup.

We regularly publish blog articles at https://blog.hello2morrow.comy to illustrate the benefits that you get by using certain
features. Our web site al so contains anumber of videosthat show Sonargraph in action (https://www.hello2mor row.com/videos).

In case you haveideasfor additional functionality, please send themto usvia"Help" - "Send Feedback..." and we will be happy
to integrate them in our backlog.

12

https://blog.hello2morrow.com/
https://www.hello2morrow.com/videos

Chapter 3. Licensing

When you start Sonargraph you will be asked for an activation code or a license file. For additional licensing and pricing
information please contact <sal es@el | o2nor r ow. con® or <support @el | o2nor r ow. con® and check our web
site.

3.1. Getting an Activation Code or a License

When you have purchased a Sonargraph license, an activation code or alicense file will be delivered to you.

There might be aprogram for free Sonargraph licenses which are time-limited and/or size-limited. Please register on our website
and check the available programs.

In order to replace a valid license by a new one, choose "Help" - "Manage License..." from the user menu in the GUI-based
product. Sonargraph licenses are bound to a named user. The usage by a different user is aviolation of the license agreement.

3.2. Activation Code Based Licensing

Activation code based licensing activates Sonargraph licenses via Internet or a local license server by requesting a so-called
ticket. Every activation code is customer specific and represents a pool of Sonargraph user licenses as purchased and licensed
to the specific customer. Activation code based licensing technically requires that Sonargraph has Internet access or that alocal
license server isreachable. There are two types of activation code based licenses available:

1. Flexible User License (if you bought Sonargraph before version 9.0 you have flexible user licenses)
2. Foating License (new with Sonargraph 9.0)

Flexible user licenses support a feature that allows customer-driven transfer of a Sonargraph user license to another user after
some amount of time. Thisworks like this:

» When an activation code based license is requested, Sonargraph automatically requests alicenseticket from the hello2morrow
license server. Thisticket expires after sometime, for example after 30 days. During these 30 days, the use of the Sonargraph
installation that requested the ticket is licensed (by the user who ran Sonargraph when the license ticket was requested).
Sonargraph can be used during this period without any access to the Internet.

 After theticket of a Sonargraph installation has expired (in our example scenario, this happens on the 31st day after the ticket
has been requested), one of two things typically happen:

1. The same Sonargraph installation is started again. Sonargraph then notices that the license ticket has expired and lets the
user know about it by presenting a dialog to manually request a new ticket from the hello2morrow license server, for the
same activation code or a different one if desired. The new ticket again is valid for the same time period. Y ou can toggle

the feature at ' Help — Renew License Ticket Automatically ' to have Sonargraph silently perform license ticket requests
using the current activation code, without further user interaction.

2. Alternatively, the user of the installation might not continue to work with Sonargraph; then the license is now, after the
expiration of the ticket in the Sonargraph installation, available to some other user. The hello2morrow license server will
supply alicense ticket to the next user that requests one for the given activation code.

Note that the number of license tickets that can be supplied by the license server for some activation code might be more than
one. For example, a company might license Sonargraph for 20 users. The same activation code can be used by all of them, but
as soon as the 21st license ticket is requested for this activation code, this request will be denied. A new request for aticket will
only be fulfilled after one of the already supplied tickets has expired, so that at any one moment, at most 20 non-expired license
tickets exist for the activation code.

It is not required that the same user requests a replacement of an expired license ticket; any user that knows the activation code
can reguest one of the free tickets. This mechanism reduces the effort needed for license management in a changing user group.

13

https://www.hello2morrow.com/products/sonargraph/architect_pricelist
https://www.hello2morrow.com/products/sonargraph/architect_pricelist

Licensing

However, in order to avoid any misuse we strongly encourage you to restrict the information about your activation code to those
persons who are supposed to use Sonargraph.

If you have any suspicion about misuse please inform <support @el | o2nor r ow. con» immediately. We can promptly
deactivate an activation code so that any further misuse is stopped and provide a new activation code to you.

Floating licenses bind aticket to an instance of Sonargraph whileit is running. As soon as Sonargraph is terminated the license
can be used by another user.

Most of our customersare using our Internet based license server, so thereis no need for you to operate your own license server as
long as the machines running Sonargraph have accessto the Internet. If thisis not the case or you want to avoid being dependent
on the availability of hello2morrow's web-based license server you can request the usage of alocal license server by contacting
usvia<sal es@el | o2norr ow. con® or <support @el | o2nor r ow. conr. Once your request has been approved, you
can download hello2morrow'slocal license server and runit on your premises. If you have aflexible user licenseitisalso possible
to run Sonargraph with file based licenses.

3.3. Proxy Settings

If you use hello2morrow's Internet servers and Activation code based licensing, you need Internet access. If your network
configuration does not allow direct Internet access, but provides access through an HT TP proxy instead, you can specify the host
name and port of the proxy server. If the proxy server accessis password protected, you can supply a user name and a password
in order to authenticate.

For the GUI-based product, the proxy settings can be changed via"Preferences..." — "Proxy Settings' .

Check the user manual of Sonargraph-Build for proxy configuration options of the build server integrations.

3.4. License Server Settings

| you use your own license server you need to configure the access to it. Y ou must specify the host name and port of the license
server.

For the GUI-based product, the proxy settings can be changed via "Preferences..." — "License Server Settings' .

14

Chapter 4. Initial Configuration

Thischapter summarizeswhat is needed for Sonargraph to run, how the update mechanism works and the necessary configuration
before you can start creating software systems .

Related topics:
» Chapter 3, Licensing

« Appendix B, Tutorial - Java

4.1. Installation and Updates

Sonargraph is built upon the Eclipse Rich Client Platform (RCP) framework. The following prerequisites must be fulfilled:
» Microsoft™ Windows™ , Mac OS-X or Linux® operating system.
* 2048 MB RAM (Win32: 1400 MB)

Sonargraph leverages the advantages of the Eclipse Rich Client Platform update mechanism, thus, it will automatically connect
to the hello2morrow update site and check for new versions at startup.

On Windows, Sonargraph stores application specific data (e.g. state files for the undo/redo history) in the directory
%APPDATAY\hello2morrow\Sonargraph. If you notice slow performance during edit operations and you cannot exclude
this directory from the virus scanner, create a script that reconfigures the environment variable "APPDATA" and then starts
Sonargraph.

4.2. Help

The documentation for Sonargraph (i.e. this document) is also integrated into the product and available via the main menu entry
"Help" - "Help Contents..." or by pressing the Ctrl+F1 shortcut. It also provides a search functionality.

Dynamic / context-sensitive help is available within the application via the shortcut F1 .

If there is no answer to your question available, contact us viathe built-in feedback functionality, which can be found at "Help"
- "Send Feedback..." or by sending an email to <support @el | o2norr ow. con .

15

Initial Configuration

4.3. Editor Preferences

For architecture files and scripts you can set editor preferences. In the "Preferences..." menu, you find the possibility to change
the editor preferences:

K JON Sonargraph - Preferences
= Editor
%= License Server
4 Proxy Format files on save:
Update Site
P g C/CH++

Show white space:

b G CH Indentation for empty lines:
Indentation size: 4
Tab policy: Blanks [T
Position of the opening braces {: On the next line ﬂ
Position of the closing braces }: On the next line d

Line delimiter: Unix d

Restore Defaults

@ Cancel Apply and Close

Figure4.1. Editor Preferences
Format fileson save If set architecture and script files are formatted when saved, otherwise not.
Show white space If set white space characters are shown with special characters, otherwise not.

Indentation for empty lines If set empty lines will be automatically indented while being formatted, otherwise empty lines
will stay empty.

Indentation size Set the indentation size (only relevant for tab policy "Blanks").
Tab policy Choose between "Blanks" to use blanks for indentation, and "Tabs" to use tabs for indentation.

Position of opening braces Choose between "On the same line" to put opening braces on the same ling, and "On the next
line" to put opening bracesto the next line.

Position of closing braces Choose between "On the sameline" to put closing braces on the same line, and "On the next line"
to put closing braces to the next line.

Linedelimiter Choose between "Windows' which will end lineswith CR and LF, and "Unix" which will end lineswithaLF.

16

Initial Configuration

4.4. License Server Preferences

In the "Preferences..." menu, you find the possibility to change the license server preferences:

00 @ Sonargraph - Preferences

I Editor License Server
%= License Server

() Proxy Host/IP Address: localhost
& a -
Update Site Port: 8080

> @-_‘1 C/C++

> @-_& Cc# Test Connection

| Use license server

Restore Defaults

®@

Cancel ! Apply and Close J

Figure4.2. License Server Preferences

4.5. Proxy Preferences

In the "Preferences..." menu, you find the possibility to change the proxy preferences:

o0 @

E. Editor

%._.. License Server

HostIP Adcress:
Update Site

: g";:g[#C++ User (Optional):

Sonargraph - Preferences
Proxy

localhost
Port: 80

Password (Optional):
Use direct connection if proxy is not reachable

Test Connection Via Proxy

Restore Defaults

Cancel ! Apply and Close J

Figure 4.3. Proxy Preferences

17

Initial Configuration

4.6. Update Site Preferences

In the "Preferences..." menu, you find the possibility to change the update site preferences:

| @ @ Sonargraph - Preferences
f1 Editor Update Site
%= License Server
&) Proxy Update Site URL: http://eclipse.hello2morrow.com/sonargraph8/release
2~ Update Site Port: 80
P g C/C++
> g cH Test Update Site URL

® Cancel Apply and Close

Figure 4.4. Update Site Preferences

» Update Site URL Usethisupdate site to check for new releases of Sonargraph Standalone. Change thisif you want to operate
alocal mirror of the official hello2morrow Sonargraph update site.

Port The port number of the update site.

If aproxy is configured in Section 4.5, “Proxy Preferences’ it will be used while connecting to the update site.

4.7. C/C++ Compiler Definitions

Sonargraph uses internally the Edison Design Group (EDG) C/C++ Front End to parse C/C++ sources. In order to emulate
the behavior of your C/C++ compiler, Sonargraph needs a compiler definition. A compiler definition contains the location of
the directories containing the system include files, a list of predefined macros and other options for the EDG parser defining
language features and compatibility levels. Y ou will not be ableto successfully parse asoftware system without aproper compiler
definition for your compiler. One compiler definition has to be set as the "active" definition, which will be used by default for
opened software systems containing C/C++ modules.

Sonargraph comes with pre-defined compiler definitions that are activated by default depending on the platform Sonargraph
isrunning on:

e "CLang" for Mac OS-X.
* "GnuCpp" for GNU C++ compiler on Unix based systems (Linux, Unix).

* "VisuaCpp_x_y 7" for Windows based systems that have Microsoft Visual Studio Compiler installed. (x = version,
y=architecture, z=processor, e.g. VisuaCpp_12.0 x86_amd64). Thesedefinitionswill not be automatically generated anymore
because from Visual Studio 2019 on it is not possible anymore to query the registry for the installation location of Visual
Studio. You have to tell Sonargraph where Visual Studio isinstalled. You can even register different Visual Studio versions
with Sonargraph. To register an installation use the "Visua Studio Installations" preference page under the C/C++ preference

18

Initial Configuration

page group. To get there just select "Preferences’ from the "Windows' menu. Y ou then add the root directory of each Visual
Studio installation you would like to use with Sonargraph. The root directory must have a sub-directory "VC".

If you are using adifferent compiler the easiest way to create anew compiler definition isto use the wizard under the "File/New/
Configuration..." menu. If you have used our old product Sotograph before the wizard offers you to import a Sotograph compiler
definition into Sonargraph. If you do not have a Sotograph compiler definition file you can ignore this step.

In the "Preferences..." menu, you can manage and modify existing compiler definitions or create new ones based on existing
compiler definitions.

A Preferences
type filter text | C/C++ Compiler Definition Configuration
C/Css Pref | A compiler definition contains the include directories for your native compiler and further options,
a i r. erenc.es. . | sothatthe C++ EDG front-end simulates the native compiler.
Compiler Definition Search Path The active compiler definition is applied across all C++ software systems. Additional compiler options can be defined per
Compiler Definition Configuration module,
Failed Compiler Definitions Pre-installed compiler definitions cannot be modified. They can be used as templates to create new definitions.
+ Help
Proxy Settings C/C++ compiler definitions
Select existing definition |VisualCpp 12.0 x86_amd64 (active) -
Activate New “ Copy Delete
Definition details
Path | Generated compiler definition
| General i C Options | C++ Optmnsi Common Options | Option Translations |
Common options for C/C++ files (Groovy Template). Resolved Template
--microsoft + --microsoft -
--microsoft_versiocn=1800 --microsoft_version=1800
-D_MSC_EXTEMSIONS -D_MSC_EXTEMSIONS
-D_INTEGRAL_MAX_BITS=64 -D_INTEGRAL_MAX_BEIT5=64
-D_MSC_VER=1800 -D_MSC_VER=1800
-D_MSC_FULL_VER=180030723 -D_MSC_FULL VER=180030723
-D_MSC_BUILD=0 -D_MSC_BUILD=0 L
-D_M_AMD64=100 -D_M_AMDE4=100 A
-D_M_%64=100 -D_M_X64=100
-D_WING4 | | -D_wimnes
-D_WIN32 D_WIN32
-D_MT D_MT
--sys_include= C:\Program Files (x86)\Microsoft Visual ¢ --sys_include=C:\Program Files [x86)\Microsoft Visual ¢ | |
sl o T g --sys_include=C:\Program Files (x86)\Windows Kits\8.1'
|asssmsmsinaasne DRt aietsiigning] --sys_include=C:\Program Files (86)\Windows Kits\8.1' ~
Resolve Template | T4 i] '
Error Info
4 ¥
ricel
Jellh
\‘?:‘ oK] [Cancel

Figure 4.5. C++ Compiler Definition

The tranglation tab allows to define how options retrieved from imports need to be handled: For C++ modules created based on
imports (e.g Makefile or Visual Studio 2010 project files (.vexproj)), only macro (-D) and include (-1) preprocessor options will
be applied. Use the trandation functionality if any additional options of the imported project are required for parsing or the EDG
parser uses a different value than your standard compiler.

For certain compilersit is possible to dynamically retrieve predefined macros and the include search path. To do that compiler
definitions can be based on Groovy templates that invoke the compiler to query those settings. Thisis of course not possible for
all compilers. Therefore we also have created a compiler definition wizard that will collect the information about the compiler

to be emulated from you. You can invoke this wizard from the "File" - "New" — "Configuration..." menu. The wizard also
supports the import of compiler definitions from Sotograph. (Previous tool from hello2morrow)

NOTE

You need to "activate”" acompiler definition to useit for parsing. Just selecting a definition is not enough.

19

Initial Configuration

NOTE

Replacing the active compiler definition or modifying its content will force a reparse of the currently loaded software
system as soon as the compiler definition is activated or the changes are applied.

By default, compiler definitions are stored in the Sonargraph home directory. These definitions are not intended to be shared.
If you want to share compiler definitions across team members, it is recommended to specify a separate directory in the search
path that contains these shared definitions. See Section 4.8, “ Search Path Configuration” .

4.8. Search Path Configuration

Similar to a Java classpath, C++ compiler definitions are looked-up using search paths. The search paths contain at least one
entry, which is per default located within the Sonargraph user-home directory. Further directories can be added to the search
path that allow to share configurations between users, i.e. if those directories belong to a network drive. Those directories are
searched if the configuration file is not found in the installation-specific directory.

ype filter text | Search Path Configuration for C# Profiles
“ Pr :lrensces e This dialog allows you to define directories that will be scanned for installation profiles.
mphieacarcly fo Profiles found in the search path are meant to be exchangeable between different machines and should therefore contain

Profiles Configuration machine-independent assembly directories.
Build Executor Configuration All installation profiles contained in the directories are listed, but only the first found in the search path will be applied.

a C/C++ Preferences Add..
Compiler Definition Search Path
Compiler Definition Configuration |
Failed Compiler Definitions

1> Help

Proxy Settings

Set the directory where machine specific installation profiles are loaded from.
These profiles overrule profiles loaded from the search path:

4 ChlUsers\Ingmar\AppData\Roaming'helloZmorrow\Sonargraph.csharp
MetFrarmeworks.0.xml
MNetFrameworkd. 5aml

l Apply J [Cancel]

etk LG

Figure 4.6. Search Path Configuration

4.9. C/C++ Parser Daemon Configurations

Sonargraph uses background daemon processes to speed up the parsing process. The daemons only run during refresh and need
between 250 MB and 350 MB of memory. Per default the number of daemonsis configured to 8. Y ou can change that via setting
in the C/C++ preferences to a value between 1 and 16. Y ou should lower the default when your machine is short of memory.
Y ou can use a higher value than 8 if you have ahigh-end CPU and lots of memory. Y ou can also increase the daemon stack size
from the default of IMB. This might be necessary if you have crashing parser daemons. Maximum stack sizeis 128 MB, which
would significantly increase the memory needed per daemon.

Please note that fewer daemons are started if the number of filesto parse is smaller than the configured number of daemons.

20

Initial Configuration

4.10. C# Configuration

Our C# parser is based on the open source Roslyn project, which is also the basis for Microsoft's official C# compiler. Sowe are
using your local .Net configuration. Y ou only need to select the modules you want to analyze and make sure that the solution
can be built locally using your favored I DE.

21

Initial Configuration

4.11. Python Configuration

Sonargraph supports Python version 3 and higher. To enable the support Sonargraph must know the location of the executable
for the Python interpreter. Y ou can configure that in the "Python Preferences’ "section of the Sonargraph preferences dialog.
We also assume that you would use virtual environments for managing project specific dependencies. In that case you should
configure the Python interpreter of your virtual environment in the setting dialog brought up by " System/Configure". In any case
Sonargraph will ensure that your interpreter supports at least Python 3.

Since Python is adynamic language many dependencieswill not be detectable by Sonargraph - everything isan object and typing
information is rarely available. Nevertheless the model will still contain the most relevant dependencies (e.g. object creation,
inheritance, function calls, member accessetc.) so that theresult isgood enough to analyze dependencies and enforce architectural
constraints. Please be sure to read the section about Sonargraph's Python model in the next chapter.

To analyze a Python system with Sonargraph you must execute the following steps:

Create anew software system by using "File/ New / New System..."

Add a Python module by selecting "File / New / Module / New Python Module...". Usually Python systems only contain a
single module.

Add theroot directory for your Python project by right clicking on the module you created in the previous step and select "New
Root Directory...". If you have more than one source root directory you can add several.

If you project uses avirtual environment please configure the Python 3 interpreter of thisvirtual environment viathe"System/
Configure..." dialog.

Save your newly created system.

Start the parser by clicking on the "refresh” icon (top left icon in the tool bar). Thefirst parser runwill alwaystake longer since
we have to parse al the directly and indirectly imported files from the Python library.

Now you should have amodel and you can browse dependencies, metrics and anything else that is contained in the model.

22

Chapter 5. Getting Familiar with the
Sonargraph System Model

The software system is the scope of analysisin Sonargraph . This chapter describes the model used by Sonargraph to represent
a softwar e system based on your code components and elementsin order to fulfill different goals regarding the analysis.

5.1. Physical File Structure

The Sonargraph software system is physicaly represented in the file system by a directory <System-name>.sonargraph that
contains a file named system.sonargraph :

¥ || 5ample Project.sonargraph
¥ || Analyzers
7 DuplicateCode.xml
7 MetricThresholds.xml
7 ScriptRunner.xml
¥ || Models
7 Virtual Model 1.vm
¥ [l Scripts
b || BadSmells
| SuperTypeUsessubType.scr
" system.sonargraph

Figureb5.1. Physical File Structure

» system.sonargraph contains all information necessary to parse the code, i.e. the workspace information about modules,
directories, etc. See Section 8.8, “Managing the Workspace” and Chapter 6, Creating a System .

» Analyzers sub-directory contains configuration for code duplication, metric thresholds and which of the Groovy scripts are
executed automatically.

» Models sub-directory contains the virtual model files, i.e. the information about resolutions (todo, ignore, fix) for detected
issues.

* Scripts sub-directory contains the Groovy scripts that allow custom queries.

Analyzer files and scripts are part of the Sonargraph quality model. See Section 6.4, “ Quality Model”

23

Getting Familiar with the Sonargraph System Model

5.2. Language Independent Model

The language independent domain model of the system is depicted in the following diagram. Domain models for specific
languages are detailed in subsequent sections. Referenced types that cannot be located in the workspace are put under the
"External” node. External elements are not part of the metrics calculations.

Software System

T,

Workspace

RootDirectory

I.

SourceFle

Figure5.2. System Domain Model

24

Getting Familiar with the Sonargraph System Model

5.3. Language Specific Models

The language specific models are built around the central idea of a component as defined by John Lakos in "Large Scale C++
Software Design”: “A component is the smallest unit of physical design.”

They represent specializations of the language independent model elements. Those specializations depend, of course, on the
elements of the language.

5.3.1. Java/Kotlin Model

Sonargraph parses the JavalK otlin byte code (i.e. the .class files) for the static analysis. For a basic analysis, it is sufficient to
specify the directories where the compiled byte code can be found. For a more advanced analysis like the detection of duplicate
code blocks and the direct navigation to references in the source code, the source root directories are required (recommended).
If the source fileis available for afound type (class, interface, ...) the compilation unit is created underneath the corresponding
source root directory. If no source can be found the compilation unit is created under the corresponding directory where the byte
code was found. The following diagram shows the domain model for Java.

Mod ule

I

JavaModule

Java packages and compilation units:
- are either placed under root- or source

f T et root directories
--'_-'--’_" II

JavaSource
RootDirectoryPath RootDirectoryPath
0.
0.*
JavaPackage
0. 0. 0.
0.
JavaClassFile JavaCompilationUnit 0 JavaSourceFile

At least one *\
JavaClassFile must exist 1.0 \‘\

for JavaType to exist. f--------------------~
Several duplicate
JavaClassFiles may exist. A JavaSourceFile is option aI.T

Several duplicate
JavaSourceFiles may exist.

JavaField

JavaMethod

Java
Programming
Element

Figure 5.3. Java Domain Model

25

Getting Familiar with the Sonargraph System Model

For inner classes and anonymous inner classes the correct nesting of Java compilation units is applied to types and methods
respectively. Thisis not shown in the diagram for ssmplicity reasons.

All classes found in the byte code of the specified workspace are part of the system. Classes that are referenced by these classes
but cannot be found in the given root directories are not part of the workspace and appear in the "External" node.

5.3.2. Kotlin Specific Issues

We added support for the VM version of Kotlin to Sonargraph. There are, however, some issues with the Kotlin support that
cannot be solved easily dueto the way Sonargraph analyzesthe code. The biggest issue comes from inline functions and methods.
Since Sonargraph isrelying mostly on byte code to analyze dependencies you will not see the dependencies at the location where
the code is inlined. In most cases this is not really a serious problem, but you should be aware of this problem. The easiest
way to avoid the problem is limit using inline functions in your code. Most of the time the potential performance gain can be

neglected anyway.

26

Getting Familiar with the Sonargraph System Model

5.3.3. C++ Model

Sonargraph uses the Edison Design Group (EDG) C++ Front End for parsing C/C++ code. The EDG parser must be configured
appropriately in order to simulate your native C++ compiler. The basic domain model for C++ is shown in the figure below.

Module C++ External
75 [
&
C++ Module CppincludeDirectory Field Type Definition
* *
RootDirectoryPath External Header File Macro \fariable
*
Function .
C++ Component MemberFunction Class/Struct/Union
s — || —
* .
) . - C++ Namespace C++ Programming
C++ Source File Header File pe=: I Fragment Element
I | i | |
1
1
%7 47 R includas- %, 47
| &

C++ Source g C++ Element
&

Figure 5.4. C++ Domain M odel

An important difference to the model of other languages is the fact that C and C++ are using header files to declare items and
source files to implement them. Associated header and source filesform alogical unit that is called a component in Sonargraph.
In other languages like Java components are always represented by single source files. Sonargraph is able to determine the
components automatically by looking for declaresrelationships. If afunction isdeclared in header "function.h" and implemented
inasourcefile"function.cpp" Sonargraph will automatically combinethetwo into acomponent called "function”. The component
isanchored in the directory of the sourcefile.

It ispossible for acomponent to have more than one header file, if the elementsimplemented in a sourcefile are declared in more
than one header file. It is also possible for a component to have more than one source file, if the elements declared in a header
file are implemented in more than one source file. It is nevertheless good practice to avoid those situations.

Sometimesit can happen that the automatic creation of components creates overly large components containing unrel ated header
and sourcefiles. That isusually caused by cross declaration, e.g. aglobal variableis declared in several unrelated header files. If
you come over acomponent that contains unrelated source files you can always analyze the situation by opening the " Component
Construction View". To open this view right click on a component in the navigation view and select this view from the context
menu. The view will show a graphical representation of all the declares relationships within a component. Using that view it
should be easy to find the rogue declarations that cause unrelated files to end up in a single component. Y ou fix the problem
by removing the rogue declarations from their header files. Instead you should include the correct header file before using the
declared entity.

Sonargraph will attach a warning issue to components that contain more than one header file so that you can easily find
components that might be containing unrelated source files. If after inspection you come to the conclusion that the source files

27

Getting Familiar with the Sonargraph System Model

in a component are properly related you can ignore the corresponding issue in the issues view (by right clicking on the issue
and selecting "Ignore" from the context menu). Ignoring the issue will hide it from the issues view and also will suppress the
warning marker that was attached to the component.

Sometimesit is also possible that a component only contains a single header file, e.g. when a class has only inline members. In
that case there are situations when it will be impossible for Sonargraph to determine where to anchor such components. To solve
this problem Sonargraph will create an artificial module called "Unbound Components' and anchor the component there. The
user can then right click on such components and select "Assign to module..." from the context menu. After saving the current
system state that decision will be persisted. As soon as the last unbound component has been assigned to a modul e the artificial
module will disappear.

In the example below for example the component "shared" could belong to "module_a" or to "module_b". Only the user is able
to resolve that.

=, Navigation a?;El‘darluam:uat:es 5. Files EmE ¥° 0|=Es Y ww |1 (&1 |ET #Hr [fEc HbD o (e 2| = 8
¥ =i module_a Ll L R = -
v D ./module_a
Fcla [+ =2, module_a (O) (M) =), module_a (O) (M)
¥ =i, module_b
¥[]./madule_b [= =2, Unbound Components (O)
> b
¥ =i, Unoound Components IEH:I Jfshared (OD)
¥[_]./shared
» [E] shared Ell & shared (OD)

P gl External [C/C
g External [C/C++] E@ shared.h (OD)

& MY_PI (M) (OD) A MY_PI (M) (OD)
1) (M) (OD) (J f() (M) (OD)
[+ =2, module_b (O) (M) \ﬁ,module_b (Q) (M)
Mo Additional Transitive Internal Call Extends Implements MNew Read Uses Write

28

Getting Familiar with the Sonargraph System Model

5.3.4. C# Model

Sonargraph parses the C# source files and relies on the existence of all referenced assemblies. Sonargraph offers C# profiles to
specify the directories where assemblies are located. Types found in these referenced assemblies are put under the "External”
node.

AN
Module C# External Field Class
S [3
% Property Struct
C# Module C# Assembly
* ’ Event Interface
&*
Method Delegate
RootDirectoryPath
i Enum

i C# Namespace
Source Directory Fragment ﬁ
’ C# Programming
® Element
* | &

&

C# SourceFile L2 C#Element f}——

T

Component

Figure 5.5. C# Domain M odel

5.3.5. Python Model

Sonargraph parses the Python source files of your project and all directly and indirectly included files from the Python library
and other third party libraries used by your software system. Since namespaces in Python work quite differently compared to the
other languages supported by Sonargraph we decided that Python modules are considered as namespaces/packagesin the logical
model. So in the namespace view your Python modules (i.e. source files) will show up as packages.

For the cycle analyzer that means that Python modules play a double role as "components® and as packages at the same time.
So package cycles can actually contain single Python modules.

When it comes to analyzing dependencies with respect to calling a method of a class that can only be resolved if the class of the
receiver isknown at compile time, which usually is only true for calls on "self" and if type hints are available.

29

Getting Familiar with the Sonargraph System Model

5.4. Logical Models

Besides the model that comes from each language-specific parsing process, Sonargraph offers two more models that contain
system-based and module-based logical elementswhich are cal culated based on the physical model. These elementsare basically
logical namespaces and logical programming elements and their calculation is explained with more detail below.

Logical Namespaces

To better understand the concept of Logical Namespaces, it is necessary first to take alook at a couple of examples of physical
namespaces:

¥ =i NHibernate
¥ 1 ./NHibernate
¥ 1 Action
¥ <& BulkOperationCleanupAction.cs
¥ & NHibernate
¥ £ Action
» @ BulkOperationCleanupAction
v] CollectionAction.cs
¥ B3 NHibernate
¥ # Action
» & CollectionAction

Figure5.6. Physical Namespaces

In the image, two source files are displayed, BulkOperationCleanupAction.cs and CollectionAction.cs. The C# parser detects
that below each one of them we have the namespace NHibernate.Action; on the physical level they are both independent and
have no relation. On the logical level on the other hand, the content will ook like this:

" =\ NHibernate
¥ # NHibernate
v & Action

* @ BulkOperationCleanupAction

» @ CollectionAction

* @ CollectionRecreateAction

> (@ CollectionRemoveAction

» & CollectionUpdateAction

> & DelayedPostinsertidentifier

> & EntityAction

» @ EntityDeleteAction

» @ EntityldentitylnsertAction

» @ EntitylnsertAction

» @ EntityUpdateAction
[E AfterTransactionCompletionProcessDelegate
[E BeforeTransactionCompletionProcessDelegate
& Function

» @ IExecutable

Figure5.7. L ogical Namespaces
As it can be inferred from the images, Sonargraph maps all physical namespaces that have the same name into a single

logical namespace. This mapping can be system-based or module-based, see Section 5.4.1, “ System-Based Logical Model” and
Section 5.4.2, “Module-Based Logical Model” for more information.

Logical Programming Elements

Logica Programming Elements construction from Programming Elements is not as simple as logical namespaces construction
and it is language-specific.

30

Getting Familiar with the Sonargraph System Model

Java: Logica Programming Elements are mapped 1 on 1 to Programming Elements.

C/C++: When programming C or C++, there are declarationg/definitions for Programming Elements such as classes, structs,
unions, routines, variables and namespaces. In this case, the declaration(s) and definition(s) are mapped into a single Logical
Programming Element. All other Programming Elementsthat do not follow the declaration/definition approach will be mapped
1on1to Logical Programming Elements.

C#: Logica Programming Elements are mapped 1 on 1 to Programming Elements except for partial types; in their case, all
partial typesthat contribute to the same definition are mapped into asingle Logical Programming Element.

The construction of Logical Programming Elements can be system-based or module-based, see Section 5.4.1, “ System-Based
Logical Model” and Section 5.4.2, “Module-Based Logical Model” for more information.

5.4.1. System-Based Logical Model

After parsing the source files from any language, Sonargraph creates a system-based logical model based on the parser model
which correspond to following diagram:

LogicalNamespaceRoot

i
[|

InternalLogicalNamespaceRoot ExternalLogicalNamespaceRoot

7

LogicalNamespace

| LogicalProgrammingElement |

Figure 5.8. System-Based L ogical M odel

The system-based logical model is constructed in away that the mapping from physical elementsto logical elements occursin
the internal and external scopes separately meaning that the following conditions will be met:

Givenaphysical element "abc" inside amodul e of the user codeand aphysical element "abc" insidethe external elements, there
will be alogical element "abc" belonging to the Internal L ogical NamespaceRoot and another logical element "abc" belonging
to the External L ogi cal NamespaceRoot in the system-based logical model.

Given a physical element "abc" inside a module X of the user code and a physical element "abc" inside the module Y also
in the user code, there will be asingle logica element "abc" belonging to the Internal L ogical NamespaceRoot in the system-
based logical model.

5.4.2. Module-Based Logical Model

After parsing the source files from any language, Sonargraph creates a module-based logical model based on the parser model
which correspond to following diagram:

31

Getting Familiar with the Sonargraph System Model

LogicalNamespaceRoot

pay

ModuleBasedLogicalNamespaceRoot

4

*

LogicalNamespace

*

LogicalProgrammingElement

Figure 5.9. Module-based L ogical M odel

The module-based logical model is constructed in a way that the mapping from physical elements to logical elements occurs
inside each module and in the external scope separately meaning that the following conditions will be met:

e Given aphysical element "abc" inside amodule X of the user code and a physical element "abc" inside the module Y alsoin
the user code, there will be a ModuleBasedL ogical NamespaceRoot X containing a Logical Programming Element "abc" and
another Modul eBasedL ogicalNamespaceRoot containing also a Logical Programming Element "abc".

» Given aphysica element "abc" inside a module X of the user code and a physical element "abc" inside the external scope,
there will be a ModuleBasedL ogicalNamespaceRoot X containing alogical element "abc" and another logical element "abc"
belonging to the External L ogical NamespaceRoot in the module-based logical model.

32

Chapter 6. Creating a System

Basic working units in the Sonargraph workspace are called modules. A system consists of one or several modules representing
the components that your product is made up of. Each module contains one or several root directories pointing out to the source
code or the executable artifacts.

At the menu "File" - "New" - "System" Sonargraph provides different wizards to easily create software systems. You can
either create an empty system and manually add modulesto it or use one of the language based wizards.

If you need to have modules from different languages in the same system you can add those of the second language later,
regardless of the type of system you have created. See Chapter 7, Adding Content to a System

All wizards contain a page where you can specify the system's name, a short description for it and the local directory where you

want to create the system. Optionally, you can use a predefined quality model for the new system. See Section 6.4, “Quality
Model”

To create an empty system to which you can add modules later select "File" - "New" - "System" - "New System...". You
will be asked for a system name and a storage directory for the Sonargraph system folder. See Chapter 7, Adding Content to a
System for how to add modules to your system.

TIP

Itisalways smart to store the Sonargraph folder at the root of your project because its content heeds to be added to your
version control system. Thisfolder does not contain any binary files, al content of the Sonargraph system definitionis
contained in plain text files, making it easy to track changes.

6.1. Creating a Java System

Sonargraph offers different methods to create Java systems:

» System based on Java Eclipse wor kspace: See Section 7.1.1, “Importing Java Modules Using an Eclipse Workspace’
e System based on Gradle: See Section 7.1.2, “Import Modules using the Sonargraph Gradle Plugin”

e System based on Maven: See Section 7.1.3, “Import Modules using the Sonargraph Maven Plugin”

e System based on Bazel: See Section 7.1.4, “Importing Java Modules Using a Bazel Workspace’

» System based on Build Unit(s): See Section 7.1.5, “Import Modules Using the Build Unit(s) Importer”

NOTE

If you plan to use our Eclipse or Intellid plugins, place the Sonargraph system in a directory that is parallel to your
modules and not part of any of your Eclipse or IntelliJ modules. Otherwise executing Sonargraph refactorings might
easily corrupt the system'sinformation, if the Sonargraph files are not excluded from modifications during refactoring
execution.

6.2. Creating a C# System

Y ou can import directly from aVisual Studio solution file. After that you can add additional modules from the same solution file.

6.3. Creating C/C++ Systems

33

Creating a System

Creating a C/C++ system is a bit more complex than creating a system for other languages. First we need to select or create a
compiler definition. Then we need to define the required include directories for each module as well as the macro definitions
required for conditional compilation. Sometimes it is also necessary to exclude certain compilation units from modules. The
"Create New C/C++ System..." wizard gives you maximum flexibility to specify all that. But if you use CMake or Visual Studio
you can also import the system more conveniently.

Thefirst page of each C/C++ system creation wizard will allow you to select an existing compiler definition or create anew one.
If you decide to create a new compiler definition the next wizard pages will guide you through this process step by step.

If you use the "Create New C/C++ System..." wizard please make sure to select the root directory of your system as the storage
location for the Sonargraph folder. Only sourcefileslocated directly or indirectly under this directory can be added to the system.
Thewizard will scan all filesunder thisdirectory for "#include" statements and will try to locate the referenced includefiles. The
scanner does NOT consider conditional compilation, so you might see lots of irrelevant unresolved include references that you
can ignore safely. By adding additional include folders you can make sure that all relevant include references can be resolved.

While we provide many different choices for C/C++ project setup | recommend to use the ccspy wizard (see below) for project
setup. The documentation for ccspy can be found here: https://github.com/sonargraph/ccspy. The basic ideais that ccspy works
as an intermediary between your build tool (e.g. make) and your compiler. Each time afile is compiled ccspy will record the
used compiler optionsin afilein the ccspy target directory, which will then be used by Sonargraph to analyze your project.
Here are the other wizards to create new C/C++ systems:

e System based on C/C++ CMake JSON command file: Allows to create a system out of a generated compile command
JSON file.

Name your new system and choose adirectory to storeit. In the next wizard page you need to choose the location of your JSON
command file. To generate such afile you need to run cmake with -DCMAKE_EXPORT_COMPILE_ COMMANDS=0ON.

The next wizard page presents the root directories found in the JSON file and allows you to fine tune those directories and sub-
directoriesyou want marked asroot directoriesor excluded in the resulting system. Y ou need to mark at least oneroot directory:

800 Sonargraph - New System based on CMake JSON Command File

Select the root directories that will be assigned to modules in the next step.

¥ [23 / home avolanis/rfs
» [src
» # third-party
¥ (2 jvar/tmp/build
¥]src
»] common
» 1 net
» 23 hal
b [storage
»] objectstore
> J objecttransport

»] filesystem
»] cfgdb
> J pico
»[23 analytics
Mark as Root Directory | Mark as Excluded | Unmark
&) | < Back | [Next >] | Cancel | Finish

Figure6.1. Marking root directoriesfrom JSON file

The final page of the wizard allows to give a name to each one of the modules that will be created out of the root directories
marked in the previous step. Sonargraph will try to guess a module name out of the root folder name. Y ou are able to change
that nameiif it should not fit.

https://github.com/sonargraph/ccspy

Creating a System

® O O Sonargraph - New System based on CMake JSON Command File

For each root directory enter the name of the associated module.

'Root Directory Assigned Module
fhome favolanis/rfs Avolanis
Jvarjtmp/build Temp

@ | <Back | Next > [cancel | [Finish |

Figure 6.2. Naming modulesfor root directoriesfrom JSON file

» System based on ccspy tar get directory: Works pretty identical to the cmake JSON importer (see above), except that you have
to specify the ccspy target directory. Make sure to build your system before you analyzeit to ensure the most up-to-date input.

» System based on C/C++ Visual Studio 2010 (or newer) Solution file: See Section 7.2.1, “Importing C++ Modules from
Visual Studio Files”’

Most wizards are similar whether you create a new system or add modules to an existing system.

6.4. Quality Model

Sonargraph definesa"Quality Model" as agroup of settings and files aimed to help you getting started with your code analysis.
The components of the quality model are displayed in the Files view. See Section 8.7, “Managing the System Files’

When creating anew system you can optionally use one the pre-defined quality models that ship with Sonargraph . The default
quality model suggested depends on thetype of system you want to create: If you are creating asystem manually, you get the Core
quality model suggested, which contains language-independent settings and scripts. If you are creating a new software system
using one of the language-based wizards, you will get a quality model customized to the corresponding programming language.

Specify the name, description and location of the new system

Name: H

Description:
Directory: K [:I

EI Use guality model

Core/Default.sggm v
X| ./DuplicateCode.xml v
K| ./MetricThresholds.xml v
¥| .fScriptRunner.oml v
o JsuperTypelUsessubType.scr vl
% /BadSmells/Bottlenecks.scr v
o JfBadSmells [FeatureEnvy.scr v
o JfBadSmells fUnusedTypes.scr v

Figure 6.3. New System with Quality Model

35

Creating a System

Y ou can include or exclude quality model elements as you seefit for each project.

6.4.1. Importing a Quality Model

You can import an external quality model file, generated with a different installation of Sonargraph into the current software
system viathe menu "File" - "Import Quality Model" .

.CurE,FDefauIt.sgqm -

|| Discard current content

./DuplicateCode.xml
JSMetricThresholds.xml
JscriptRunner.xml
JSuperTypelsesSubType.scr
./BadSmells/Bottlenecks.scr
.JBadSmaells/FeatureEnvy.scr
JBadSmells/UnusedTypes.scr

s ol o qdn [me) [[
RN YESENENES

[Cancel [[0K]

Figure 6.4. Import Quality M odel

Check "Discard current content” if you want to delete all the configurations and scripts currently loaded and start afresh with
the imported quality model elements.

NOTE

If don't discard your current content, quality model elements with equal names will still be overridden by the incoming
elements!

6.4.2. Exporting a Quality Model

To export the currently used quality model select "File" - "Export Quality Model" :

Mame of Quality Model: X

Directory: K "
X ./MetricThresholds.xml v

¥| ./DuplicateCode.xml v

¥ .J/ScriptRunner.xml v

2 JSuperTypelsesSubType.scr v

2 /Bad5smells/Bottlenecks.scr v

2 /Bad5mells/Feature Emvy.scr v

2 J/Bad5mells/Unused Types.scr v

Figure 6.5. Export Quality Model

Select the quality model elements to be included in the resulting file with .sggm extension.

36

Chapter 7. Adding Content to a System

Sonargraph supports both the manual creation of programming language specific modules and the usage of external sourceslike
Eclipse or IntelliJ workspaces, Visual Studio solution or project files to setup the workspace automatically.

The following sections describe the different ways you can add content to a software system.

7.1. Creating or Importing a Java Module

There are several waysto add Java modules to a software system.

7.1.1. Importing Java Modules Using an Eclipse Workspace
Y ou can import Eclipse projects as modules into an existing Sonargraph project or while creating a new system.

To import Eclipse projects as modules directly into an already existing Sonargraph project use "File" - "New" - "Module"
- "Java Modules from Eclipse Workspace" .

Select the location of the Eclipse workspace you want to import projects from. Y ou can choose those projects and root directory
paths that should be imported and those that should not. The imported Eclipse projects become modules in the Sonargraph
workspace.

fworkspace_general J

¥ =, Application
& src/mainjava
;l target/classes
b= TS
L[sre/tey . L . . .)
- Root directory path is either non-existent or does not contain relevant information.
=] target e >
¥ =, Foundation

) src/main/java

®

@&

Jtarget.-'classes

g,__',src.-'test.fjava

?_l target /test-classes
¥ =, Model

2 src/main fjava

_target/classes

Edsrc.-'test.fjava

?_l target/test-classes
¥ = View

_‘,__',src.-'main.-'java

;ltargetfclasses

_L',sru:.-'testﬂava

_target/test-classes

AENEDEEEED

Figure7.1. Importing Java M odules Using an Eclipse wor kspace

Sonargraph will let you know about content that is already in the software system , empty or irrelevant directory paths and
dependencies between modules.

37

Adding Content to a System

7.1.2. Import Modules using the Sonargraph Gradle Plugin

To create or update a Java system based on a Gradle build you have to use the Sonargraph Gradle Plugin invoking the task
‘sonargraphCreateOrUpdateSystem’. The plugin makes use of Sonargraph Build.

NOTE: No licenseis required to use that task!
NOTE: It is not necessary to download Sonargraph Build manually since this can be performed automatically!

For details see the Gradle documentation in the Sonargraph Build manual: Sonargraph Gradle plugin task
'sonargraphCreateOr UpdateSystem' .

38

https://eclipse.hello2morrow.com/doc/build/content/integrating_with_gradle.html#d5e2356
https://eclipse.hello2morrow.com/doc/build/content/integrating_with_gradle.html#d5e2356

Adding Content to a System

7.1.3. Import Modules using the Sonargraph Maven Plugin

To create or update a Java system based on a Maven build you have to use the Sonargraph Maven Plugin invoking the goal
‘create-or-update-system'’. The plugin makes use of Sonargraph Build.

NOTE: No licenseis required to use that goal!
NOTE: It is not necessary to download Sonargraph Build manually since this can be performed automatically!

For details see the Maven documentation in the Sonargraph Build manual: Sonargraph Maven plugin goal 'create-or-update-
system' .

39

https://eclipse.hello2morrow.com/doc/build/content/integrating_with_maven.html#d5e1456
https://eclipse.hello2morrow.com/doc/build/content/integrating_with_maven.html#d5e1456

Adding Content to a System

7.1.4. Importing Java Modules Using a Bazel Workspace

You can import a Bazel workspace as a single module, or multiple modules (per Bazel build file, or per Bazel rule), into an
existing Sonargraph system or while creating a new system.

NOTE

For the Sonargraph Bazel import to work, a 'bazelisk’ or 'bazel' executable must be found either in Bazel's workspace
root directory, or on Sonargraph's path.

Required Bazel version is 2.0.0 minimum.

Supported 'bazel rules are‘'java binary', java library', and 'java_test', others may be added in the future.

To create a new Sonargraph system from a Bazel workspace as a single module, or multiple modules, use "File" - "New" -
"System" - "New Java System Based On Bazel Workspace" .

Toimport aBazel workspace as module(s) directly into an already existing Sonargraph system use"File" - "New" - "Module"
- "New Java Module(s) Based On Bazel Build Files' .

To import a single Bazel build file as a module directly into an already existing Sonargraph system use "File" - "New" -
"Module" - "New Java Module(s) Based On Bazel Workspace” .

Select the location of the Bazel workspace you want to import modules from. Decide first if you want to import the whole
workspace as a single module, or as multiple modules. For multiple modules it is possible to use either the bazel output jars, or
the directories as Sonargraph root paths.

Specify the Bazel workspace location

nargraph.language.provider.java/src/test/bazel_import_test/bazel java_tutorial | 3
© Import multiple Sonargraph modules from Bazel build files
Import Class Files From Import Source Files From

© output Jar © output Jar
Directory Directory

Import multiple Sonargraph modules From Bazel rules
Import single Sonargraph module from Bazel workspace

Detected Modules and Root Directories:
O=CO0
~ =) bazel_java_tutorial
%1 bazel-bin/ProjectRunner.jar
%2 bazel-bin/ProjectRunner-src.jar
%1 bazel-bin/libgreeter.jar
%2 bazel-bin/libgreeter-src.jar
+ =) src/mainfjava/com/example/cmdline

)

%1 bazel-bin/src/main/java/com/example/cmdline/runner.jar
% C2 bazel-bin/src/main/java/com/example/cmdline/runner-src.jar

Figure 7.2. Importing Java M odules Using a Bazel wor kspace

40

Adding Content to a System

Sonargraph will let you know about content that is already in the software system , empty or irrelevant directory paths and
dependencies between modules.

41

Adding Content to a System

7.1.5. Import Modules Using the Build Unit(s) Importer

Y ou can import Java modules based on build units into an existing Sonargraph system or while creating a new system.

Note: This importer can only work when you have previously build your system (hence the name). Java class and source files
are analyzed to obtain class and source root information. A build unit contains Java class and corresponding source roots and
corresponds to a module.

In a multi-module system setup normally the modules share common root directory structures (or definitions). The following
root directories could be used in such a multi module system:

* ./src/main/java (Java production code)

» /srcltest/java (Javatest code)

» Jtarget/generated (generated Java code)

« /target/classes (compiled Java production code)
* [target/classes-test (compiled Javatest code)

The main idea of the build unit importer isto collect at least 1 root directory containing compiled Java code (i.e. byte code) and
at least 1 root directory containing corresponding Java source code. The common root directory of both would compromise the
module root directory. Solets say the directory 'Common' contains'./src/main/java and './target/classes containing byte code and
source code the build unit import would recognize ‘Common’ as a build unit (i.e. module) with 2 root directories.

The build unit importer uses 2 important terms:
¢ Root Segment
Beginswith /' followed by full directory name or a part of it. It hasonly 1 '/'! It is used to recognize Root Definitions.

In order to recognize './src/main/java from the above example it would be necessary to define 3 root segments: ‘/src’, /main'
and '/java.

* Root Definition
"/src/main/java from the above example would be aroot definition. It consists of 1 or more '/ and full directory name pairs.
In general the following 3 steps need to be performed:

» Select the directory containing the build units you want to detect. The wizard will detect Class/Source Root Definitions based
on predefined Root Segments. The Root Segments can be modified to obtain better Class/Source Root Definition matches. This
will trigger the re-detection of Class/Source Root Definitions. In Unassigned Class/Source Roots you will see al roots that
are currently not assigned to any module candidate.

» Adjust the Root Segments and/or Class/Source Root Definitions (via context menu entries 'Add...", 'Edit..." and 'Delete’) and
rerun the import candidate detection until you obtain the desired Sonargraph import candidates (i.e. modules and class/source
root directories).

» Tweak the obtained Sonargraph import candidates by including/excluding selected entries.

Some things to keep in mind:

» Thewizard detects only the root directories that are not already contained in the Sonargraph workspace.

» Modules containing only source roots are not checked by default, since Sonargraph needs the class files too.
» Module candidates can be renamed via the context menu 'Edit..." entry.

e Toresetthewizard toit'sinitial state simply open the 'Select Directory' dialog and close it with 'Cancel'.

42

Adding Content to a System

 You can either modify Root Segments, Root Definitions or both to obtain the desired Sonargraph import candidates.

* In the Root Segments and Root Definitions viewers you can use a search widget to find entries. Ctrl+ Shift+F on Windows
and Linux and Cmd+ Shift+F on Mac.

43

Adding Content to a System

7.1.6. Creating a Java Module Manually

Select "File" - "New" - "Module" - "JavaModule" . Alternatively, the context menu in the Navigation and Workspace views
can be used.

Sonargraph relies on the Java byte code for its static code analysis. For the ability to show dependencies in the source code,
the source directories must be provided as well. Source Root Directories and Class Root Directories can be added individually
using the corresponding context menu entries.

Alternatively, adialog is available via the context menu "Manage Java Source/Class Root Directories/Archives..." that alows
the automatic detection of Source and Class Root Directories. The detected directories can be assigned to Java Modules via drag
and drop.

|_| Include paths starting with "'
|| Include ZIP format archives (*.zip, *.jar, *.war, *.ear)

Include nested ZIP format archives (i.e. archives contained in others)
JUsers fjulianhernandez {Downloads japache-cassandra-1.2.6-src | g | | B+ Detect |

Available modules Available root directories farchives

¥ = Cassandra _a_f’exnmplesf’client_onll,r_.fsrc
_L',.ﬁsrc,-‘juva _E,_f'ex:lmplesr'hadoop_cql3_word_count|"5rc
|'| Jfsrcfgen-java _E Jexamples fhadoop_word_count/src
;l ./build ftest/classes _a_."inlerF:Lce,fthrift."gen-java
;l ./build/classes fthrift _E..-’testflong
;l fbuild/classes/stress _a_."testfunit

;l.(buildfc]assesfmain Jtools/stress [src

Ready (found 7 assignable root directories/archives and O that are already assigned to modules)

| Cancel | OK

Figure 7.3. Manage Root Directory Path

Adding Content to a System

7.2. Creating or Importing a C++ Module

After a softwar e system has been created, there are several waysto set up C++ modules: Import from aVisual Studio 2010 Project
file (.vexproj), import via Makefile command capturing files or manual module creation.

7.2.1. Importing C++ Modules from Visual Studio Files

Viathemenu entry "New" — "Module" — "C/C++ Modulefrom Visua Studio Project file" a C++ module can be created based
on a.vexproj file. Select the project file and the required configuration. The same approach applies for creating a system based
on aVisua Studio Solution file (.sln) as shown in the following screenshot:

A Sonargraph - Mew System based on C++ Visual Studic Solution File | [=] |

Location of the C++ Visual Studio Solution File

Solution File {=ln): ./Hilo.sln
Projects: Marme [4 elerments] File

B Annotator JJAnnotator/Annotator.vcxproj

=il Browser /Browser/Browservoiproj

=i Common /Common/Common.vcxproj

=i RegistrationHelper /RegistrationHelper/RegistrationHelper.vcxproj
Configuration: Debug v| |Win32 hd

@ < Back Pext > | Enish || Cancel |

Figure 7.4. Create C/C++ System Based on Solution File Import

7.2.2. Importing C++ Modules Via CMake or CCSpy

Select "New" - "Module" - "C/C++ Modules based on Command File/ CCSpy Directory]”

Y ou will have to do acomplete rebuild of your system using make (with ccspy as your compiler) or cmake. Then the wizard will
guide you through the remaining steps needed to add modules to your system.

7.2.3. Creating a C++ Module Manually

Viathe menu "New" - "Module" - "New C/C++ Module(s)" plain C++ modules can be created. The wizard will guide you
through the process and will alow you to select root directories and assign them to new modules. You can aso specify extra
include directories and macro definitions for conditional compilation.

NOTE

The Sonargraph folder must be stored in the root directory of your system. You can only add modules that are located
under this root directory.

45

Adding Content to a System

7.2.4. C/C++ Module Configuration

For configuration of additional compiler options, select the menu entry "System” - "Configure C/C++ Moduleg(s)..." . This
dialog allows to configure options using Groovy templates. Y ou can define system wide options and/or modul e specific options.
System wide optionswill be applied to all modules. Y ou can al so define options that are not specific to any compiler by selecting
"Any Compiler" from the compiler definition drop down list. The effective options for a module are the system wide options
for "Any Compiler", then the system wide options for the active compiler, then the module specific options for any compiler
followed by the modul e specific options of the active compiler.

A Sonargraph - C++ Compiler Options EI
Select Module Basic Options
=) Generic Set base directory for includes (relative to System): ,

Source file extensions (comma separated, e.g. '.cpp, .c') .cpp

Compiler Options

Only compiler options for the active definition can be modified.

Select compiler: | VisualCpp (pre-installed) -

Description: Visual C/C++ 64 bit (any version)

Compiler Options (Groovy Template] Resulting Options

Ifinclude i -ID:00_Repos\0l_sg-nghcom.hello2morrow.sonare =
-DG_ANSICPP -DG_ANSICPP

-DG_EH -DG_EH

-DG_MT -DG_MT

-Dhpux -Dhpux

-D_STDC_ =0 -D_STDC_=0

e F

Reselve Template | R 1 A

Figure7.5. C/C++ Module Configuration
TIP

The compiler options can be verified via the menu "System" — "Execute C/C++ Preprocessor”. Thisis usually seven
times faster than afull refresh. Problems of the preprocessor are reported in the "C/C++ Parser Log" view.

46

Adding Content to a System

7.3. Creating or Importing a C# Module

After a software system has been created, you can always change the selection of analyzed modules from your solution file.

7.3.1. Importing C# Modules Using a Visual Studio Solution
File

Y ou can import C# modulesfrom aVisua Studio solution file either when creating anew system using the corresponding wizard
or selecting "File" —» "New" — "Module" - "Update C# module selection".

Select the location of the solution file (.sIn) to have Sonargraph offer you alist of analyzable modules.

47

Chapter 8. Interacting with a System

This chapter describes how the views of Sonargraph can be used to interact and explore a system and conduct basic use cases
like examining duplicates and cyclic dependencies. More advanced functionality like adding custom metrics or defining an
architecture are explained in their own chapters.

8.1. User Interface Components

This chapter describes different graphical components of the main application window and additional frequently used
components.

8.1.1. Menu Bar

Contains menu entries that allow the execution of system-wide actions or commands that are applicable for the current selection;
the meaning of the categoriesis the following:

 File: Contains commands for creating, loading and saving systems as well as exporting or importing Quality Models (See
Section 6.4, “Quality Model”), creating Microsoft Excel, HTML and XML reports.

« Edit: Containscommandsfor undoing and redoing the last performed operations, editing and del eting components and perform
system-wide searches.

» System: Contains commands that allow re-reading the current system from the disk (and re-checking it), perform system
configuration and changing language specific modul e settings such as where source and compiled files are being searched for.

Additional entries allow creation of fix, ignore or TODO issues.
» Window: Provides access to the different views of Sonargraph and the preference pages to modify installation-wide settings.

» Help: This menu provides access to the online and dynamic help, allows management of license information, alows to send
feedback to the Sonargraph developers and provides general information about the installation.

8.1.2. Tool Bar

o0 | ®m Modifiable.vm w g

Figure8.1. Tool Bar

Allows to access the most common operations. It is always visible regardless of the active view. It offers the following actions:
* Refresh @ : If thereis currently no representation of the system in memory it performs a full parse. If the model exists, it
performs a "delta refresh” to update the in-memory content with the latest state from the disk. The synchronization of the
model with the disk content is normally not done automatically on startup, because this can take a considerable amount of
time. However, it can be specified that on opening the software system, a synchronization should be performed automatically

by checking the menu item "System" - "Refresh On Open" .

* Clear U : Drops the memory representation of the system under consideration. After performing this action a full parse of
the system is required to resume with the analysis.

Navigate Backward/Forward < = : Allows to navigate backward and forward in the history of recently performed actions
across the application.

Manage Virtual Models il Modifiale.vm ¥ % : Allows to change the current virtual model or create a new one.
(See Section 9.1, “Using Virtual Models for Resolutions’)

48

Interacting with a System

8.1.3. Notifications Bar

Synchronize system files... AL 9 9 9 -'J (o]

Figure 8.2. Notifications Bar
The notification area is located in the bottom area. It informs about the current operation being performed with both a text
feedback and a progress bar. On right side, you find notifications about different situations going on in the application that may
be of interest to you such as proximity of license or support expiration date and proximity to reaching the limit of available
elements per the active license. Specifically:
* Theicon @ indicatesthat there is at least one information notification available.
* Theicon @ indicates that thereis at least one warning notification available.
* Theicon @ indicatesthat there is at least one error notification available.

* Theicon © indicates that there are no notifications available at this time.

To bring up notifications just click once on the icon.

8.1.4. Tables

Tables of views that potentially display huge amount of data like the Issues view can be filtered. To bring up the text filter as
shown in the screenshot below, use the key combination Ctrl+Shift+f . A row containing thetext in any table cell will be shown.
Pressing Return activates thefilter, pressing Escape clearsit and displays again all items. A yellow background indicates if
any elements are filtered. Most tables can also be sorted by clicking on their column headers.

[purnmy il
Issue [83.370] Description Seve Category Elermnent To Element Provider 2
& Package Issue Durnmy package i. & E. Script Based Y com n/a JProduce..,

& Package Issue Dummy packagei.. &9 E.. ScriptBased £ hello2morrow n/a J/Produce...

& Package Issue Dummy packagei.. & E.. ScriptBased £ javapg n/a JProduce...

@ Package Issue Dummmy packagei.. &3 E.. Script Based £ runtime n/a JProduce..,

& Package Issue Durnmy package i.. @ E. Script Based £ lalr n/a JProduce..,

& Type issue Durnry typeissue & W.. Script Based (& AbstractlALRParser n/a J/Produce...

& Type issue Dummy typeissue /& W. Script Based (&' ParserState n/a JProduce...

@ Field issue Durnry field issue 4% W.. Script Based ©% sp n/a JProduce..,

& Field issue Durnmmy field issue & W.. Script Based ©F stateStack n/a JProduce..,

& Field issue Durnmv field issue /. W.. Scriot Based @ state n{a JProduce... ¥
1784 | mp | |]

Figure 8.3. Tablewith activated text filter

49

Interacting with a System

8.2. Common Interaction Patterns

The following interaction patterns (called gestures) are common across the Sonargraph application:

 Single clicking on an element normally means to select it; holding the control key (command key on Mac) while clicking
normally aggregates the selection elements, and holding the SHIFT key normally selects all elements between the current one
and the last selected one.

» Double clicking not only selects the element but, if possible, showsit in aview that is best suited to inspect it or edit it. It is
important to note that adouble click gesture will show the selected element in another view only if at least one of the following
two conditionsis fulfilled:

» Element is associated with asingle source file: Elements like C/C++, Java and C# source files, types, structs, methods, and
functions among others fulfill this conditions. For other elements like namespaces, packages or directoriesit is not possible
to associate them with a single sourcefile.

* Thereisasingle possibility of navigation: If the selected element only offers one view to navigate to, then the double-click
gesture will show the element in that view, otherwise, it will not meet this condition.

* Right clicking on elements normally presents a context menu with element-specific actions. Some of the most common
interaction patterns available with right-click are showing elementsin different views, exporting tables to Excel and exporting
graphics as images to the file system among others.

» Dragand drop isused in severa different contextsin Sonargraph to perform different operations: filters can be re-organized
in the Workspace view. Nodes can be re-arranged for better appreciation in the Graph and Cycle views while holding the
SHIFT key pressed. Dragging and dropping the mouse cursor while holding the SHIFT key and the primary modifier key of
the platform (CTRL on Windows/Linux and CMD on Mac) pressed in the Workspace Dependencies view allowsto specify a
new dependency between two nodes (see Section 8.8.2, “Managing Module Dependencies’).

8.2.1. Special Graphic Elements Decorations

Across the Sonargraph is common to find two decorations:

» *: A star behind the name of an element means that the description of such element has been changed locally but not yet saved
to disk: The in-memory representation and the disk representation of the system are not identical.

» 1 An exclamation mark behind the name of an element generally means that this element needs your attention or requires
you to take some action onit.

50

Interacting with a System

8.3. Sonargraph Workbench

The default workbench of Sonargraph is divided into 4 regions. However, as Sonargraph is built upon Eclipse's Rich Client
Platform you can always re-arrange views as you like.

The following image shows these regions and the subsequent sections explain each one of them:

File Edit System Window Help

R l=l RS °m Modifiable.vm w 4=
— — —
B= Mavigation | %3 Namespaces | - Files = = 0 System | 2% Metrics | 159 Workspace | 2 Workspace... | | (1) Issues | [Resolutions | &F Exploration &2 | [G] Controller... | 3T SatelliteDe.. — O
g P Y L P g P
v B Integration.Access Focus: @ Mo Additional w | |Transitively Only Visible Only Intemal o ~ xl = |2y - P LT
~ [/target/classes A
~ B com.helleZmorrow.sonargraph [ElE Integration.Access
f# core.persistence.report D‘ftargeb’test-classes D.,ftargetftest-dasﬁs
~ HH integration.access 1
~ 1 controller B Jtarget/classes
I R R E] £4 com.hello2morrow.sonargraph
linfoProcessor. java
IMetaDataControllerjava [E] H integration.access 2
IModulelnfoProcessor.java B i controller
|5onargraphSystemController java
ISysteminfoProcessor java [3] ControllerFactory.java ==1J] Contr, HerFactoryJava
MetaDataCnntrnllarlmpl‘ja?{a |¥] SonargraphSystemControllerimpl.java / &-lr_[SonargrﬂphﬁystamControHerlmp\
ModulelnfoProcesserimpl.java
SonargraphSystemControllerimpl java m ModulelnfoProcessorlmpl java "\ Iﬂ ModulelnfoProcessorlmpl.java
SysteminfoPracessorlmpl.java m |SonargraphSystemController.java ,'" == @ ISonargraphSystemController.java
3 foundation | [
= eminfoProcessorimpljava | 1] SysteminfoProcessorlmpljava
£ model Pl | 4] pl.j
i persistence [J] IModulelnfoProcessor java \ [J] IModulelnfoPracessor java
[C] ./target/test-classes \
= Integration.Jenkins m ISysteminfoProcessorjava \ m ISystemInfoProcessor.java
=), Integration.SonarQube |¥] MetaDataControllerlmpl.java \\ {J] MetaDataControllerimpl.java
we External [Java) &
e lInfoProcessor java " ¥ linfoProcessorjava
] 8 J
‘\"'\.
1\35 Analyzers 52 m IMetaDataCaontroller.java "‘-—m IMetaDataController.java
(2= Architecture Check Finished ~ H persistence [persistence
QsAr:hitecture Metrics Finished
3 model model
(3= Cohesion and Coupling Metrics Finished = & v
Q;CDmponeﬂt Cycles (Module) Finished
Q;Cumponeﬂt Cycle Metrics (Module) Finished Properties | ' Parser Dependencies (Out) ‘Lr. Parser Dependencies (In) [Automated] ./Core/SuperTypeUsesSubType....
Q;CDmponeﬂt Cycles (System) Finished From File [6 elements] Line From Dependency To To File
13- Component Cycle Metrics (System) Finished
'3 Module D denci Finished [J] ControllerFactory.java 5 & createControlle.. = Returns @ ISonargraphSystemController [J] IsenargraphSystemCon...
= nishe
= Viodule Uependencies mCoﬂtmIIerFacto java 7 & createControlle.. = Constructor Call & SonargraphSystemControllerl... m SonargraphSystemCont...
{2- System Dependencies Finished i grapny; g1y
=y P mCoﬂtmIIerFacto java 7 & createControlle.. = New (& SonargraphSystemControllerl... m SonargraphSystemCont...
Qc ate si Finished) graphy: graphoy:
= nishe
= Cumulate size mCoﬂtmIIerFacto java 10 a createMetaDat.. =* Returns 3 IMetaDataController m IMetaDataController java
@-Duplicate Cod Finished e ;
= nishe
=Duplicate Code mCoﬂtmIIerFacto java 12 a createMetaDat.. =* MNew {3 MetaDataControllerimpl m MetaDataControllerlmp...
2= Duplicate Code Metri Finished Ry p p
= nishe
=Duplicate Code Metrics mCoﬂtmIIerFacto java 12 a createMetaDat.. =* Constructor Call & MetaDataControllerlmpl() m MetaDataControllerlmp...
2= Metric Threshald Finished R p p
= Metric Thresholds nishe
2= Module Cycles Finished v

@

Figure 8.4. Sonargraph Workbench

1. Master Views: Located at the upper |eft hand side of the workbench, provide control over the system structure and the files
that make it up. All Master views offer the following operations:

Collapse All . Collapses the whole tree of elements.

* Link [l : Selecting it specifies if the selection in the current Master view should be synchronized as far as possible with
the selection in the currently selected Slave view.

The Navigation and Namespaces views offer a"View Menu" option which can be used to specify whether the elements of the

tree are to be displayed in a flat mode or in the hierarchy induced by their dot-separated full paths. Exclusive to the "View

Menu" option of the Namespaces view is the possibility to choose between system-based or modul e-based representations.

2. Slaveviews:. Located at the upper right-hand side of the workbench provide ways to manage and expl ore the components of
the system under consideration. The slave views have the capability of responding to selection from the master views.

3. Auxiliary views: Located at the lower right-hand side of the workbench, provide support to some of the slave viewsto expand
their system exploring capabilities.

4. Information views: Located at thelower |left hand side of the workbench, provide information about the status of the analyzers
running over the system model.

51

Interacting with a System

8.3.1. Auxiliary Views

The Sonargraph workbench offers several auxiliary views. Those views react on selection in other views and display information
related to the selected elements.

Parser Dependencies Views

There are 2 parser dependencies views:

* Parser Dependencies (In)

* Parser Dependencies (Out)

Those views react to selection of the following views:

+ Source View

» Dependencies View

» Graph View (if based on parser dependencies) including the Cycle View
» Exploration and Architectural View

The parser dependencies views use a pin mechanism which tiesthem to aspecific supported view. If morethan 1 supported view is
open the user can explicitly tiethem to 1 of the supported views. That helpsto not loose track of what is currently being inspected.
The pin button'sicon and toal tip show information about the view that is pinned to the corresponding parser dependencies view.

Not pinned to any view = : The corresponding parser dependencies view is not pinned to any view.

Pinned to focused view = : The corresponding parser dependencies view is pinned to the currently focused view.

* Pinned to another view that is not focused B : Pressing the pin button will pin the corresponding parser dependencies view
to the currently focused view.

NOTE: When selecting a dependency or an arc representing a dependency in 1 of the supported views both parser dependencies
views will show the same content to ease the usage. When selecting a node with dependencies in 1 of the supported views

the Parser Dependencies (In) view will show the incoming dependencies and the Parser Dependencies (Out) view the outgoing
dependencies.

Properties View

Thisview reactsto selection of all views except the help views and shows the properties of the selected element if there are any.

Markers View

This views shows error/warnings of the following supported views:

+ Source View

» Script View

 Architecture (DSL) File View

Temporal Coupling View

This view shows the temporal coupling of a selected source file. Tempora coupling occurs when severa files are committed

together into the version control system (VCS). The view lists all files that the selected file has been committed together with
over the last 5 years. The number in the weight column represents the number of shared commitsin that time frame.

52

Interacting with a System

This can be quite useful when you are working on legacy systems and want to understand dependencies between source files. A
shared commit indicates some kind of semantic connections between files.

53

Interacting with a System

8.4. Getting a Quick Impression

Inversion 12 werelease areworked " System” view. There are boxesfor different quality aspects, like " Structure”, "Complexity"
and "Code Organization”. Each box contains a few key metrics, with the option to expand the box viathe "+"-icon to see more
details. A couple of new metricslike"Entanglement (%)" have been introduced, so that it isnow easy to see how much of the code
base is affected by a certain type of issue, e.g. "cycle groups'. These percentages also indicate the probability that a devel oper
is affected by the problem if she looks at any line of code. These values are easier to interpret than a rather abstract numeric

metric value like " Average Component Dependency".

If a baseline report has been applied, metric trends are shown. This makes it very easy to spot where the quality of the code

base needs more attention.

2 System &2 | £F System Diff 4 Metrics 1% Workspace | ' () Issues| =] Ranking | &2 (1) Ignore| 3 (1) Tasks | 4] Refactorings| %% Cycle Groups | EH Duplicate Code Blocks

¥ Installation Issues & Open 4 Refresh @ Clear X Close @ User Manual @ Blog

A Architect
I-‘Qj Info
MName: Sonargraph Failed: 2 Passed: 2 Inactive: 0
Language(s): Java
State: Model loaded (applied snapshot)
Baseline: Sonargraph_11.6.3.698.xml (active)
Analyzers: Finished (execution level 'Full’)

ﬂ Architecture

Code in files with violations (%)] Entangled code (%)
Architecture violations: Critically entangled code:
Vielation density: Entangled code:
Relative entanglement (%)
Cycle groups:
|= Complexity
Complex code (%) | +0,07 » 13,32 Lines of code in large files (3):
Statements in complex methods: +450 » 32,198 Lines of code in large files:
4 size
Lines of code: +5.091 » 665455 Redundancy (%)
Source files: +40 » 6.836 Duplicate code blocks:
Java packages: +0 473
o Issues
Mumber of unresolved issues: -1~ 82 Refactorings:
Ignored issues: -1~ 181 Tedos:
MNeon-applicable ignore definitions: +2 » 2 Fixissues:

Mon-applicable task definitions:

Figure 8.5. System View

[¥ Quality Gates

": Structure

o6 Code Organization

I

Bl Duplicate Code

|

(2 Tasks

= O

<033 » 765
+2.263 » 44.276

-0,01~ 217

00— 97

Interacting with a System

8.5. Navigating through the System Components

The Navigation view presents the directory -or archive- structure of the source and/or binary files of the loaded system asit has
been determined from the workspace defined for the modules of the system.

= Navigation a}1;}3 Namespaces | &5 Files = 0
EZT
W =i, main
»[_]../apache-cassandra-1.2.6/build/classes/main
W =i, stress

¥[_]../apache-cassandra-1.2.6/build/classes/stress
> EEl org.apache.cassandra.stress
> E} org.apache.cassandra.stress.operations
b £ org.apache.cassandra.stress.server
v E} org.apache.cassandra.stress.util
¥ [J] CassandraClient.java
¥ (9 CassandraClient

a Cassandrat & New TODO
v m Operation.java
¥ (3 Operation 3 Show In Dependencies View
> @calQuent 4 Show In Namespaces View

© ind |
index fZ Show In Source View

@ preparedSt) i

@ session % Show In Exploration View >

& static =2 Show In Graph View >

& Operation(Sessiom; ey l—

A Operation(int}

A columnName(int,boolean)

& error(String)

A& formatCqlQuery(String, List<String=)
& generateGaussKey()

& generateKey()

Figure 8.6. Navigation View

The context menu interaction gives you options to inspect elements in suitable slave views or perform element specific actions
such as creating a TODO task (see Section 9.4, “Defining Fix and TODO Tasks").

55

Interacting with a System

8.6. Exploring the System Namespaces

In order to be able to see and explore the logical models calculated by Sonargraph (See Section 5.4, “Logical Models’), users
can rely on the Master view called Namespaces view.

=i Navigation %3 Namespaces 2 | % Files = 8 |

@
#
q

¥ =i main
¥ & org
v 1 apache
¥ 3 cassandra
¥ & auth
» 3 AllowAllAuthenticator
¥ @ AllowAllAuthorizer

Allowallauthorizer()
authnrizalAurhanticatadl lcar IRacnnIrcal
3 Show In Dependencies View > IR

gran
lisk(f&] showInSource View Res

prot €% show In Exploration View 3

reyo “= ShowIn Graph View * b, |

revokeall(IResource)
revokeAll(String)
setup()

[I N L O R

validateConfiguration()

* (3 AllowallinternodeAuthenticator
» ® Auth

» & AuthenticatedUser

* (B CassandraAuthorizer

» (@ DataResource

> € lAuthenticator

Figure 8.7. Namespaces View

As shown in figure “Namespaces View” , the logical elements that appear in Namespaces view also offer interactions for
exploration and source code visualization when it is the case.

This single view provides access to both system-based and module-based logical models. To choose which logical model you
want to see, use the view menu:

-

&

[

= B | Metrics | w

* Hierarchical g[82 elemer
Flat Upucdle Bioi

plicate Blo:
mﬁplicate Blos
s = uplicate Blo
& Duplicate Blo

& Duplicate Blo

& Duplicate Blo
& Nunlirate Rl

Figure 8.8. Logical Model Selection

Besides choosing which logical model to see, the Namespaces view a so offers the possibility to change the logical namespaces
presentation from flat to hierarchical and vice versa.

56

Interacting with a System

8.7. Managing the System Files

The Files view represents the structure of the files that make up the current software system .

=

B Navigation ‘?ﬁ Namespaces | ©=. Files | |- [+ |
L'u’{_‘*system.sonargraph
¥ [_] Analyzers
X| ArchitectureCheck.xml
X| ComponentCyclesModule.xml [Not On Disk]
X ComponentCyclesSystem.xml [Not On Disk]
¥| DuplicateCode.xml [Not On Disk]
X| MetricThresholds.xml
X| ModuleCyclesSystem.xml [Not On Disk]
X| PackageCyclesModule.xm| [Not On Disk]
%| PackageCyclesSystem.xml [Not On Disk]
X| ScriptRunner.xml
v I;l Architecture
FL Layers.arc [Checked]
FT slices.arc [Checked]
¥ [_] Dashboards
a Architect.xml [Not On Disk]
¥ [_]Models
¥ &% Parser
°. Modifiable.vm
¥ [Scripts
» 0 AssertionUsage.scr
» ‘0 FindFixmeAndTodoInComments.scr
» 0 SuperTypeUsesSubType.scr
» % UsageOfSystemOutOrErr.scr
v [Sessions
°|:| Workshop1.xml
¥ [Settings
JavaSystemSettings.xml
v I;l Workspace
1= Jenkins.xml

Figure 8.9. Files View
Thosefiles are:
» System File: Named as "system.sonargraph", represents the current software system.

* Analyzers: Contains available configuration files of analyzers. A double click opens the corresponding configuration page.
Alternatively the configuration pages are reachable via"System" - "Configure...".

» Architectural Views: Contains architectural view models.

» Architecture: Contains architecturefiles. A new architecture file can be created using the context menu of the " Architecture”
folder. Existing architecture files can be added/removed from the architecture check also viatheir context menu.

e Dashboards: Currently, thefile underneath is not modifiable and the content shown in the System view isfixed. Inthe future,
the content displayed in the System view will be configurable.

* Models: Contains virtual models of the current software system (see Section 9.1, “Using Virtual Models for Resolutions”).
Thesefiles only get modified when altering the set of resolutions and/or refactorings.

* Plugins: Contains plugin configuration files.

» Scripts: Contains scripts that can be executed for the current system. Those scripts have been added by either using a quality
model (see Section 6.4, “Quality Model”) or they have been created manually (see Chapter 16, Extending the Satic Analysis).

 Settings: Contains language specific settings.

57

Interacting with a System

Workspace: Contains workspace profiles.

Thefiles presented in the Files view get a star symbol (*) when they are modified as explained in Section 8.2.1, “ Special Graphic
Elements Decorations’

8.8. Managing the Workspace

The Workspace is akey concept in order to be able to set up and manage correctly a Sonargraph software system . Depending
on the workspace definition, Sonargraph will be able to detect the sourcefiles (and class files when applicable) that will be used
asinput for the parsing process and generation of the domain models.

8.8.1. Definition of Filters, Modules and Root Directories

The Sonargraph workspace consists of the following elements that can be managed via the Workspace view:

File Filter: Can be used to compl etely exclude files from being added to the model. The matching is based on the relative path
of Sonargraph input files. Thisworksin contrast to the Production Code Filter which includes the el ements in the model, but
explicitly marksthem as excluded. Asan example lets assume you do not want "dontL ookAtMe.cpp"” to be parsed and added to
the model. That can be achieved by adding the following exclude pattern: "**/dontL ookAtMe.cpp”. The filter matches against
the value of the property 'ldentifying Path' shown in the Properties view for the selected element.

Production Code Filter: Isused in order to exclude test code from the analysis. Thefilter is component based and processesall

internal components. External components for which all incoming dependencies come from excluded internal components are
also marked as excluded. Outgoing dependencies from non-excluded internal components to internal excluded components
are marked with the issue 'Dependency to Excluded Internal Component'. This might indicate a problem since non-test code
should not reference test code. The filter matches against the value of the property "Workspace Filter Name' shown in the
Properties view for the selected element.

Issue Filter: Is used in order to exclude portions of the code to no longer generate analysis issues (e.g. cycles, threshold
violations, duplicate code block issues, ...). Thisis useful in case you have legacy or generated code that you are not able to
adapt or don't want to adapt. Thefilter isaso component based and processes al internal non-excluded components. The filter
matches against the value of the property "Workspace Filter Name' shown in the Properties view for the selected element.

NOTE: Parser issues and ar chitecture violations cannot be filtered.

Module: Is the top-most element and the root container for al the user-defined elements of a Sonargraph software system .
Modules are equivalent to Eclipse projects, Maven modules, Visual Studio projects or IntelliJ projects and they contain at
least one Root Directory Peath.

Root Directory Path: Corresponds to a location on the user's file system and is the top-most directory where the search for
source files (and class files when applicable) will take place.

External: Isthe root container for elements that are used from within the user code but do not belong to any of the modules
of the software system.

Element Description Information
3=::> File Filter Exclude files {(matches against the 'Identifying Path' property) Excluded O files(s)
» 2 Production Code Filter Exclude internal compenents centaining test code (matches against the "Workspace Filter Name' property) Excluded 513 internal component(s) (processed 6.205)
¥k Issue Filter Ignore analysis issues of internal components containing legacy/generated code (matches against the "Workspace Filter Name* property) Ignoring analysis issues of 944 internal component(s) {processed 5.692)
P =i com.hello2morrow.common com.hello2morrow.commaon 176 internal component(s)
» B\ com.hello2 morrow.license com.helloZmorrow.license 26 internal component(s)

» =3 com.hello2morrow.son 12 internal component(s)

» &, com.hello2merrow.son 54 internal component(s)

¥ Delete Java Module

» mi com hello2morrow.son. .~ Edit Java Module... 3 internal component(s)

» =)\ com.hello2morrow.son & New Todo... 9 internal component(s)

» =i com.hello2 morrow.son 13 internal component(s)
» =i com hello2morrow.son (] New Root Directory... 4 internal componant(s)

P =i, com.hello2Zmorrow.son, 4 internal component(s)

» m, com.helloZmorrow.son T,: Mew Java Source Root Directory/Archive... 12 internal component(s)
» il com hello2morrowson 1, Manage Java Root Directories/Archives... 6 internal component(s)

P =), com.hello2morrow.son. 2.098 internal component(s)
») com.hello2morrow.son £ Show in Exploration View » cplusplus 494 internal component(s)
P =i, com.hello2morrow.son, _: Show in Graph View > _csharp 235 _|ntema\ component(s)
» = com.hello2morrow.son g : g java 738 internal component(s)
» i com.hello2morrow.son % Show in Dependencies View python 85 internal component(s)
» =, com.hello2morrow.son .-l_'d Show in Element Metrics View 611 internal component(s)

» micom.hellozmerrowson 2. Show in Workspace Dependencies View lus 95 internal component(s)
b [com.hello 2 Morrow.sonaryrapr:stem: wunmmem U UYESU T apT St enUETEsTar 81 internal component(s)

Figure 8.10. Workspace View

58

Interacting with a System

What you need to know about the Workspace Filter: The workspace filter works best when used with source file based analysis
(i.e. C,C++ and C#). When analyzing Java .class and .javafiles are parsed. So special care must betaken to exclude .javafilesand
the corresponding .class files. Since using the Production Code Filter has the added benefit of detecting unwanted dependencies
from test to production code you should prefer the usage of the Production Code Filter.

What you need to know about the Production Code and Issue Filter:

 The filters use the 'Workspace Filter Name' of the components to produce matches with include and exclude patterns. The
'‘Workspace Filter Name' can be found in the Properties view when selecting a component. The name has the following
structure: [Modul€e]/[Root Directory]/[Physical Path]/[Component name without extension]. The name 'Events/src/com/app/
events/Event' would refer to the component 'Event' in the directory ‘com/app/events’ in the root directory 'src’ in the module
'Events.

 The patterns support the following wildcards: ?=any character, *=any sequence between dots or dashes, **=any sequence.
Bothfiltershaveabuilt-in"**' include pattern. So it might be enough to add exclude patterns. If needed you can define your own
include patterns (disabling the built-in one). The include pattern(s) define which components pass and the exclude pattern(s)
subtract from that set.

 With the Search dialog you can check which programming elements have been excluded and which ones are ignoring issues.
To bring it up select "Edit" - "Search..." .

As seen in the previous image, the Workspace view offers interactions to create, edit and delete the workspace elements if
necessary.

8.8.2. Managing Module Dependencies

Dependencies between modules that have either been defined manually or that have been generated automatically during the
import/synchronization with external project files are visualized in the Workspace Dependencies View. It isimportant to note
that if the Workspace Dependencies were calculated by the software system as a result of the synchronization process, it is not
possible to modify them, nor delete or add more dependencies.

When Workspace Dependencies can be added manually, a dependency between modules might be created by pressing SHIFT

and the primary modifier key of the platform (CTRL on Windows/Linux and CMD on Mac) and dragging a line with pressed
left mouse button from source to target module.

—&ﬂ:ﬁss B thrift ? Ei main

v

=i stress =i thrift

Figure 8.11. Defining a Manual Workspace Dependency

Similarly, if Workspace Dependencies are manually defined, they can also be deleted via context-menu or double-click
interactions.

59

Interacting with a System

=i main

1 # Delete Java Workspace Dependency
[E save system...

¥ show In Exploration View

=& Show In Graph View

=i From 'main’ 4
=i To 'stress’ '

Input Methods b
=i, stress =i ENrre

Figure 8.12. Defining a Manual Wor kspace Dependency

8.8.3. Creating Workspace Profiles for Build Environments

Workspace profiles help to solve the following problem for Java systems: If a workspace has been set up using for example
an Eclipse workspace import, these root directories likely do not exist on the build server but only on a developer's machine.
(Integration of Sonargraph-Build on the build server is described in more detail in the user manual of Sonargraph-Build.) In
order to run the same checks with Sonargraph on the build server, aworkspace profile defines transformation of root directories.
Currently this applies only to Java classroot directories. The transformation is done using an arbitrary number of profile patterns
that consist of regular matchers and replacement expressions. The profile name can then be applied in the Sonargraph-Build
configuration.

Each profile pattern consists of three parts:

1. Module name matcher: Regular expression matching module names. Only if this pattern matches, the modul€e's root path
will be applicable for transformation by this profile pattern.

2. Root path matcher: Regular expression matching against the identifying path of roots of the matched module.

3. Root path replacement: This pattern defines the new path that will be used to create anew root directory for this module and
replace the existing path. Capturing groups that are used in the module name and root path matchers are accessible.

The two matchers are logically combined, so the capturing groups' indices of the root path matchers do not necessarily start at
1, but depend on the number of capturing groups in the module name matcher. Alternatively, named capturing groups can be
used, asillustrated in the following example:

Let's assume that every module of the system has the same layout and has aroot path with the identifying path "./target/classes’,
but you need to map that path to "./target/<module_name>-0.0.1-SNAPSHOT .jar". The three parts that make up the profile
pattern can be defined as shown in the following screenshot. A detailed explanation is given below the screenshot.

60

Interacting with a System

Edit Workspace Profile Patterns

Medule Matcher [2] Root Path Matcher Root Path Replacement 2a
(=) (?<module>.*) (T« path> " target)/.* ${path}/ ${module}-oojar
* (*)-xo0ejar §1-0.0.1-SMAPSHOT jar
Root Directory Translation
~ Ei Application
1 /Application/target/classes 1 /Application/target/Application-0.0.1-5SNAPSHOT jar
v =i com.hZmisg:Model
1 JAlarmClock/Model/target/classes 1 /AlarmClock/Madel/target/Model-0.0.1-SNAPSHOT jar
v =i View
1 JAlarmClock/View/target/classes 1 ./AlarmClock/View/target/View-0.0.1-SNAPSHOT jar

v =i Foundation
1 JAlarmClock/Foundation/target/classes [./AlarmClock/Foundation/target/Foundation-0.0.1-SNAPSHOT jar

':7\' < Back Mext = Einish Cancel

Figure 8.13. Creating Wor kspace Profile

1. Module name matcher: "(.*:)* (?<module>.*)" - This regular expression matches all module names and keeps the module
name in a named capturing group "modul€” that alows re-using the modul€e's name for the JAR file. If the module has been
created by a Maven import and the name matches the schema groupld:artifactid, the groupld will be omitted by the first

optional capturing group.

2. Root path matcher: "(?<path>.*/target)/.*" - This regular expression matches against the identifying path of roots of the
matched module. The part that needs to be re-used is made available via another named capturing group "path".

3. Root path replacement: "${ path} /${ modul e} -xxx.jar" - This pattern defines the new root path that replaces the match. The
named capturing groups are used to insert the part of the original path that needs to be re-used and al so the module name.

The next pattern replaces the "xxx" string with the correct version using a "standard" unnamed capturing group. It is a matter of
taste if you want to split the transformation into several profile patterns or do it in one step.

NOTE

All root directories must be mapped! If profile patterns result in the same mapping for different root directories of the
same module, only one directory will be created. Otherwise the same rules apply as for the standard software system
workspace: It is not possible that the same root directory is used by different modules.

TIP

More info about the regular expression capabilities can be found in the JavaDoc of java.util.regex.Pattern and its
section about capturing groups.

Related topics:

» Chapter 19, Build Server Integration

61

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#cg

Interacting with a System

8.9. Analyzer Execution Level

Analyzer execution levels have been introduced in Sonargraph 9.6.0. Depending on the currently set level not all analyzers are
executed. Depending on the goal of a session this results in a smoother user interaction. The user can select one of four levels

(Full, Advanced, Basic, Minimal) by System — Analyzer Execution Level .

The list of Analyzers to be run for each level depends on licensed features and languages, and can be shown by System -
Analyzer Execution Level — Description... .

Note
This setting is stored between sessions.

Note

If the level isnot set to 'Full’ not all possible issues and metrics are available.

The Analyzers, their Analyzer Execution Level, and their current state are show in Analyzers View.

Q- Analyzers £3 = 8
Level Name State
PR e

= Full Q Cohesion and Coupling... Finished
= Advanced g Component Cycle Metri... Finished
= Advanced g Component Cycles (Mo... Finished
= Advanced ‘g Component Cycles (Sys... Finished
= Advanced Q Component Cycle Metri... Finished
= Advanced g Package Cycles (System) Finished
= Advanced g Package Cycle Metrics (... Finished
= Basic ‘g Module Cycles Finished
= Basic Q Package Cycles (Module) Finished
= Basic g Package Cycle Metrics (... Finished
= Minimal g Metric Thresholds Finished
= [T - - . — '

Figure 8.14. AnalyzersView

Related topics:

* The Analyzer Execution Level may aso be set in Sonargraph Eclipse Plugin Section 20.1.4, “ Setting Analyzer Execution
Level” .

» The Analyzer Execution Level may also be set in Sonargraph IntelliJ Plugin Section 20.2.1, “ Assigning a System” .

62

Interacting with a System

8.10. Analyzing Cycles

The cycles analysis capability of Sonargraph is leveraged by the Cycle Groups, Cycle and Exploration views. The first oneis
used to list cycle groups and the components involved in those and the other two allow to inspect in detail those cycle groups.

8.10.1. Revising Cycle Groups

Cycle Groups are containers for elements participating in a cycle. This view gathers those cycle groups found during system
analysis by the Cycle analyzer and groups them according to scope (system or module) and element level (e.g. component,
namespace, package, ...).

&1 Metrics | 2 Workspace D&Workspace Dependencies | 5 Issues (1) = Resolutions E_z,.' Cycle Groups £3 |j| Duplicate Blocks
?QEComp&nent Cycles (Module) 10 Cycle Groups
b % Compeonent cycle group 1.9 477 Cyclic Elements B main
» 2% Compenent cycle group 3.1 19 Cyclic Elements B stress
¥ Y% Component cycle group 1.5 3 Cyclic Elerments B2 main

m TransportException.java
[J] ExceptionCode.java
m ProtocolException.java

b £ Component cycle group 1.8 2 Cyclic Elements =i main
F £ Component cycle group 1.7 2 Cyclic Elements B main
b £ Component cycle group 1.6 2 Cyclic Elements B, main
b ¥ Compenent cycle group 1.4 2 Cyclic Elements =i main
b £ Component cycle group 1.3 2 Cyclic Elements =i main
b £% Compenent cycle group 1.2 2 Cyclic Elements B main
b ¥H Compenent cycle group 1.1 2 Cyclic Elements B main
?ggPackage Cycles (Module) 2 Cycle Groups
P ¥ Java Package cycle group 1.1 48 Cyclic Elements B, main
¥ ¥ Java Package cycle group 3.1 4 Cyclic Elements B stress
B server
4 stress
£ operations
B wril
?ggPackage Cycles (System) 1 Cycle Groups
¥ % Java Package cycle group 1 48 Cyclic Elements _ -
88 security +z] Fix Issue
£ filter ¢ Ignore Issue
£ transport) .
£ compress £% Show In Cycle View
£ obs % Show In Exploration View
4 net
£ jdbc

H rencurrant

Figure 8.15. Cycle Groups View

The first column references, in different tree based levels, the category, a unique cycle group identifier and the elements
participating in the cycle. The second column informs about the number of elementsinvolved in the cycle group and finaly, the
third column shows the corresponding module name (for module based cycles) of the cycle or the system name.

Sonargraph considers cycles asissues, asthey greatly contributeto the structural erosion of the code base. Thus, using right-click
on acycle group you can defineresolutionsin order for it to be addressed by the team (see Chapter 9, Handling Detected | ssues).

The context menu for acyclegroup also offersoptionsto visualize the cyclic elementsin specialized views such asthe Exploration
view (see Section 8.11, “Exploring the System”) and the Cycle View (see Section 8.10.2, “Inspecting Cyclic Elements”).

63

Interacting with a System

8.10.2. Inspecting Cyclic Elements

When choosing to examine a cycle group in the Cycle view, it allows to inspect in detail the dependencies between the cyclic
elements belonging to the sel ected group. Selecting anode or a dependency allows to use the support of the Parser Dependencies
(In and Out) auxiliary views to point out to where in the code base the associated dependencies are being generated. Context

menu is also enabled for nodes and dependencies.

The nodes are colored depending on their parent. The parent coloring source can be changed via the toolbar and information
about the different parentsis also provided by clicking on the palette-icon in the toolbar. Generally, the more colors are shown,

the more entangled is your structure.

bl 4] Direct structural parent v

%% [Critical] Java Package cycle group 88.2 (26) £
¥EH org.gradle.tooling o

| org.gradie.tooling.events. transform.internal |

ib

|3 org.gradie tooling.events work.internal |
[y

£} org.gradie.tooling. internal. adapter |

{{H org.gradie tooling.events.download.internal |
A

|t} org.gradie. tooling.internal.consumer |

ot g o

R

w{tt} org.gradie.tooling.events.task.intemal

/
/

:
[org oot mocet il / . g gado.oolng ovenis s mmal

A&

A
t{1} org.gradie tooling.events task java|

li

El Properties qé’; Parser Dependencies (Out) > Iq:g’; Parser Dependencies (In) | Ej Marioars| =l [Automated] .[Core/SuperTypellsesSubType, [Default]

From File [8] (7 -= 7 File(s) ~ Line From Dependency To To File

[4] TransformFailureResult jav
m TransformFinishEvent.java
[J] TransformOperationDescri
[J] TransformOperationDescri

26 &3 TransformFailureResult

26 &9 TransformFinishEvent

28 &9 TransformOperationDescriptor

43 a getDependencies() : Set<? extends Operatior

Extends 3 FailureResult 4] FailureResult java
Extends 9 Fini [¥] Fini
Extends G OperationDescriptor m OperationDescriptor.java
Type Argument G OperationDescriptor m OperationDescriptor.java

java

+4442133

m TransformOperationResult. 26 ¥ TransformOperationResult Extends ¥ OperationResult m OperationResult.java
m TransformProgressEvent.ja 26 ﬂTransformPrugressEvent Extends G ProgressEvent m ProgressEvent.java
[4] TransformStartEvent.java 26 ¥ TransformStartEvent Extends 3 StartEvent [1] startEvent java

m TransformSuccessResult.je 26 ¥ TransformSuccessResult Extends [1] java

Figure 8.16. Cycle View

[BON } Sonargraph

o Element Parent/Color Matching [13]

H erg.gradie.tooling [2]

£ org.gradle.tooling.internal [2]

1 org.gradle [1]
tH org.gradie.tooling.events. task [2]

£ org.gradle.tooling.model [1] [

1 org.gradle.tooling.events work [1]
£ org.gradle.tooling.events.download [1]

8 erg.gradle.tooling.events.transform [1]

Interacting with a System

Via context menu the cycle group can also be displayed in the Exploration view as shown in the following screenshot. This has
the advantage that not only the elements participating in the cycle group are visible, but also their parents and the children that
are the end points of the involved dependencies.

&2 Sy | 2P Sy... | Me... | 5 Wou | ' (0. | B Rawe | & Igee | (2 (0 | 40 (0. | €% (.. | EF Du... | %5 De.. | §% Co.. | %% Jau. [P Ex.. 2| T

CERMERE

FH com.h2m.alarm.handler _~fit-eam.h2m.alarm.handler

» -(_om.h2-r_ﬁ.alarm.application
{}om.th.aIar‘m.model

7 |

EH com.h2m.alarm.application
EH com.h2m.alarm.maodel

(=] £ com.h2m.alarm.presentation.file .

(=] (& AlarmToFile %1 A La_i\'ﬁ;nTofi:le
" TR \ /S a-AamoFile) /
& cyclicDependency S\ 9 cyclicDependency

£ com.h2m.alarm.handler.console =~-e6m.h2m.alarm.handler.console

Figure 8.17. Cycle Group shown in Exploration View

65

Interacting with a System

8.10.3. Breaking Up Cycles

The Cycle Breakup view can be opened via the context menu of the Cycle view. The context menu must be requested without
aselection (i.e. right click on the background).

Pressing "Compute" calculates a breakup set of edges to completely remove the given cycle. The algorithm used was presented
in ‘Combinatorial Algorithmsfor Feedback Problemsin Directed Graphs written by Camil Demetrescu and Irene Finocchi. The
authors summarize the algorithm as follows:

Roughly speaking, our algorithmtries to find a compromise between two (somewhat opposite) approaches, i.e., removing light
arcs, that is, arcswith small weight, and removing arcs belonging to a large number of cycles. Indeed, light arcsare convenient to
be deleted asthey contribute to breaking cycles, yet increasing the weight of the feedback set only to a limited extent. On the other
hand, if a heavy arc belongsto a large number of cycles, it may be convenient to choose it instead of a numerous set of light arcs.

The "Breakup" table shows edges from top to bottom representing the removal order and the effect on cyclicity and number
of cyclic nodes.

Dragging edges to the "Remove" table instructs the algorithm that these should be explicitly removed without considering the
number of parser dependencies. Drag them back to the "Breakup” table to remove this configuration. Edges to be explicitly
removed can also be dragged from the corresponding cycle view into the "Remove" table. If more edges are contained in the
"Remove" table than are necessary to break up the cycle, the breakup set is over-defined. Those unnecessary edges are indicated
by a grey background of the 'from' and 'to' element.

Pressing "Remove Violations' moves all violating edges to the "Remove" table.

Dragging edgesto the "Keep If Possible" table instructs the algorithm that these should be kept if possible. If no more edges are
left to remove even those that should be kept are considered. Drag them back to the "Breakup" table to remove this configuration.
If the algorithm needs to consider edges as removal candidates that should be kept, the edges are analyzed from bottom to top
(i.e. the topmost edge is the last to be considered). This order can be changed in the "Keep If Possible" table by dragging edges
up or down. Edges that should be kept but need to be removed are highlighted in both tables with a yellow background of the
‘from’ and 'to’ element.

Changing the set of edges to be explicitly removed or kept requires a re-computation. This is indicated by a grey background
color in the "Breakup" table and an (again) enabled "Compute" button.

If the "Breakup" table contains the correct edges that should be removed, a"delete" refactoring can be defined by multi-selecting
the entries and open the context menu via right mouse click. For details, see Section 10.1, “ Creating Delete Refactorings’

66

Interacting with a System

s 311 Direct artifact parent . fArchi.arc’ [Logical, Checked] =

%% [Critical] Java Package cycle group 18.1 (12) =]

T crg.gmdle.conﬂig‘l;rallunmnhe [
Horg.gradie beans & Horg.gradie |
v
{5 org.gradie.config T codecs ﬁ 2] crg,gradle.nonﬂgur;lnnm:he.lnilializat\nn ‘
 orarade e codscsios | gt |
£l org.gradie.config % codecs 2] utg.grmle.nmﬁgl.:ﬁnrmﬂte.mc.ﬂeh |

Piring
©{H org.gradie.configurationcache problems |

b‘m gradie. |

E Properties |<fg> Parser Dependencies (Out) G:p Parser Dependencies (In) |E3 Markers | = [Automated] ./Core/SuperTypeUsesSub... IZE '[Critical] Java Package cycle group 18. % = 0

Cyclic nodes: 12 Edges of eyclic nodes: 45 Edges to remove: 12 (26.67%)

Cyclicity: 144 Parser dependencies of cyclic nodes: 1715 Parser dependencies to remove: 100 (5.83%)
[Breakup] From [12] Dependency To Cyclicity Cyclic Nodes Parser Dependencie Sum Of Parser Depender
{EDrg.gradle.configurationcacna.serializaticn‘heans = Catch Eorg.gradle.ccnﬂgurationcgche 144 12 1 1(0.06%)
4 org.gradle.configurationcache.serialization.codec = Catch 7 org.gradle.configurationcache 144 12 1 2 (0.12%)
£ org.gradle.configurationcache ization.codec =b Aggregated {3 org.gradle.configurationcache.ser ion. 144 12 3 5 (0.29%)
Aggregated 8 11 (0.64%)
E org.gradle.configurationcache.problems = Aggregated E org.gradle.configurationcache.initialization 144 12 6 17 (0.99%)
E org.gradle.configurationcache = Aggregated E org.gradle.configurationcache metadata 121 1 9 26 (1.52%)
{E org.gradle.configurationcache.problems =» Aggregated E org.gradle.configurationcache 64 8 9 35 (2.04%)
EE org.gradle.configurationcache =» Aggregated E org.gradle.configurationcache.models 49 7 10 45 (2.62%)
4 org.gradle.configurati h ializati - A d i org.gradle.configurationcache 8 4 12 57 (3.32%)
i3 org.gradle.configurati ializati - i3 org.gradle.configurationcache.serialization.beans 4 2 13 70 (4.08%)
i1 org.gradle.configurati i print = fi# org.gradle.configurationcache 0 0 15 85 (4.96%)
[Remove] From [2] Dependency To Parser Dependencies
ﬁ] org.gradle.configurationcache.fingarpri = Aggregated m org.gradle.configurationcache.services &
£H org.gradle.configurati ializati ode: =} Aggregated {H org.gradle.configurationcache.services 15
[Keep If Possible] From [0] Dependency To Parcer Dependencies

Figure 8.18. Cycle Breakup View

67

Interacting with a System

Highlighting Added Cyclic Elements

If a baseline has been created and activated (see Chapter 14, Examining Changes) added cyclic elements are highlighted in the
Cycle view with a blue plus sign as shown in the screenshot below. These elements and their incoming/outgoing dependencies

are usually a good starting point for refactorings.

= 0

A welcome |l—\4§ System |%1 Metrics | 'E?p Workspace | g (1) Issues | %% cycle Groups [%E [Critical] Component cycle group 15.2 X I
= 17| | gy AT Direct structural parent v o P

% ¥ [Critical] Component cycle group 15.2 (8) [

1] Conversioninfo java f

J] ISignatureProvider.java [J] ILogicalElement.java |

4] ISignatureType.java \Qwimesmce.java |
J] IndexerMatch.java %\yp&jaw |

[m IRegistry.java]

Figure 8.19. Highlighted Added Cyclic Elements

68

Interacting with a System

8.11. Exploring the System

Sonargraph offers a set of views such as Exploration, Graph and Dependencies views to allow users to explore the dependencies
between elements. The following sections describe these views in detail and how to use them efficiently.

8.11.1. Exploration View

The Exploration view shows a tree-like structure of the software system. The elements contained in the software system are
represented as nodes that can be expanded/collapsed if they contain other elements. Dependencies between the elements are
represented as arcs, that have to be read counter clockwise. Left-hand side dependencies are downward and right-hand side
dependencies are upward. The number of upward dependencies is minimized to show the construction order of the software
system.

The Exploration view performs ad-hoc level and cycle analysis for elements underneath the same parent, shows cyclic elements
with ared background and visualizes the levels by showing horizontal grey lines.

The Exploration view aims to show a very compact presentation even for very big software systems. If there is limited space
vertically and alot of interconnected nodes to be shown the arcs are squeezed to occupy |ess space.

The Exploration view offersfocus operations to reduce the amount of visible elements/dependencies allowing the user to "focus"
on specific aspects.

The Exploration view supports forward/backward navigation recalling different visibility states via the main tool bar's yellow
back and forth arrows (<= =). Use that mechanism if you want to go backward or forward to a specific state of the Exploration

view. The'Home tool bar button (&') resetsthe Exploration view toit'sinitial state and clearsall navigation states. The different
visibility states include focus, expand/collapse and selection state of the view.

Structure Modes
The Exploration view supports 4 different structure modes:
» Physical: Shows the physical structure as shown in the Navigation view including root directories.

» Physical w/o Root Directories: Shows the physical structure as shown in the Navigation view excluding root directories for
amore compact presentation.

» Logical System Scope: Shows the logical structure as shown in the Namespaces view using system scope.

 Logical Module Scope: Shows the logical structure as shown in the Namespaces view using module scope.

Creating an Exploration View

Once you have a successfully parsed the software system the 2 most straightforward ways to create an Exploration view are:

* Use the quick access tool item in the main tool bar showing the Exploration view icon: € The quick access tool item offers
a drop-down box where you can choose 1 of the 4 structure modes.

» Select any number of elementsin the Navigation or Namespaces view and use the context menu entry 'Show In Exploration
View'.

69

Interacting with a System

In general an Exploration view can be created viathe context menu by sel ecting different elements throughout the user interface,
some of them are:

* No Additional © : Focus only the input elements. Only the input elements and the dependencies between them are going

>
4
>
>
>
>
>
>
>
>
>
>
>
4
>
>
>
>
4
>
>
>
>
>
.

* Select and Reveal - : Create an Exploration view without focus, selecting the input elements and revealing the first input
element.

=, com.hello2Zmorrow.senargraph.build.csharp
= com.helloZmorrow.sonargraph.build.java

=\, com.hello2morrow.sonargraph. build. python
=% com.helloZmorrow.sonargraph.client.eclipse
=i, com.helloZmorrow.sonargraph.core

= com.hello2Zmorrow.senargraph.ide.eclipse

=i com.helloZmorrow.sonargraph.ide.intellij

=i, com.hello2morrow.sonargraph.integration.ac
=i com.helloZmeorrow.sonargraph.language.prov
=, com.hello2morrow.sonargraph . language.prov
=i com.helloZmorrow.sonargraph. language.prov
=i, com.helloZmorrow.sonargraph.language.prov
=, com.hello2Zmorrow.senargraph.plugin.api

= com.helloZmorrow.sonargraph.plugin.api.cplt
=i, com.hello2morrow.sonargraph.plugin.api.csh

¥ Delete Java Module
/' Edit Java Module...
‘#| New Todo...

1 New Root Directory...

?\r': New Java Source Root Directory/Archive...

12 Manage Java Root Directories/Archives...

=% Show in Graph View

=i, com.hello2morrow.sonargraph.plugin.api.java Show in Exploration View | [t Select and Reveal

=i com.hello2Zmorrow.senargraph.plugin.api.pytl
=, com.hello2Zmorrow.senargraph.plugin.managi
=, com.helloZmorrow.sonargraph.plugin.pmd
=i\ com.hello2morrow.sonargraph.plugin.spotbu)
=i com.helloZmorrow.sonargraph.plugin.swagge
=i\ com.hello2Zmorrow.sonargraph.remoting

=, com.helloZmorrow.senargraph.standalone

= Show in Dependencies View

J4 Show in Element Metrics View

% Show in Workspace Dependencies View
12 Show in Workspace View

=i, com.helloZmorrow.sonargraph.standalene.cplusplus

T S

S S T S

to be part of the displayed content.

along with all the dependencies involved.

R

* Advanced... ¥ : Thiswill open an advanced Exploration view creation dialog.

@ No Additional
£ In and Out
e In

o3 Out

H Advanced...

Inand Out % : Focus the input elements and the ones directly connected with incoming/outgoing dependencies. The input
elements plus the ones which they depend on and the onesthat directly depend on them will be part of the displayed content

In % : Focus the input elements and the ones directly connected with incoming dependencies. The selected elements plus
the onesthat directly depend on them will be part of the displayed content along with the dependencies between all of them.

Out ** : Focus the input elements and the ones directly connected with outgoing dependencies. The selected elements plus
the ones which they depend on will be part of the displayed content along with the dependencies between all of them.

A checked architecture DSL file creating an Exploration view including the corresponding artifacts.

A cycle group creating an Exploration view including only the corresponding dependencies (i.e. using a focus on the

dependencies).

Elements or dependencies from script result previews.

| ssues.

70

Interacting with a System

o0 @ +9 = Z == G ®m Modifiablevm

=i Navigation | %3 Namespaces | 5. Files = O ||y w Open E"Ffmja'_'?" S FE‘S'C“' ing | &F 12:03:30 p. m., 18/11/21 2
B 8
=i com.hello2Zmorrow.sonargraph.build client.maven E?@,c:om.heIIOZmormw.sonarglaph.standalone.cpluspl us
=i, com.helloZmorrow.sonargraph.build.cplusplus [=), com.hella2morrow.sonargraph. standalone..csharp

=, com.hello2Zmorrow.sonargraph.build.csharp
= com.helloZmorrow.sonargraph.build java

=, com.hello2morrow.sonargraph.build python
=i, com.helloZmorrow.sonargraph.client.eclipse

E‘m:om.haIIoZmormw.sonarglaph.standalone.java
E?@,com.heIIoZmormw.sonarglaph.standalone.python

E?Qcom.heIIoZmorrmv.sonargraph.ide.aclipse

=i, com.helloZmorrow.sonargraph.core [l =i, com.helloZmorrow.sonargraph.standalone
=, com.hello2Zmorrow.sonargraph.ide.eclipse E?@,com.haIIoZmDrmw.sonargraph.huild
=i, com.helloZmorrow.sonargraph.ide.intellij [=i, com.hello2morrow.sonargraph. build cplusplus

=2, com.hello2morrow.sonargraph.integration.access
=i, com.helloZmorrow.sonargraph.language.provider.
=, com.hello2morrow.sonargraph. language. provider.
=i, com.helloZmorrow.sonargraph.language.provider,|

E‘m:om.haIIoZmormw.sonarglaph.build.csharp
E?@,com.heIIoZmormw.sonarglaph.build.java
E?Qcom.heIIoZmormw.sonargraph.build.MOH

=i, com.hello2Zmorrow.sonargraph.language.provider. [l =i com.helloZmorrow.sonargraph.ide. intellij
= com.hello2Zmorrow.sonargraph.plugin.api E‘m:om_heIIoZmormw.sonarglaph.ui.swt
Ei com.helloZmorrow.senargraph.plugin.api.cpluspiu 5=\ com.hello2morrow.sanargraph.client eclipse

=, com.hello2morrow.sonargraph.plugin.api.csharp
=i, com.helloZmorrow.sonargraph.plugin.api.java
=, com.helloZmorrow.sonargraph.plugin.api.python

B2, /eom.hello2morrow. graph.client.ecli c/main/groovy

E EE}com.heIIoZmnrrow_sonargraph.cIienLecIipsa.appIicaIiDn

VWOV W W W W Y W OV Y Y Y W Y Y Y Y W Y Y Y Y Y Y Y W Y Y Y Y Y

=, com.helloZmorrow.sonargraph.plugin.manager @ EclipseApplication java
=, com.helloZmorrow.sonargraph.plugin.pmd m BundleControllerjava
=i com.helloZmorrow.sonargraph.plugin.spotbugs m EclipseLogListenerjava
=, com.helloZmorrow.sonargraph.plugin.swagger m EclipseRelease java

s com.helloZmorrow.sonargraph.ramotin
5@ grap 9 [J] IExceptionHandler.java |
=i, com.helloZmorrow.sonargraph.standalone i P |
=i, com.helloZmorrow.sonargraph.standalone.cpluspl m LR 2 A |
=) com.hello?morrow.sonargraph.standalone.csharp E?M:om.heIIoZrnorrow.sonarglaph.language.prwid er.cplusplus =i |
=i, com.helloZmorrow.sonargraph.standalone.docum E‘m:om.heIIoZmormw.sonarglaph.language.pnwid er.csharp = 1
E:E com.helloZmorrow.sonargraph.standalone.java [= com.hello2morrow.sonargraph.language. provider. java = |
i com.helloZmorrow.sanargraph.standalone. pythan [=\ com.hello2morrow.sonargraph.language. provider. python = |
=i com.helloZmorrow.sonargraph.ui.swt - halloz m r i
G External [Javal [= com.hello2merrow.scm.gi =i

E‘m:om.helloZmDrrmv.sonargraph.cora "

Figure 8.20. Example of Created Exploration View without Focus
Questions that can be answered using the Exploration view are:
» What are the dependencies between some layers, subsystems, packages or types?
» What is the reason for some unexpected dependency?
» How isit possible to decouple a given pair of package trees?
» Whereis package X or file Y located in the package tree?
The exploration view provides a number of means supporting you to:
» Get an overview of your software system on a high abstraction level.
* Drill-down to answer specific questions.
« Zoom in and out of the Sonargraph model tree by expanding and collapsing element nodes.

» Use the focus operations so that irrelevant information is hidden.

8.11.1.1. Presentation Modes, Levelization, Semantics of lcons and
Decorators

The Exploration view offers 3 presentation modes that affect the presentation of recursive elements (e.g. package, namespace,
directory):

* Mixed: Empty elements without siblings are compacted.

» Hierarchical: All elements are shown.

71

Interacting with a System

Flat: Only the elements containing elements of other types are shown.

The Exploration view uses the following strategies to visualize different aspects:

The Exploration view shows some horizontal grey lines. These are the level lines. Non-cyclic elements on the same level are
not depending on each other. Cyclic elements of acycle group are on the samelevel. Those elements have ared shaderectangle
background. Different red shades are used for different cycle groups (relative to their parent) aswell asacycle index property
is shown in the Properties view. Nodes belonging to the same cycle group show the same cycle group index. To differentiate
non-cyclic and cyclic elements on the same level an additional red lineis shown dividing the level.

If an element has children, it will show a collapse/expand figure (+/-). If the background of this figure is darker it has more
children.

If not al child elements of an element are shown due to afocus the element is marked with a grey triangle. If not all outgoing
dependencies of an element are shown the element is marked with alight grey triangle. If both is true the triangle will show
one half in grey and one half in light grey.

Selected elements are highlighted with a grey background. Dependent and using elements have alight grey background.

Different blue shaded boxes are used to better distinguish the nesting structure.

The following Exploration view shows some of the mentioned visual elements. The 'controller' package has been selected and
focused with 'In and Out' dependencies:

E;Jccm,hellc2morrcw,scnargraph.ide.inlellij _E
Eaccm,hellc2mormw,scnargraph.Ianguage. provider.cplusplus ;
Eaccm,hellc2mormw,scnargraph.Ianguage. provider.csharp

= &, com.hello2morrow.sonargraph.language.provider.java

E;Jccm,hellc2morrcw,scnargraph.Ianguage. provider.python

| d
.Edcom,heII02morr0w,50nargraph.core |' /

IIII I'I

AL

.[EL com.hello2Zmorrow.sonargraph.core

E]@ command
[m system

[=] £ contraller
£H generic
[F £ system
{H enterprise /

=

@ controllerinterface

@ persistence

\
T model
foundation.common \ &

E;Jccm,hellﬂmormw,scm
. com.hello2morrow.sonargraph.remotin
rgrap g

E;Jccm,hellﬂmormw,ccmmcn
E;Jccm,hellc2morrcw,scnargraph.integration .access

E;Jccm,hellc2morrcw,scnargraph.plugin.api

[EeExtenal [Java) e

Figure 8.21. Exploration View with Applied Focus

72

Interacting with a System

Levelization

In general levelization is applied to al non artifacts shown in an Exploration view. When an Exploration view can potentialy
show artifacts because it has been created from a checked architecture aspect an additional view option widget is shown allowing
the used to select 1 of 2 levelization modes:

* Non Artifacts Only: only non artifacts are levelized and artifacts are shown in their definition order without highlighting
potential cyclesinvolving artifacts.

» All: All elements are levelized, therefore levelization is applied also to artifacts, highlighting also potential cycles involving

v |

artifacts.
eu [l ¥9 =) & g - *m Modifiable.vm
= Navigation |% Namespaces ['?«:T_ Filesl = 8 || A welcome | Li?:a Workspace
&7 system.sonargraph
> [Analyzers [Bl User-Interface
» [Architectural Views it
A f:l Architecture &l Build
T, CommandControllerinteraction.arc [Physical] [Bl user-Interface-Commoan
EI EclipsePlugin.arc [Physical, Checked] [Bl User-Interface-IntelliJ
EI Extarnals.arc [Physical, Checked] [2 Application //‘ﬁ
EI GenericLanguageProviderSupport.arc [Physical, Ch u Command /HM
T Layers.arc [Physical, Checked] R Goniroler
EI ModellnstanceCreation.arc [Physical] I MV
fZ Modules.arc [Physical, Checked] 2l Controller-Interface P
FZ Script_Plugin_APlarc [Physical, Checked] Bl Persistence | i
Elsilicas.arc [Physical, Checked] .=!)MDE|B| | \
|"‘_—| Elﬂonargraphauild.am [Physical, Checked] u Plugin-Manager s
Baselines .
> [C] Dashboards 1 &1 Plugins) L
5>] Models [= com.helloZmorrow.sonargraph.remoting \
[Z7 Plugins [28 Foundation
» [C] Quality Gates [28 Integration-Access
» [Scripts [2 Plugin-API
> [C] Settings [21 1AXB
k4 Ti
1 Treemaps [&g Extemal [Javal
» [C]Workspace

Figure 8.22. Exploration View created from Architecture
Aspect showing the L evelization M ode Widget

gm |ssuaslﬁ JLayers.arc: 7:58:53 a. m., 24{11/21 3 = 8

Levelize: Non Artifacts Only @ All p@ EE §
m|

73

Interacting with a System

8.11.1.2. Focus

The primary goal of the focus is to reduce the amount of visible elements and dependencies so that specific aspects of the
software system can be analyzed more easily. Several focus operations are available that can be applied to 1 or more elements
or dependencies. To apply a focus operation simply select elements or dependencies and choose a focus operation from the
context menu.

Remove From Focus

The simplest form of reducing the amount of visible elements/dependencies is to remove el ements/dependencies from the view,
that are currently not of interest. Select the elements/dependencies, right click to bring up the context menu and choose 'Remove
From Focus.

Set Focus

Another way of reducing the amount of visible elements/dependencies is to explicitly focus elements/dependencies. Select the
elements/dependencies, right click to bring up the context menu and choose 'Set Focus.

[] [] Sonargraph - Focus
Focus Type
0 Set Focus
Nodes

© Mo Additional
In
Out
InfOut
In Transitively
Out Transitively
InfOut Transitively
In Transitively (programming element based)
Out Transitively {programming element based)
InfOut Transitively (programming element based)

Dependency Types

call
Extands
Implements
Maw
Read
Usas
Write
All Mone

Figure 8.23. Focus Dialog
The transitively options also let you include indirectly connected nodes per incoming/outgoing dependencies.
Difference between 'Transitively' and 'Transitively (programming element based)':

Out Transitively: The selected node(s), their interdependencies and all nodes used by the selected node(s) transitively are
considered. Leaf nodes (either components or logical top-level programming elements) are treated as an indivisible unit.

Out Transitively (programming element based): The selected node(s), their interdependencies and all nodes used by the selected
node(s) transitively are considered. Leaf nodes (either components or logical top-level programming elements) are not treated as
an indivisible unit. Only the connected programming elements are used.

74

Interacting with a System

So when components/logical top-level programming elements are treated as indivisible units al those "units' are collected
(shown) when any programming element (method,field,type,...) including nested elements uses any programming element of
another "unit". That means you can see theinterconnections based on those "units'. The other programming element based modes
only show the interconnections of programming elements.

When you are planning to make changesto 1 (or more) component(s) (source and header files combined in C,C++, source files
inall other languages) with 'In Transitively' you would see all affected other components being able to assess the impact of those
changes, useful to know what needs to be re-tested or simply to know the magnitude of the impact.

With 'Out Transitively' you would see the affected (connected) components which could help to see what (physically) belongs
together and decide how to structure due to architectural aspects (i.e. which components might belong to the same architecture
artifact) or even decide which refactorings to apply to bring related things closer together.

Transitively (programming element based)': Using that mode you normally you see less elements since only the connected
programming elements are used. Combining those modes with different dependency types allows you to see inheritance based
connections or call bases connections and so forth.

NOTE: If only dependencies are selected only the 'Dependency Types are available and not the 'Nodes' section.

75

Interacting with a System

Add To Focus

Select elements/dependencies, right click to bring up the context menu and choose 'Add To Focus' to potentially extend the
visible elements dependencies.

[] [] Sonargraph - Focus
Nodes
© Shown children only (due to focus) All children
Focus Type
© Set Focus
Nodes

© No Additional
In
COut
InfOut
In Transitively
Out Transitively
InfQut Transitively
In Transitively {programming element based)
Out Transitively (programming element based)
InfQut Transitively (pregramming element based)

Dependency Types

call
Extends
Implements
MNew

Read

Uses

Write

All Mone

Figure 8.24. Add to Focus Dialog

When not all children of a selected element are currently visible the user can decide to include the not visible children as well
by selecting the 'All Children' option.

Re-Adding Not Visible Elements

Once an element is removed from the view it is till possible the locate the element using the Find dialog (context menu 'Find
Elements...") select it and use 'Reveal With Focus...".

Clear Focus

When you have an applied focus, the context menu will show the 'Clear Focus' entry to clear the current focus.

8.11.1.3. Interaction with Auxiliary Views
The Exploration/Architectural view offersinteraction with different Auxiliary views of Sonargraph.

Properties View

The Properties view shows additional information depending on the selection in the Exploration/Architectural view. There can
either be no selection showing information of the Exploration/Architectural view itself about, focus and other properties or
elements/dependencies can be selected showing information about size, issues, violations and so forth.

76

Interacting with a System

Parser Dependencies In/Out Views

Selecting elements/dependencies in the Exploration/Architectural view the Parser Dependencies views show the underlying
parser dependencies. Using the context menu 'Show In Source' entry on a specific parser dependency allows the user to to jump
into the Source view revealing the specific dependency.

Exploration/Architectural Metrics View

Selecting elements in the Exploration/Architectural view the corresponding metrics view re-cal cul ates the metrics based on the
current focus and selection.

For elements (modules, artifacts, packages/namespaces, components ...) the following metrics are cal cul ated:

» The number of (non-distributed) elements that are currently shown (e.g. '5 Modules means that 5 different modules are
somehow included).

e The number of distributed elements (e.g. when 1 unique module is found '3 Modules (distributed)' means that the 1 module
has been found 3 times in the model. This can happen when assigning elements from 1 module to 3 artifacts, resulting in 3
distributed modules based on 1 defined module).

» The number of elements that are marked as cyclic (sometimes 'distributed’ - where applicable).

NOTE: Some elements cannot be distributed (e.g. artifacts, components, types, fields). If metrics are not specifically named xxx
(external) they are only calculated for internal elements.

There are 4 dependency categories for which the number of parser dependencies, parser dependencies violating and parser
dependencies violating ignored are aggregated:

» Outgoing dependencies: The dependencies of the selected elements that point to elements not contained in the selection.

Incoming dependencies: The dependencies of the not selected elements that point to any selected element.

« Inner dependencies: The dependencies between the selected elements including their children.

Downward dependencies: All upward dependencies connected to any selected element.
» Upward dependencies: All downward dependencies connected to any selected element.

NOTE: When no element is selected all (not excluded by focus) dependencies are counted as inner dependencies and all down/
upward dependencies are counted.

7

Interacting with a System

8.11.2. Graph View

The graph-based system exploration allows usersto take an arbitrary selection of elements and create a graph representation with
nodes and edges to find out what their overall interaction looks like:

[|1 Cazzandrafuthorizer jave

[|1 RequestExecution Exception java] % [|1 RequestyalidationException java] [|1 Murmur2 BloomFilter java]

Figure 8.25. Graph View

By default, the graph perspective presents a levelized layout which comes handy to visualize the levels in which the software
system elements are classified according to their dependencies to each other.

8.11.2.1. Focus

For Graph and Workspace dependencies view, the focus concept is the key element to understand how these views are created
and how they can be modified to make a deeper analysis of the dependencies between elements. Any of these views (except for
the Workspace Dependencies view when there are not workspace elements in the system) will have at |east one element in focus
and any number of elements not in focus.

» Elementsin Focus: Elements that are the center of the analysis. Dependencies will be calculated for these elements according
to the selected focus mode. When a Graph view for example is requested by the user for a set of selected elements, these
elements will be the onesin focus.

» Elements not in Focus: Elements that appear as aresult of the calculation of the dependencies for the elementsin focus. They
appear in the views because they are the endpoint of a dependency from or to an element in focus but they are not the active
part of the dependency analysis.

Focus Modes

When creating a new Graph or Workspace Dependencies view or using the focus operation inside them, one of the following
focus modes can be selected:

* No Additional Dependencies @ : Only the selected elements and the dependencies between them are going to be part of the
displayed content.

78

Interacting with a System

* Incoming Dependencies® : The selected elements plusthe elementsthat directly depend on them will be part of the displayed
content along with the dependencies between all of them.

* Outgoing Dependencies*® : The selected € ements plus the el ements which they depend onwill be part of the displayed content
along with the dependencies between all of them.

* Incoming and Outgoing Dependencies # : The selected elements plus the elements which they depend on and the elements
that directly depend on them will be part of the displayed content along with all the dependenciesinvolved.

Transitive Dependencies

Sometimesit isrequired to analyze rel ationships between el ements beyond the direct dependencies. For thisreason, Sonargraph
offers the option of taking into account the transitive dependencies for the focus operations. To better understand this concept
assume a system with the following dependencies between elements A, B, C, D and X:
» Element A dependson element B: A ->B
» Element B depends on element X: B -> X
» Element X dependson element C: X ->C

» Element C depends on element D: C->D

Taking element X as a reference for this example, we can express the relationship between A and X as A -> B -> X and the
relationship between X and D as X -> C -> D. For these relationships the following statements are true:

» X hasatransitive incoming dependency from A

X has adirect incoming dependency from B

X has adirect outgoing dependency to C

» X hasatransitive outgoing dependency to D

Graph-Based Views Properties

Besides the input elements and the focus mode the Graph-based views need the following 3 properties to be created:

» Transitivity: Users must indicate whether they want to see transitive dependencies for the supplied input or not. See
Section 8.11.2.1, “Transitive Dependencies’

* Only Internal: If selected, all elements under the External node will be excluded from the view.

» Dependency types: Users might want to focus the analysis on certain types of dependencies. The lower section in the dialog
allows the selection of the dependency types that will be considered for view creation or focus operations.

Quick View Creation

Graph-based views can be created by right clicking on a selection of elements, selecting the view to open and providing one of
the four focus modes from the context menu.

79

Interacting with a System

Delete Java Module
Edit Java Module...
MNew Todo...

Mew Root Directory...

Mew Java Source Root Directory/Archive...

Manage Java Root Directories/Archives...

Mo Additional
In And Out

Show in Graph View 3
Show in Exploration View »
In

Cut

Show in Dependencies View
Show in Elernent Metrics View

Show in Workspace Dependencies View Advanced...

BhEVON 2P LD NX

REN: Y K

Show in Workspace View

Figure 8.26. Quick View Creation

A new view will be created with the supplied focus parameter, only direct dependencies (not transitive), both internal and external
elements and all the parser dependency types available.

Advanced View Creation

If more configuration options are need upon view creation, users can right click on a selection, select the view to open and click
on 'Advanced...". That will open the Advanced View Creation dialog where all available options can be configured.

A Sonargraph - Advanced Pro.. — O .

:ﬁ"; In And Out = [_] Transitive [_] Only Internal

=+ Call

=+ Bxtends

= Implements
= Mew

=+ Read

= Llzes

=+ Write

Select All | Deselect All

Figure 8.27. Advanced View Creation Dialog

The dialog shown in the previous image shows the advanced representation creation dialog where focus mode, properties and
dependency types can be specified prior to creation. See: Section 8.11.2.1, “Focus Modes’, Section 8.11.2.1, “Graph-Based
Views Properties’

Applying Focus

Since Graph-based views can display an overwhelming amount of information, it is possible to perform focus operations on these
viewsin order to reduce the amount of displayed information to a set of nodes and edges that the user wantsto focus his attention
on. Focus operations are performed by using the focus toolbar.

80

Interacting with a System

kA
Figure 8.28. Focus Toolbar

Focus Properties

The focus operation requires the combination of the Graph-based properties (See Section 8.11.2.1, “Graph-Based Views
Properties’) and the following properties of its own:

» Selection: Users can focus aview using the selected or unselected elements. It is also possible not to use a selection, in which
case, only the dependency types will be modified.

* Only Visible % : If selected, only nodes and edges visible at the time of the focus operation will be considered, otherwise,
all the model will be used for the focus operation.

Quick Focus

The focus button in the focus toolbar offers a dropdown menu with 4 options to perform a quick focus operation.

T % -
Mo Additional

In And Qut

In

Cut

Advanced...

Hige T K e

Figure 8.29. Focus Dropdown Menu

As the image shows, there is one menu entry for each focus mode. These menu entries can be used to perform quick focus
operations which will use the current selection, the current value of the 'Only Visible' button, the focus mode of the menu entry
and keeps all the other properties of the current view (dependency types, only internal and transitive).

Advanced Focus

If more configuration is needed to perform afocus operation, users can push directly the focus button in the focus toolbar or use
the 'Advanced.." menu entry in the dropdown menu of this same button. Any of these operations will open the 'Advanced Focus
dialog which allows the configuration of all view and focus properties.

81

Interacting with a System

A Sonargraph - Advanced Foc.. — O x>

(®) Selected () Unselected () Mone

:ﬁ: In &nd Out = | Transitive [] Only Internal

= Call

= Bxtends

= Implements
=+ Mew

= Read

= Uses

= Write

Select All || Deselect All

Figure 8.30. Advanced Focus Dialog

Architecture and Colors

When the used license contains the Architecture feature, the Exploration, Graph, Cycle and Dependencies views will use a set of
colors to show whether the edges (or dependencies in the case of the Dependencies view) contain architecture violations or not.

82

Interacting with a System

= Application

[+ =i Model

[= View |
[=ik Foundation

;". External [Javal

Application

odel
iew

4i Foundation

e External [Javal

Mo Additional ~ Transitive Call Extends Implements MNew
2 Foundation &%
Incoming - To [2 elements] Depenency Type
» =i Foundation 4 Aggregated
=, Foundation 4= Aggregated
Internal - From [1 elements] Depenency Type
O /AlarmClock/Foundation/src/main/jav = Aggregated
Outgoing - Frem [1 elements] Depenency Type
=i, Foundation = Aggregated

()

=i Application

=i, Foundation
!

g External [Java]

Read Uses Wri|| Mo Additional Transitive |

From

= Model
= View

To

B /AlarmClock/Foundation/src/m ain/java

To
§- External [Java]

Figure 8.31. Semantics of Colors

» Green Color: All underlying dependencies comply with the architecture.

Call Extends Implements New Read Uses Write
= 0
From scope Mumber of dependencies
=i Model 4
= View 2

MNumber of dependencies

98

Mumber of dependencies

56

To scope

§- External [Java]

» Yellow Color: At least one but not all of the underlying dependencies create architecture violations.

* Red Color: All underlying dependencies create architecture violations.

Besides these 3 colors, views can eventually show some dependencies that will always be grayed. This means that these
dependencies are not taken into account by the architecture check, thus they are neither allowed nor violating dependencies.

83

Interacting with a System

H =i Model "
E|_]_.'..,a‘AIarmCIu:nck,a‘Model_e'src,a‘main,a‘java
B & com.hZm.alarm.model
= [J] AlarmClock.java
= @& AlarmClock (2 AlarmClock
& AlarmClock() & AlarmClock()
A runi) : void & run() :void
) ALARM_EVENT) ALARM_EVENT
& addObserver(Observable$|Observer, String) : void & addObserver(ObservableS|Observer,String) : void
& notifyAboutEvent(String) : void 2 notifyAboutEvent(String) : void
[=i Foundation), Foundation
[g External [Java] g External [Java] -
Out Transitive Internal Call Extends Implements MNew Read Uses Write
“E. Parser Dependencies (Out) &2 = = 0
From File [1] Line From Dependency To To File
wAIarmCInck.java nfa % addObserver(.. =¥ Virtual Method Call [Via Subtype] & addObserver(ObservableslO.. [J] Observable java

Figure 8.32. Architecture Independent Dependencies

Selection and Colors

In the case of the Exploration Graph view the selection will cause edges to display or hide their architecture-related color. If a
node is selected, its incoming and outgoing edges will reveal their architecture-related color, all other edges will be grayed. If
an edge is selected, it will be the only one revealing its architecture related color and the rest of them will be grayed. Thisis of
course assuming that a license containing the Sonargraph Architecture feature is installed, otherwise, incoming and outgoing
edges of selected nodes as well as selected edges will have a darker gray color whereas al other edges will have alighter gray
color. Thisisalso the case for Workspace Dependencies and Include Dependencies views, where edges will always be presented
in gray-scale colors.

8.11.2.2. Levels

Showing levelized content is a feature of the Graph view. When a Graph view is requested, Sonargraph organizes nodes in a
way that given each edge of the graph and both From and To endpoints of the edge, the From endpoint will awaysbein agreater
level than the To endpoint.

Interacting with a System

e

= stress

&g Bxtemnal [Java]

Figure 8.33. Levelsin Graph View

Thisway of layouting immediately gives the user an idea about the coupling among the selected elements that form the content
of the view and how modifications will impact elements that belong to different levels.

8.11.2.3. On Demand Cycle Groups

When creating a Graph view for an arbitrary selection of elements, it is possible that there are cyclic dependencies among the
elements that make part of the content of the view. In this case, it would be impossible to define levels among the elements that
belong to acycle and with all of them belonging 0 asame level, the readability of the graph would decrease. To avoid this effect,
Sonargraph gathers all elements that form cycle groupsinto elements called "On Demand Cycle Groups'.

[J] S5LTransportFactory java

................ A o e e e e i e meccddccccmcccmmccmmmammmamaaaa.

2
.4
__1 __________ 1 __
[Jg Charsets L\X, [} Predicate [} Collections2 [J3 lterables

Figure 8.34. On Demand Cycle Groups

85

Interacting with a System

For a quick reference of the elements that are involved in an On Demand Cycle Group, hover the node with the mouse and a

tooltip with appear with the list of cyclic elements.

8.11.2.4. Interaction with Auxiliary Views

The Graph view offersinteraction with the Auxiliary views of Sonargraph (Parser Dependenciesin and out viewsto be precise).
This interaction allows users to see the underlying parser dependencies that are represented by the edgesin the view. Auxiliary

views can be used in two ways from the Graph view:

» Edgesdlection: By selecting an edge and having the Parser Dependencies (Out) view infront, it is possibleto seethe underlying

parser dependencies for that specific edge.

1 ../apache-cassandra-1.2.6/build/classes/stress

[]../apache-cassandra-1.2.6/build/classes/main

=a External [Java]

= Properties <,1=’=f} Parser Dependencies (Out) 2 <,}==p Parser Dependencies (In) t Markers | & Console

From File [101 elements] Line From

CounterGetter,java 3% & run(Caszan..
Reader,java 40 & run(Cassan...
RangeSlicer.java 41 & run{Cassan...
IndexedRangeSlicerjava 41 & run{Caszan...

Dependency

=

=+
=+
N

Read Field
Read Field
Static Method ...
Static Method ...

To

&
&

Super
Super
bytes(String)
bytes(String)

Figure 8.35. Underlying Parser Dependenciesfor Edge

» Element selection: By selecting only one element and having the Parser Dependencies (In) or (Out) in front, it is possible to

To File

m Colun
m Colun
[J] ByteB
ByteE

see the underlying incoming or outgoing parser dependencies of the edges that come into the node or go out of it.

86

Interacting with a System

% ..fapache-cassandra-1.2.6/build/classes/stress [_1 ../apache-cassandra-1.2.6/build/classes/stress

[]../apache-cassandra-1.2.6/build/classes/main [_]./apache-cassandra-1.2.6/build/classes/main

______ l

[:].Japache-cassandraJ .2.6/build/dasses/thrift

[’_“].Japache-cassandra-1 .2.6/build/classes/thrift

= External [Java] =g External [Java]
=| Properties %ParsErDepEndenciEs (Out) %ParserDependencies (Im) &2 [:L Markers | Bl Console B Properties %ParsarDepEndeﬂcies (Out) &2 %ParserDependeﬂcies (In) [?L Markers | Bl Console
From File [75.327 elements] Line From Dependency Te ToFile From File [130.105 elements] Line From Dependency To To File
i EtendedFilter.java nia G ariginalFilter + Definition Pr... & originalFilter Extenc [J] ExtendedFilter.java nfa © originalFilter = Definition Provi.. © originalFilter Exten
[J] SelectStatement java nfa & columnFamily) = DefinitionPr.. & columnFa... CFStat [J] SelectStatement java nf/a & columnFa.. = Definition Provi.. & columnFamil... CFSta
[J] Client.java nfa & execute(Reque.. = Definition Pr.. & execute(Re.. Simple [J] Clientjava nfa & execute(Re.. = Definition Provi.. & execute(Requ... Simpl
[J] DropColumnFamilyState.. n/a & keyspace() = Definition Pr.. & keyspace() CFStat [J] DropColumnFamilyStstem... n/a & keyspace] = Definition Provi.. & keyspace() CFSta

Figure 8.36. Incoming and Outgoing Par ser Dependencies

8.11.2.5. Context Menu Interactions

Sonargraph offers navigation possibilities from the Graph view to other viewsin order to extract the greatest amount of valuable
information from the software system analysis. To see the navigation possibilities, select a single edge or an arbitrary number
of nodes and press right-click button.

I_1 ./apache-cassandra-1.2.6/build/classes/stress] ../apache-cassandra-1.2.6/build/classes/stress

Q

Delete Java Class Root Directory/Archive

D‘.J’apache-(assaﬂdraJ.Z.E,I'bui\d.-’(lasses.a’maiﬂ

Export Graph Te Image... Export Graph To Image...

New Todo... MNew Delete Refactoring...
Show In Dependencies View New Todo...
Show In Expleration View b Show In Bxploration View ...
From '../apache-cassandra-1.2.6/build/ classes/stress’ b
| To 'Bxternal [Java]' 3

= External [Java] =p External [Java]

Figure 8.37. Context Menu Interactions

8.11.2.6. Type Based Graph

When selecting a Type (e.g. classes or enums), the regular Graph view will show incoming and outgoing dependencies of the
selected elements to all kind of programming elements (fields, methods functions etc). To perform specific analysis like Java
hierarchy graphs, it is necessary to show the dependencies between Types (Java classesin this case) that aggregate the underlying
parser dependences to other programming elements than are children of types. To show a Type-based graph, select aTypein the
navigation view and select 'Show in Graph View (Type-Based).

87

Interacting with a System

5 CqIILexer‘
[J] CqlParserja [= Copy
g S:iznaif::tion'a\ sﬁ Mew Delete Refactoring...
& New Todo...

v InterNode,java

& InterNode jz 2 Show in Dependencies View

© InterNode % Show in Exploration View >
D:/Dropbox/Dropbox/t |flava/apache-cassandre
. = Show in Graph View 3
55
t !,-.: Show in Graph View (Type-Based) > @ No Additional
rnal [Java] %5 Show in Namespaces View £ InAnd Out

[Z] Showin Source View e In
ofy Out

Figure 8.38. Show Type-based Graph view

Focus: 2he In w [Transitively []Only Visible [] Only Internal - | =%y O

(9 QueryProcessor

(@ ColLexer

Figure 8.39. Type-based Graph

8.11.2.7. View Options

To change the way the content is displayed in the Exploration view, the options that are located at the right-hand side of the
view's toolbar can be used.

=7 Graph 2 = 0
nly Visible Only Internal - = |5 1y ’E) =
09 Use Antialiasing

05‘1 Show Only Dependencies of Selected Nodes
&7 Show Only Violations

Figure 8.40. View Options
Highlight Input : When activated, an orange-dashed box will be drawn for the nodes used as input to create the view.

UseAntidiasing it : When activated, the edgeswill look smoother and better defined, however, it isrecommended to deactivate
this option when running Sonargraph on low-end hardware.

* Show Only Dependencies Of Selected Nodes %! : When this option is activated, only the incoming and outgoing arcs of the
selected elements will be shown, the rest will be hidden. If there is no selection, all arcs will be shown.

* Show Only Violations# : When thisoptionisactivated, only arcscontaining architectureviolationsare shown. If all underlying
parser dependencies of the arc are violations, then the arc will remain unchanged. If the arc has both violating and non-
violating parser dependencies, it will change from yellow to red and the width will be adjusted with the weight of the violating

dependencies.

* Hide Self Arcs# : When activated, edges whose from and to endpoints are the same node will be removed from the view.

88

Interacting with a System

89

Interacting with a System

8.11.3. Treemap-Based System Exploration

The Treemap View alows users to create a 2D / 3D representation of the system to find out where the hotspots are. See also
Section 9.2.2, “Identifying I ssue Hotspots’

Leaf elements are shown as squares. Their relative size is determined by the used size source. Their color is determined by the
used color source. Optional: Their height is determined by the used height source. Parent elements show up as rectangles using
grey color shades representing the nesting depth.

5 alee

Figure 8.41. Treemap 2D View

3 €% F pppO

Figure 8.42. Treemap 3D View

Interacting with a System

Configuration of a Treemap

Sonargraph - Edit Treemap o &

Edit Treemap

Edit name, description and the treemap generation configuration.

Name Complexity
Description: | |

2D Treemap Configuration

Leaf Element

[l sourcefile (physical) -
Size Source

M Lines of Code hd
Color Source

M Average Complexity L4
Color Source Red Threshold

0 (dynamic) or a positive multiple of 2: 0

3D Treemap Configuration (Optional)
Height Source
¥ None L 4

Figure 8.43. Treemap Configuration

The generation of atreemap is controlled by the shown configuration options, which are stored in an XML file with the specified
name.

» Select the elementsto use as leafs.
» Select the size source which determines the resulting relative size of the leaf elements.
» Select the color source which determines the resulting color of the leaf elements.

» Set the red threshold. If set to '0" an even mapping of values to green, yellow and red is dynamically calculated. When set to
avalue greater than '0', that value will be the first to be represented with ared color. The red threshold must be O or greater
than 0 and amultiple of 2.

» Optional (3D): Select the height source which determines the resulting height of the leaf elements.

3D Treemap Configuration (Optional)
Height Source
M Average Complexity k4

Figure 8.44. Treemap configuration 3D

In the generated treemap leaf elements will be shown as squares making it easier to spot the relative size differences. The color
palette used for the leaf elements contains 3 green, 3 yellow and 3 red shades. For an "ascending' color source (i.e. lessis better)
adarker color represents a higher number. For a'descending' color source (i.e. higher is better) a darker color represents alower
number. Parent elements show up as rectangles using grey color shades representing the nesting depth.

Thereisaspecial color or height source named Issue Collector, which counts the leaf element’'s number of issues. The issuesto
collect can befiltered by resolution and severity.

Color Source
w Issue Collector L 4

Issue Collector Configuration
Include issues with resolution: Ignore Task None
Include issues with severity: & Error @ warning Info None

Figure 8.45. Treemap I ssue Collector

91

Interacting with a System

Interaction with Auxiliary Views

Whentheoption'Link Master Views inthetop level toolbar isenabled, selecting asquare/rectanglewill reveal the corresponding
underlying element in the master view. The Properties view will show information about the corresponding underlying element
of the selected square/rectangle.

Context Menu Interactions
The Treemap view offers the following context-menu interactions:

* New Delete Refactoring: Create a new Delete Refactoring for the selected element.

* New Move/Rename Refactoring: Create a new Move/Rename Refactoring for the selected element.

New Todo: Create a new Todo for the selected el ement.

» Export Treemap View To Image: Export the Treemap asimage.

Toolbar Interaction
Thetoolbar of the Treemap view contains interactions to change the size and view of the Treemap:

* Auto Resize 4 : When activated, sets the zoom level to fit the current window size.

* Zoomin/ Zoom out & £ : Increases or decreases the zoom level.

* Home ' : Setsthe zoom level to 1.0. Resets any rotation (3D only).

Roll (3D only) 4= = : Rolls the treemap to the l€ft or to the right.

* Rotate vertically (3D only) 4 # : Rotates the Treemap up and down.

Mouse Interactions

Scroll whedl: Use the modifier key (CMD, CTRL) of your operating system in combination with the scroll wheel anywherein
a Treemap to zoom in or out at current mouse pointer position.

Left button drag: Drag the treemap around with left mouse button and SHIFT key pressed.

Hover: Hovering over a square/rectangle will open a tooltip showing additional information. That tooltip can be focused by
clicking into it with aleft mouse click.

92

Interacting with a System

8.11.3.1. Tabular Representation of Treemap Data

Treemaps are great for visually spotting hotspots, but if you want to actually work with the information, atabular representation
isbetter. The Treemap Info' view can be opened viathe context menu and displaysinformation about the treemap's |l eaf elements
as shown in the following screenshot:

3 System |"'|:|:EI System Diff |£-l Metrics ‘ =3 Workspace|)} |ssues| Ranking ‘ L) \gnore| 5| Tasks | | Refactorings | %% (1) Cycle Groups| Ef (1) Duplicate Code Bl... I@ FileChangeHotspotx... &2 | = O

PP TEES

roperties arser Dependencies (Out] arser Dependencies (In arkers | 5= Architectural View Operations nfo for 'FileChangeHotspot.xml' =
=1 Prop: & Parser Depend (Out) | 5. Parser Dependencies (In) | [£ Mark Archi I View Opi [0} Info for 'FileChangeHotspotxml' &2]
Source file (physical) [1.337] Code Churn (365d) (Color) Lines of Code (Size) Number of Authors (365d) (Height) &
! Jjenkins/util/VirtualFileTest java .
[3% fjenkins/util/ VirtualFileTest 1.347 6
Jorg/jenkins/uificon/IconSet java
[3) sorgfjenkinsfuificon/IconSet 455 2
@-fjenkins}‘model)‘]enkms.java 3.356 "
J/hudson/security/SecurityRealm.java
[J] /hudson/security/SecurityRealmj 391 3
19 /jenkins/util/VirtualFile java 729 4
! ./hudson/util/ProcessTree java r
[3} /hudson/util/ProcessTree 1427 1
[7] .forg/jenkins/uificon/Icon java 151 4
@’.fhudsoanilePath.java 2336 &
i Jhudson/security/ACL java 240 2
@-.r'hudsonfmodelfQueue.Java 1.855 T
136 2

[J] /hudson/secu rity/TokenBasedRememberMeServices2 java

Figure 8.46. Treemap Info View

The table supports the usual interactions like sorting, filtering, export to Excel, etc.. Selecting elements in the 'Treemap Info'
view highlights those elementsin the treemap by greying al other elements:

93

Interacting with a System

o3 System | £ System ... | d#4 Metrics | 15 Workspace | | () Issues | £ Ranking | & Ignore | (= Tasks | @]l Refactori...| €3 () Cycle... | B () Dupli... | 1 FileChan... 52| = O

PRt ED

B Pmperli5|<‘}==(> Parser Dependencies (Qut) <f;> Parser Dependencies (In) | E Markers | 5= Architectural View Opelati...l &l Console I@ Info for 'FileChangeHots.., &2 = O

Source file (physical) [1.337] Code Chur; (365d) (C... Lines of Code (Size}] Mumber of Authers (365d) (Hei.. ™
[/jenkins/util/VirtualFileTest java 1,347 6
[J] ./org/jenkins/uificon/lconSet java 880 455 2
[Jjenkins/model/Jenkins.java 636 3.356 11
[J] ./hudsen/security/SecurityRealm java 391 3
[1] Jjenkins/util/VirtualFile java 729 4
[Jhudson/util/ProcessTree java 1.427 4
[# ./hudsan/FilePath.java 2336 6
[J] .forgfjenkinsfuificon/lcon.java 151 4
[J] ./hudson/security/ACL java 209 240 2
[./hudson/model/Queue java 288 1.855 7
-)] /hudson/security/ TokenBasedRememberMeServices2. java 285 136 2
@.,."hudson,."PIuginManager.java 1712 7
] Jhudsen/security/HudsonPrivateSecurityRealm java 641 3
[J] ./hudson/slaves/NedeProvisiener java 489 3

Figure 8.47. Multi-Selection in Treemap Info View

Interacting with a System

8.11.4. Tabular System Exploration

Sonargraph also offers the possibility of exploring the system in a tabular way through the Dependencies view. By selecting a
single element of the parser model, users can observe and explore itsincoming, internal and outgoing dependencies.

& T = Incoming-To [1 elements] From From scope * Number of dependencies
- > =i main 4 Aggregated =h stress =h stress 101

=i Navigation % Namespaces = Files
> B main
> =) str % Delete Java Module
b i thy ~ EditJava Module...

= # Manage Java Source/Class Root Directories/Archives...
> e Exl 2| New TODO Internal - From [1 elements] To Number of dependencies

‘1 + 1 ../apache-cassandra-1.2.6/build/classes/main = Aggregated (1. /apache-cassandra-1.2.6/build/classes/main 77900

Show In Workspace View

o Show In Workspace Dependencies View
&5 show In Exploration View

=% ShowIn Graph View

Outgoing - From [2 elements] = To To scope Number of dependencies
b =k main =+ Aggregated =h thrift i thrift 2572
> =\ main =+ Aggregated #p External [Java] & External [Java] 52815

Figure 8.48. Dependencies View

8.11.4.1. Drilldown

One of the most helpful features of the Dependencies view is its capability to alow users to drilldown from the dependencies
between the top-most elements in the model to the dependencies between the finest-grained elements in the parser model.

Incoming - To [1 elements] From From scope Number of depender
¥ =i main 4+ Aggregated B stress B stress 101
¥ (1 ../apache-cassandra-1.2.6/build/classes/main 4+ Aggregated (1 ../apache-cassandra-1.2.6/build/classes = stress 101
¥ # org.apache.cassandra.cli.transport 4+ Aggregated 8 org.apache.cassandra.stress B stress 2
¥ [1] FramedTransportFactory.java 4+ Aggregated [4] session.java B stress 2
& FramedTransportFactory.FramedTransp: 4= Special method cal & Session.Session(String[]) B stress 1
® FramedTransportFactory = New & Session.Session(String[]) = stress 1

Figure 8.49. Drilling Down Dependencies

It isimportant to note that as seen in the previousfigure, some elementsthat belong to the parser model are not taking into account
when drilling down in the Dependencies view in favor of readability. For example, packages "org", "apache", "cassandra" and
"cli" do not play one role in the drilling down other than providing a context for the element that is really makes part of the
content which is "transport”. This apply as well for other structures that allow nesting such as Namespaces and Directory paths
in C/C++ and C# parser models.

In a similar way, when the Dependencies view is requested for an element that allows nesting, the selected element will take
part in the content of the view only if it has elements of a different kind as children, otherwise, it will be omitted. Similarly, all
children of the selected element that fulfill the same condition will be displayed for this request.

8.11.4.2. Interaction with Auxiliary Views

The Dependencies view offers interaction with the Parser Dependencies (Out) auxiliary view of Sonargraph . This interaction
allows users to see the underlying parser dependencies that correspond to each entry in the incoming, internal and outgoing
dependencies tables. By selecting only one dependency and having the Parser Dependencies (Out) in front, it is possible to see
its underlying parser dependencies.

95

Interacting with a System

Incoming - To [1 elements] From Fron
> =i main 4 Aggregated =i skress B st
Internal - From [1 elements] To Num
» 1../apache-cassandra-1.2.6/build/classes/main = Aggregated (1 ../apache-cassandra-1.2.6/build/classes/main 779C
Outgoing- From [2 elements] To To s¢
> =4 main = Aggregated %¢ External [Java] &g Ex

Aggregated * thrift

(2 Markers ‘ Bl console k’:’; Parser Dependencies (Out) 52 |5 Parser Dependencies (In) = 0
From File [2,572 element: Line From Dependency To To File
[3 columnFamilyNotDefin 22 ® ColumnFamilyN¢ = Extends ® org.apache.cassandra.thrift.li [J] In\.ralidRequt-rstE:(ceptioI

[J] columnFamilyNotDefin 26 a ColumnFamilyNc = Special method ¢ & org.apache.cassandra.thrift.li [J] InvalidRequestExceptic
[J] BulkOutputFormat.javi 29 ® BulkOutputForm = Type argument it ® org.apache.cassandra.thrift.n [J] Mutation.java
[ThrifeConversion.java 31 a toThrift(Consisti = Returns 3 org.apache.cassandra.thrift.C [J] ConsistencyLevel java

Figure 8.50. Interaction with Auxiliary Views

8.11.4.3. Context Menu Interactions

Sonargraph offers navigation possibilities from the Dependencies view to other views in order to extract the greatest amount
of valuable information from the software system analysis. To see the navigation possibilities, right-click any dependency in
the view and select whether the interaction should consider the From or the To endpoint of the dependency. Depending on the
selected endpoint, navigation possibilities will show up.

Incoming-To [1 elements] From
> [A B Show In Source View |+ Aggregated [J] DatabaseDescriptor.java
0 From 'DatabaseDescriptor.java' 2 [&] Show In Source View
[91 To 'AllowAllAuthenticator.java » | €F Show In Exploration View ’
| =2 Show In Graph View ’
Internal - From [0 elements] To

Figure 8.51. Context Menu I nteractions

96

Interacting with a System

8.12. Searching Elements

For systems with a very large code base, finding programming elements can sometimes prove challenging. Sonargraph offersa
search dialog to quickly locate programming elements in the currently open software system.

To bring it up select "Edit" - "Search..." .

L ® Sonargraph - Search Programming Elements

Programming elements: @ All Excluded Issue ignoring

Search criteria: © Name Full name | Omit members Auto match trailing characters Ignore case
Search pattern: Core*lssue*

Name [4]

(& com.hello2morrow.sonargraph.core.model.element.Corelssue

{3 com.helloZmorrow.sonargraph.core.model.element.Corelssueld

(9 com.hello2Zmarrow.sonargraph.core.medel.element.CorelssueWithDescription
(& com.hello2morrow.sonargraph.core.moedel.programming.CoreDependencylssue

Y
£

) Cancel

\

Figure 8.52. Standard Search Dialog

The dialog will start revealing potential matches as soon as you start typing the element you are looking for. You can search
for simple or complete name of a programming elements and choose to omit members, search for excluded elements only, auto
match trailing characters and search ignoring case.

After selecting the correct element, the Navigation view highlights the found element.

If you want to extend the search to also find methods or member variables, deselect the option "Omit members'. If also "Full
name" is activated, filtering by packages and types is possible as shown in the following screenshot.

[] [] Sonargraph - Search Programming Elements

Programming elements: £ All Excluded Issue ignoring

Search criteria: Mame &) Full name | Omit members Auto match trailing characters [Ignore case
Search pattern: ** core.controller.system.® *finishin

Name [10]

& com.hello2morrow.sonargraph.core.controller.system. AnalyzerExtension finishinitialization{OperationResult) : void
com.hello2merrow.sonargraph.core.controller.system. ArchitectureNodeAndEdgeRepresentationDescriptorCalculator.finishinitialization() : void
com.hello2merrow.sonargraph.core.controller.system. ArchitectureRepresentationDescriptorCalculator<T extends Representation> finishinitialization() : veid
com.hello2morrow.sonargraph.core.controller.system. DashboardFunctionalExtension.finishinitialization(OperationResult) : void
com.hello2Zmorrow.sonargraph.core.controller.system. DynamicSystemProvider.finishinitialization(OperationResult) : void
com.hello2morrow.sonargraph.core.controller.system. MetricsExtension. finishinitislization{OperationResult) : void
com.hello2Zmorrow.sonargraph.core.controller.system. Representation DescriptorCalculator<T extends Representation finishinitislization() : void
com.hello2merrow.sonargraph.core.controller.system.ThresholdExtension.finishinitialization(OperationResult) : void
com.hello2merrow.sonargraph.core.controller.system.UndoRedoFunctional Extension.finishinitialization(OperationResult) : void
com.hello2merrow.sonargraph.core.controller.system.VirtualModel Extension.finishinitialization{OperationResult) : void

EEEEREREREPRE

Cancel

i :) 1

Figure 8.53. Search Dialog to L ocate Members

NOTE that you can either search in al programming elements or restrict the search to 'Excluded’ or 'Issue ignoring'. This might
be used to check if the workspace filters (Production Code filter and Issue filter) have been configured correctly.

97

Interacting with a System

8.12.1. Searching Elements in Views

Text search functionality is supported by Graph and Exploration views and most table-based views, like the Issues view,
Refactoringsview, Metricsview, etc. Thisfunctionality makesit easy to navigate aview that displaysahigh number of elements.
Matches are highlighted as shown in the following screenshot.

Gra.. 2| °
XY

ava] \{mDomainObject.java] [mSetupFactories.java] [DAddressDataSupplier.java]

o8 Syst...|d# Metr... | Wor.. | 9 () L.[® @ 1..| 3 Tasks |49 Ref.. [0).. [B O .. |% Deb...|=
Focus: # InAnd Out ¥ [Transitively [] Only Visible [_]Only Internal 3 v | :

I ®¥

™,

., S

o / — —

el — _—

pterjava [J] DataManagerlf,java [J] DomainObjectFactory.java HD EmptyDataSupplier,:
—— i y:
o /
"""" #f’zf 1 A Sonargraph - Find in Graph X
i {
= i .
J / Find: | DataManager |
;‘I Replace with:
.......................... YA I o e

ll;' -
/ [] Case sensitive Replace/Find

- . CIWhole word
[m Domaanb{edlf.java] @ [Regular expressions Replace Replace All pva [
/ h’ """""""" \\ """
< ® Close
E Properties l<}==.;> Parser Dependen o — e 1

Figure 8.54. Text Search in Views

98

Interacting with a System

8.13. Detecting Duplicate Code

Duplicate code analysis in Sonargraph is achieved through the Duplicate Blocks view and the Duplicates Source View. The
Duplicate Blocks view lists duplicate code blocks that have been found in source files of the system that have not been excluded
from analysis via afilter. For each duplicate block, all the occurrences are listed, with source file, length of the block in lines,
start line of the block, and the tolerance, i.e., a number of lines that are different to another text block.

2 Syst... | dK Metri... | 1 Work... |3 Work... |) Issu... | (3 Reso...| £¥% Cycl... | EF Dupl.. 32| T Model| (Z) Help..| = B
-

File Line range Bluckl‘ength (lines) Tolerance (ines) Resolution 2
. B¢ Duplicate code block 6 1121 = MNone
. B Duplicate code block 43 888 = None
a4 B¢ Duplicate code block 75 821 = MNone
[J] Cassandra,java 37.991-32.811 821 31
[3] Cassandra.java 38.820-35.640 a1 EY
[X Cassandraja\ra 35.656-36.088 433 17
> B Duplicate[— e | 800 = MNone
. B Duplicate & | Fxlssue... I:é 791 = MNone
. B Duplicate '@' Ignore Issue... 759 = None
B Duplicate "‘ﬂ Show In Duplicates Source View oLt = None
ﬂ_. Duplicate ! e 699 = MNone

Figure 8.55. Duplicate Blocks View

Duplicate code blocks are considered asissuesin Sonargraph as they make the maintenance of the code base more difficult. Thus,
duplicate code blocks can also be found in the form of Issues in the Issues view of Sonargraph (See Section 9.2, “Examining
Issues’). The context menu for a duplicate block (both in the Duplicate Blocks view and the Duplicates Source view) alowsto
take care of it asan issue, by either ignoring it or creating afix resolution for it.

By double-clicking (or selecting "Show In Duplicates Source View" in the context menu) on aline that represents a duplicate
code block, one jumps to the Duplicates Source View where the selected occurrenceis presented side by side along with the next
occurrence in the block so that the similarities and differences can be appreciated:

£ 2

ColumnPath.java [419-435] ~ ||| Deletion.java [396-432]

lastComparison = org.apache.thritt.TBaseHelper. compareTo(th ,
if (lastComparison != 0) {
return lastComparison;

lastComparison = Boolean.valuedf (isSetSuper_column()). comparel
if (lastComparison != 0) {
return lastComparison;

1
Af (isSetSuper_column()) {
lastComparison = org.apache.thrift.TEaseHelper.compareTo(th
if (lastComparison != 0) {
return lastComparison;

1
lastComparison = Boolean.valuedf(isSetColumn()). compareTo(type
if (lastComparison != 0) {

return lastComparison;

1
Af (isSetColumn()) {
lastComparison = org.apache.thrift.TEaseHelper. compareTo(th
if (lastComparison != 0) {
return lastComparison;

return 0;

}

public _Fields fieldForId(int fieldId) {
return _Fields.findByThriftId{fieldId);

public wvoid read{org.apache.thrift.protocol. TProtocol iprot) t
org.apache. thrift. protocol.TField field;
iprot.readstructBegin();

?hfle (true)

field = iprot.readFieldBegin();
if (field.type == org.apache.thrift.protocol. TType. STOP) {
break;

1
switch (field.id) {
case 3: // COLUMN_FAMILY

lastComparison = org.apache.thritt. TEaseHelper. compareTo(th ,
if (lastComparison != 0) {
return TastComparison;

lastComparison = Boolean.valueOf(isSetSuper_column()).comparel
if (lastComparison != 0) {
return lastComparison;

1
Af (isSetSuper_column()) {
lastComparison = org.apache.thrift.TEaseHelper. compareTo(th
if (lastComparison != 0) {
return lastComparison;

lastComparison = Boolean.valueOf(isSetPredicate()).compareTo(t
if (lastComparison != 0) {
return lastComparison;

1
Af (isSetPredicate()) {
lastComparison = org.apache.thrift.TEaseHelper. compareTo(th
if (lastComparison != 0) {
return lastComparison;

return 0;

}

public _Fields fieldForId{imt fieldId) {
return _Fields.findByThriftId({fieldId);

public void read(org.apache.thrift.protocol. TProtocol iprot) t
org.apache.thrift. protocol.TField field;
iprot.readStructBegin();

?hfle (true)

field = iprot.readFieldBegin();
if (field.type == org.apache.thrift.protocol. TType.STOP) {
break;

}
switch (field.id) {
case 1: // TIMESTAMP

Figure 8.56. Duplicates Source View

Interacting with a System

Normally, duplicate code blocks are computed automatically on every software system open or refresh via the duplicate code
analyzer.

8.13.1. Configuration of Duplicate Code Blocks Computation

The settings for how duplicates are located can be adjusted at "System” — "Configure..." — "Duplicate Code" . Usualy, the
default settings are acceptable. In order to understand how the configuration parameters work, it is helpful to know how the
algorithm works. The main processis as follows:

* First, candidates for start lines of duplicate code blocks are determined. For this, all lines of all sourcefiles are read.

« If alineistoo short (shorter than the number given in the configuration parameter "Minimal Line Length"), it is discarded.
This allows to save memory, since all other lines might have to be stored if there occur copies of them.

» Each non-discarded lineis space-normalized (i.e., sequences of white space characters are replaced by asingle space character;
and words that are not separated by whitespace characters are separated by a single space character). Thisnormalization allows
to detect almost-copied blocks that only differ from each other by the whitespace in them.

Lines that occur too often (more often than the number given in the configuration parameter "Maximal Number of Copies')
are discarded. Thisfeatureis used for excluding e.g. preambles that start every file from duplicate analysis.

« For any pair of identical linesthat result from the steps above, it is checked if they are the start of a duplicate code block. Only
blocks that have a certain minimum length are reported (configuration parameter "Minimal Block Length").

» Two other parameters alow for a certain "sack" in the comparison so that not only completely identical blocks are found,
but also blocks that differ a bit.

1. The configuration parameter "Maximal Tolerance per Edit" works like this: When two text blocks are compared, the
comparison agorithm allows some differences, or "edits'. Each single edit may only add, remove or change a number of
lines (the one given by this parameter) in order to make the blocks identical. Note that behind the edited region, the two
blocks must continue identically for at least one line.

2. The configuration parameter "Maximal Relative Tolerance Percentage" works like this: When comparing two blocks, the
number of edited linesin relation to the number of matched lines may never be larger than this percentage.

The total number of linesin all the edits that occur in ablock comparison is the "tolerance” of the comparison. The larger it
is, the more lines need to be changed to consider the two blocks to be copies from one another.

» The agorithm up to this point only identifies pairs of start lines of duplicated blocks. The last step in the identification of
duplicated blocksisthe aggregation: Not only are code blocks considered to be duplicates of one another when they form result
pairs in the algorithm above, but also when they are indirectly copies of one another. E.g., consider two already identified
pairs of duplicated blocks A,B on the one hand and C,D on the other hand, where the start of B equals the start of C; then A,
B, C and D are all considered to be duplicates of the same code block. This aggregation is done until no more blocks can be
aggregated. The tolerance specified for a code block in the view isthe minimal tolerance that occurred during the comparison
of the block with other code.

100

Interacting with a System

8.14. Examining the Source Code

Anywhere in the Sonargraph workbench you have the option of double clicking (or right clicking + " Show In Source View") on
an element to show the source code of the clicked element if that is available.

&IMetrics 1 Workspace D&.Workspace... o Issues (I} | (5 Resclutions gCycleGroups @ Duplicate B... @ OneToOne... 22| & 8

[Serializable] -

public class OneToOne: ToOne

{
private bool constrained; ‘

m

private ForeignKeyDirection foreignKey Type
private [KeyValue identifier,

private string propertyMame;

private string entityMame;

A <summary>

I

I <fsummary>

/{/ =param name="table"> </param>

{/{{ <pararm name="owner"> </param>

public OneToOne(Table table, PersistentClass owner)
: base(table)

identifier = owner.Key;

entityMame = owner.EntityMName;
1
] }

<-:==';> Parser Dependencies (Out] 2 <-:==';> Parser Dependencies (In) [& Markers | &l Console = O
From File [61 elements] Line From Dependency To To File it
#] OneToOne.cs 11 & OneToOne =» Has attribute (& System SerializableAttribute @ mscorlib |E‘
#] OneToOne.cs 12 & OneToOne =+ Inherits from {3 NHibernate.Mapping.TeOne %] ToOne.cs M
#] OneToOnecs 15 ¢ foreignKeyTy.. =* Field type {3 MHibernate TypeForeignKe..] ForeignKeyDirection.cs
#] OneToOnecs 16 @ identifier =+ Field type € NHibernate.MappingIKeyVa... @] IKeyValue.cs
#] OneToOnecs 25 < OneToOne(N.. =* Parametertype @& MNHibernate Mapping.Table & Tablecs
#] OneToOne.cs 25 < OneToOne(N.. =* Parametertype @& MNHibernate Mapping.Persist.. ¢ PersistentClass.cs
#] OneToOne.cs 28 & OneToOne(M.. =* Write access @ MHibernate.Mapping.OneT... %] OneToOne.cs
#] OneToOnecs 28 < OneToOne(M.. =* Read access % MHibernate.Mapping.Persist... | PersistentClass.cs
#] OneToOnecs 29 % OneToOneg(N.. =* Write access @ MHibernate.Mapping.OneT... #] OneToOnecs
#] OneToOnecs 29 < OneTeOne(N.. =* Read access % MHibernate.Mapping.Persist.. £ PersistentClass.cs -

Figure 8.57. Source View

"Find Text" feature can beinvoked with Ctrl-F (Command + F on Mac). If morethan one occurrence of the search stringisfound,
press F3 to jump to the next search result. In the Script view (see Chapter 16, Extending the Satic Analysis) and Architecture
File view the search feature offers also "replace” and "replace all" to ease content edition.

Regular expressions can be used for advanced match and replace use cases. Line-breaks in the replacement text can be specified
with \R. The implementation uses standard Javaregular expression APl and also allows using capturing groups. More details can
be found at the JavaDoc of java.util.regex.Pattern and JavaDoc of Capturing Groups.

Asyou move around the mouse cursor through the source code, you can see that some elements (names of fields, methods, types
and so forth) are being underlined. By pressing Ctrl (Command on Mac) and clicking on this'hyper linked' el ements you navigate
to the definition of the element which might be defined in the same source file or another.

101

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#cg

Interacting with a System

5 System & Metrics | 8 Workspace | |, lssues & Ignore | = Tasks |41 Refactorings | [E] DomainObj... 2 | £% Cycle Grou... | Bl Duplicate C...| i

return true;

¥
public static Domainobjectwithpatasupplier findeyobject] A Sonargraph - Find in Source X

assert objectid != null; Find: |

assert objectId instanceof pDomainobjectId; ' DataManager

If datamanager = getDataManager (((Domainob '
assert dataManager !'= null;

return getDomainobject(dataMmanager.findByobjectId(ob]

} iti
| Case sensitive N _ o
Find Replace/Find

[Jwhole word

* Returns the registered persistence manager for the giv| - -
* interface. [Regular expressions b R
“ @param datasupplierInterface
* @return ~
@ Close

¥ . (
protected static DataManagerIf getDataManager(Class dat|

return DataManagerFactory.getIEstance().getDataManag\:. LI TSNS R T T G GRS WP T TS IO T Ay

% Creates an array of domain objects for the given persistence suppliers.
The domain objects that can not be found in the cache are created.

Figure 8.58. Hyperlinking and Find Text Featuresin Source View

8.14.1. Interaction with Auxiliary Views

The Source view offersinteraction with the Auxiliary views: Parser Dependencies (Out), Parser Dependencies (In) and Markers:
Below the main source viewer, three tabs provide further information about the currently loaded source file:

» The Parser Dependencies (Out) tab lists all dependencies that depart from the source file. Clicking on a dependency jumpsto
the respective linein the upper pane of the source view.

» The Parser Dependencies (In) tab lists all dependencies that arrive into the source file. Clicking on a dependency opens up
another instance of the Source view showing the file where the selected incoming dependency belongs to.

» The Markers tab lists all the markers of the source file. Markers are graphic indicators of issues in the source file under
inspection. It also shows user defined tasks (See Section 9.4, “Defining Fix and TODO Tasks’) and refactorings that pertain
to thefile or elementsin the file. Clicking on a marker jumps to the corresponding line in the upper pane of the source view.

102

Interacting with a System

8.15. Examining Metrics Results

Sonargraph calculates metrics on different abstraction levels and displays them in the Metrics view. Metrics are calculated on
different levels. Select the level in the combo box at the top left of the view and select the metric in the shown table. The list
of metric values is then displayed in the first tab on the right. The scope (i.e. for the whole system or a single module) can be
selected viathe combo box at the top right of the view. The complete set of metric values can be exported via the context menu.
Some basic statistics like average, standard deviation, median, minimum and maximum values are displayed below the list of
values on theright.

I-‘f\‘j System \-.5* Metrics B2 | 12 Workspace | ;' () Issues| &9 (1) Ignore| (2 (1) Tasks| % Refactorings | %% Cycle Groups =2 Duplicate Code Blocks =
Level: | Component ~ |Scope: | Sonargraph ~
Metric [22] Categories Provider Min Max Sg Values L Histogram r__.,l Pie Chart
™ Mumber of Violations (Component... Architecture Core Element [5.203] Value ™
™ Mumber of Violations (Parser Depe.. Architecture Core] SoftwareSystemController java &0
™ Component Rank (Module) Code Analysis Core [J] NamedElement java 51
M Component Rank (System) Code Analysis Core [J] DependencyCreator.java 49
™ Fan In Maintainability Level (Modu... Cohesion/Coupling Core 7] JavaDependencyType java 47
i M Physical cohesion Cohesion/Coupling Core [7] MakefileReader,java 37
M Physical coupling Cohesion/Coupling Core [J] LanguageProviderjava 16
M Depends Upon (Module) Cohesion/Coupling,)... Core [J] LanguageProviderAccessorjava 15
M Depends Upon (System) Cohesion/Coupling, J... Core 7] IMakefileContextjava 15
M Used From (Module) Cohesion/Coupling, J... Core m Function.java 34
™ Used From (System) Cohesion/Coupling,). Core 0] JavaDependency.java 29
™ Fan In Visibility (Module) Cohesion/Coupling, ... Core 0] Viewld.java 29
™ Fan In Visibility (System) Cohesion/Coupling, ... Core o] CoreFactoryVisitor java 28
™ Fan Out Visibility (Medule) Cohesion/Coupling, ... Core] ElementAccess,java 28
™ Fan Out Visibility (Systermn) Cohesion/Coupling, ... Core E{AnalyzerExtension.java 27
™ Instability (Module) Robert C. Martin Core m CppDependencyType,java 26
M Instability (System) Robert C. Martin Core [J] WorkbenchRegistry.java 25
M MNumber of Incoming Dependencie.. Robert C. Martin Core 77 lanalyzerController java 24
M MNumber of Incoming Dependencie.. Robert C. Martin Core [J] SoftwareSystemTransactionalCommand,java 24
M Number of Outgoing Dependencie.. Robert C. Martin Core [J] JavaDependencyContext.java 24
M Number of Outgoing Dependencie.. Robert C. Martin Core (7] ICppVisitor,java 3,
M Mumber of Types (Module) Size Core (S - ==
Arithmetic average: 2,27 Min. value: 0
Standard deviation: 3,42 Max. value: 60
Median: 1,00

Figure8.59. Metrics View

The histogram for the selected metric and scope is shown in the second tab on the right. The chart can be exported as an image
viathe context menu. The pie chart is only available for metrics with a defined threshold.

103

Interacting with a System

.:Qj System %‘1 Metrics &3 l '[:% Workspace| o [lssues| & (1) Ignore| [ER)] Task;| & Refactorings| ¥ Cycle Groups| B Duplicate Code Blocks

Level: | Component

Metric [22]

™M Component Rank (Medule)
™M Component Rank (System)

™ Physical cohesion

M Physical coupling

™ Depends Upon (Module)
™ Depends Upon (Systern)
M Used From (Module)

M Used From (System)

M Fan In Visibility (Module)
M Fan In Visibility (System)
™ Fan Out Visibility (Module)
M Fan Qut Visibility (System)
M Instability (Module)

M Instability (System)

M Murmber of Types (Module)

M Number of Violations (Compo..
M Number of Violations (Parser ...

™ Fan In Maintainability Level (M...

M Murmber of Incoming Depende...
M Murmber of Incoming Depende...
M Murmnber of Outgoing Depende...
M Murmnber of Outgoing Depende...

Categories
Architecture
Architecture

Code Analysis
Code Analysis
Cohesion/Coupling
Cohesion/Coupling
Cohesion/Coupling
Cohesion/Couplin...
Cohesion/Couplin...
Cohesion/Couplin...
Cohesion/Couplin...
Cohesion/Couplin...
Cohesion/Couplin...
Cohesion/Couplin...
Cohesion/Couplin...
Robert C. Martin
Robert C. Martin
Robert C. Martin
Robert C. Martin
Robert C. Martin
Robert C. Martin

Size

8
~ Scope: | Sonargraph ~
Provider Min Max %g Values hL Histograml & Pie Char‘t|
Core 2.800
Core 5,600
Core
Core 2.400
Core ° 2.200
e £2.000
Core 2
Core £1.800
w
Core t 1.600
c (1)
ore E1.400
Core =
c w 1.200
ore o
Core & 1.000
c t
ore 800
Core 2 600
Core
Core 400 Range 12 - 41: 1525 Elements
Core 200
Core 0 —— -
Core 0 5 10 15 20 25 30 35 40 45 S50 55 60
Core Physical cohesion (Component)
Core
Arithmetic average: 2,27 Min. value: 0
Standard deviation: 3,42 Max. value: 60
Median: 1,00

Figure 8.60. Metrics Histogram

If you areinterested in all metrics of a specific element, the Element Metrics view can be opened via the main menu "Window"

- "Show View" — Element Metrics.

The metric thresholds configuration allows to define threshold values for those predefined metrics in order to have an accurate

Figure 8.61. Element Metrics View

control of the behavior of your code base asit evolves.

= Navigati...l“?ﬂ Namesp... | s Files| ~— O || System |e&1 Metrics[ﬁ Element Metrics 2 l 1+ Workspace | Issues| B Duplicate Code Bloc..| = O
= = &2 AlarmClock
= Appllcat_lon Metric [45] Categories Provider Min Max Value 2
= Foundation @ Number of Ignored Cyclic Packages Cycle Java 0
~ =i Model
« 03 /AlarmClock/Model/src/main/java @ Number of Package Cycle Groups Cycle Java 1
v 8 comh2m.alarmmodel @ Relative Cyclicity (Components) Cycle Core 28,57
> @ AlarmClockjava m # Relative Cyclicity (Packages) Cycle Java 3333
= View @ ACD John Lakos Core 00 750 2,86
G External [Javal @ CCD John Lakos Care 20
@ Highest ACD John Lakos Care 2,33
@ NCCD John Lakos Caore 1,18
@ RACD John Lakos Core 40,82
Byte Code Instructions Size Java 478
@ Code Comment Lines Size Core 0
@ Comment Lines Size Caore 0
& linmar of Cada Cizn T Ara 100

104

Interacting with a System

% Automated Scripts Thresholds
Bl Duplicate Code

&) Threshaolds

Metric [3 elements] Level Lower Upper |
ACD Systern 0,0 100,0
ACD Madule 0,0 65,0
Lines of Code Source File 0 1.000 h‘
| Sonargraph - Add New Thresh.. — &

Metric Level:

Java Package v

Available Metrics:

Mumber of Types (Module) W
Lower Threshold:
0
Upper Threshold:
30

Figure 8.62. Metric Thresholds Configuration

Thresholds can a so be defined, edited or deleted via context menu by right clicking on ametric in the Metrics or Element Metrics
view.

Related topics:
» Moreinformation about the built-in metrics can be found in Chapter 21, Metric Definitions.

» Custom metrics can be defined using Groovy Scripts. More information is contained in Chapter 16, Extending the Static
Analysis.

105

Interacting with a System

8.16. Analyzing C++ Include Dependencies

The Include Dependency view is available via the context menu of a C++ source file, as shown in the following screenshot. It
allows analyzing the dependencies to header files.

A Sonargraph Generic
File Edit Workspace Issues Window Help
£ | <& = Mavigation Limit: 50

= Navigation ©= Files Y 7 T 0| &8 Generic | 15% Workspace | | Issues (1) ":IncludeDependencies 2 | &l Re
4 =, Generic
a] Jsre
4] bed
4 ghcd
y @ gbed.h @ gprolog.h ———= @ gcommon.h =7
5 @ gbed.cpp @ ghcd.cpp
> @ swap.cpp| ¢ Show In Exploration View
4 IQEdedEf =" Show In Graph View [ng stdlib.h
> gbcddef.h "
£ collects Sho%ln Include Graph View

. O kernel tz] Show In Seurce View
» [path

» (] regex

. [string

[limits.h

Figure 8.63. C++ Include Dependency View

106

Interacting with a System

8.17. Creating a Report

Select "File" - "Exportto HTML/XML Report..." to generate an HTML or XML report containing all metric values, issues and
resolutions (TODO, Ignore, Fix). Y ou can select the element level for which the metric values are exported.

The corresponding XML schema can be found in <sonargraph-inst>/report.
TIP

The XML output is normalized to minimize the size of the file. To get amore expressive report, set the log level for the
ReportExtension to "debug" in <sonargraph-inst>/logback.xml.

NOTE

The report files can easily get several MBs big and take a few seconds to generate. Start with the default configuration
first to check the size and then increase the number of levels and the number of values per metric.

The HTML report contains tables that can be filtered, e.g. the table of "Unresolved Issues’. The tables provide the following
functionality:

» Thetable header allowsto filter for rows containing the specified text as shown in the screenshot. Paging will be enabled for
tables containing more than 25 rows. Y ou can select to show 25, 50 rows per page or al on one page by using the combo
box on theright.

» Thetable header providesinfo about the number of items shown and the current page.

» The matching terms are highlighted as shown in the screenshot.

» Several filter conditions can be connected vialogical OR (||) and logical AND (& &).

» Table cells containing numeric values can also be filtered for value ranges as shown in the screenshot.

» Rows can be sorted by clicking on the table column header.

« All filters can be cleared by clicking on the right-most icon.

A short help function is available by clicking on the question mark on the right.

Modules:

Root Directories: 1-5/ 5 4 4 Page 1~ of L p Directories/Page: 25 v 2 /7

B

build &8& groowvy >5 ‘

Module

com.hello2morrow.sonargraph.build ../com.hello2marrow.sonargraph.build/src/main/groovy 8
com.hello2morrow.sonargraph.build.client ../com.hello2marrow.sonargraph.build.client/src/main/groovy 33
com.hello2Zmorrow.sonargraph.build.client ..fcom.helloZmorrow.sonargraph.build.client/src/test/groovy 7
com.hello2Zmorrow.sonargraph.build.client.gradle ../com.hello2merrow.sonargraph.build.client.gradle/src/main/groovy 8
com.hello2morrow.sonargraph.build.java ../com.hello2morrow.sonargraph.build.java/src/test/groovy 9

Figure 8.64. Table Filter Optionsin HTML Report

107

Chapter 9. Handling Detected Issues

This chapter explains the purpose of virtual models and how they can be used to define standard resolutions (Ignore, Fix) for
detected issues. It is aso described which views can be used to get a summary of all issues, see how Sonargraph has prioritized
them and how to visualize hotspots.

The following views provide relevant information: Issues, Ranking, Ignore and Tasks view.

9.1. Using Virtual Models for Resolutions

Virtual modelsin Sonargraph are resol utions containers used to try different solutions for issuesin the system without distorting
its original status. Sonargraph ships with two virtual models already created: "Parser" and "Modifiable".

» Parser isthe model that is generated by the language specific parsers without structural changes or any resolutions for created
issues.

* Modifiable.vm is the (initially empty) model ready to save any refactorings or created resolutions by the user. It naturally
depends on the Parser model.

Virtual models management section is located on the right-hand side of the main toolbar. Using the green plus symbol you can
create as many different virtual models as you need to try out different resolutions with your software systemand you will always
have your original model available in the "Parser" model.

Current Model: 9. Modifiable.vm |
®m Parser = 7
Modifiable.vm

Figure9.1. Virtual Models

The "Modifiable" model is selected by default so you can start creating resolutions (fixes, ignores or TODO's) right away. On
the contrary, the "Parser" model, represents the "facts* model, determined by the parser, which means it can not be modified as
it represents the actual state of things on your software system.

NOTE

A virtual model might affect metric values since the structure of the system can be changed with refactorings and issues
can be transformed into tasks or ignored. So, depending on what you want you should select the corresponding virtual
model. If you want to see the unaltered metrics and structure you should select the 'Parser' virtual model (or an 'empty’
virtual model - without any refactorings or resolutions). In the user interface you can either select the virtual model in
theright-hand side drop down menu in the upper toolbar or in the Filesview on the left hand side underneath the Models
folder with the corresponding context menu entry.

108

Handling Detected I ssues

9.2. Examining Issues

Sonargraph offers views to support several use cases related to issues:

» Get an overview of al issues: The Issues view shows all detected issues, offers advanced filter options and aggregates issue
countsinto the physical structure (system, modules, roots, files), so that hotspots can be detected easily.

» Get a prioritized list of issues related to the source code (i.e. no issues related to the Sonargraph system are shown): The
Ranking view shows the computed score for each issue. The score is based on the issue's urgency and importance. See section
Section 9.2.1, “ldentifying the Most Relevant Issuesto Fix” for details.

» Get alist of ignored issues. Some detected issue might not be are relevant, e.g. a method violates consists of more lines than
the defined threshold but splitting it up would make the algorithm more difficult to understand. Those issues can be ignored
(i.e. they are no longer shown in the Issues view) and the Ignore view list all these ignore definitions.

» Get alist of defined tasks: Tasks can be defined for issues that must be fixed, including implementation suggestions for the
developer. Theissues are also no longer shown in the Issues view and the tasks can be tracked in the Tasks view.

Thelssuesview displaysinformation about the found issues such astheir severity, category, affected el ements and the associated
provider. The upper half of the view displays the affected elements in a tree, following the file structure of the code and the
Sonargraph system files. The information about the number of affected elements, and numbers of issues of error, warning and
info severity isaggregated for each element and its children, making it easier to identify hotspots, i.e. moduleswith ahigh number
of detected issues. The list of issues is shown in the lower part for the selected elements and their children. If you want to see
all issues of the system, either click on the white space below the tree or select the System and Installation root nodes. If you
are only interested in issues for specific modules, select them in the tree and only issues related to code in those modules are
shown in the table.

The presentation mode (flat, hierarchical, mixed) of the elements tree can be switched via the view options menu in the top-
right corner.

NOTE

The numbers of issues and affected elements on a parent node are not necessarily the sums of the values of its children.
Thisiscaused on the one hand by "composite” issues, e.g. "Duplicate Code Block™" and "Cycle Group" that affect several
elements, but are only counted once for common parents of the affected elements. And on the other hand, the parent
element itself might also beinvolved in issues.

109

Handling Detected I ssues

2 System | i Metrics | 15 Workspace |) () Issues| & Ignore| (3 Tasks | @ Refactorings| £% (1) Cycle Groups | BB (1) Duplicate Code Blocks| %5 Debug - = = = 0O
Element Affected Elements Error Warning Info
v & AlarmClock 23 10 8 2

v = Modules 23 9 7 2
v B View 8 3 2 1

v 3 /AlarmClock/View/src/main/java 7 3 2 0

~ 3 com.h2m.alarm.presentation 7 3 2 0

f## console 2 1 2 0

v {3 file 2 1 2 0

[I] AlarmToFile java 1 0 1 0

[I] AlarmHandlerjava 2 2 0 0

w =i Model 5 4 1 0
EI JSAlarmClock/Medel/src/main/java 5 4 1 0

=i, Foundation 7 1 5 0

w =i, Application 3 4 0 1
3 /Application/src/main/java 2 4 0 0

5 Files 2 1 1 0
g Installation 0 0 0 0

Issue [5] Description Severity Category Element To Element Provider
@ Critical Namespace Cyc... System 'AlarmClock’ cont... @ Error Cycle Group £ [Critical] Java Package cycle.. n/a Core

4 Architecture Violation [Implements] 'View' cann... @ Error Architecture Vi, (& AlarmHandler & |0bserver .fLayers.arc
4 Architecture Violation [Parameter] "View' cannot... @ Errer Architecture Vi... & handleEvent(Observable 5tr.. (3 Observable fLayers.arc
@ Component Cycle Group Java Module 'View' contai... & War.. Cycle Group %% Component cycle group 1.1 n/a Core

® Namespace Cycle Group Java Module 'View' contai... & War.. Cycle Group 28 Java Package cyclegroup 1.1 n/a Core

Figure9.2. IssuesView

Context menu and double click interactions give you options to examine the issue in a more suitable view. They also allow to
"ignore" or "fix" theissue by either ignoring it or creating afix request for someonein the development team. These requests are
called "Resolutions" in Sonargraph and are covered in depth in the following sections.

In case of having too many issues, you can apply filters using the "Filter..." view option on the upper-right corner where several
criteria are offered to reduce the amount of visible issues:

2o Filter...
& Reset To 'Default' (Show All)

Figure 9.3. Filter Issues
A filtered view isindicated by ayellow background.
TIP

A text filter can also be applied to the table displaying the issues. See Section 8.1.4, “Tables’ for details.

You can aso focus on issues for certain code regions by defining an Issue Filter as described in Section 8.8.1, “Definition of
Filters, Modules and Root Directories’.

110

Handling Detected I ssues

9.2.1. Identifying the Most Relevant Issues to Fix

For existing systems Sonargraph might produce ahuge number of issues. Thisisexpected, if no static code anaysis has been used
before, so don't be discouraged! Now, what issues should be fixed first? We have implemented an algorithm in Sonargraph that
borrows the main idea from "The Eisenhower Method"?, that a problem has importance and urgency dimensions. The algorithm
computes numbers for both and treats them as coordinates. The resulting score is defined as the distance from origin.

The goal of this algorithm is identifying those issues were fixes provide the most benefit. There is not much benefit in fixing
issues in code that has not been changed during the last year. On the other hand, recently introduced issues are usually easier
to fix since the context is till present in the developer's head. Also, issues that have a great impact like huge cycle groups that
involve frequently changed code and that could be resolved by eliminating a small humber of dependencies provide a higher
benefit than refactoring a slightly too complex method.

Theimportance of anissueiscomputed including theissue category (e.g. architecture violation, threshold violation), severity and
impact (e.g. the lines of code involved in a cycle group, the number of involved linesin a duplicate code block) as parameters.

The urgency is computed by including data from the source control management (SCM) to generate aboost for issuesinvolving
files that have been changed frequently and from the System Diff (see Chapter 14, Examining Changes) to generate a boost for
new or worsened issues. Additionally, the number of references to break up acycle group isincluded in the urgency calculation
to generate aboost for cycle groupsthat are now still easy to fix, also known as'low-hanging fruit'. Similarly, the 'tolerance’ (lines
being different) in duplicate code blocks is included to generate a boost for duplicate code blocks where it is now still easy to
extract common logic, i.e. duplicate code blocks with alow tolerance.

NOTE

Treat the computed scores and the ranking as hints! Let us know if you notice that a certain type of issue is constantly
ranked either too high or too low, or if you require further configuration options.

Details of the algorithm and individual computed values are displayed in the Properties view for a selected issue (see screenshot
below). Large cycle groups usually get a very high score, since their impact on the system is high and it is likely that any of the
involved sources have been modified. The selected duplicate code block shows ahigh "Urgency Ease of Fix" asboth occurrences
areidentical (O reported tolerance) and is therefore alow-hanging fruit.

1 The Eisenhower Method , https://en.wikipedia.org/wiki/Time_management#The Eisenhower Method

111

https://en.wikipedia.org/wiki/Time_management#The_Eisenhower_Method

Handling Detected I ssues

&) System | £ Syste... .I.l-lMetrics % Worksp... | 5 () lss...

Iszue [67]

@ Threshold Violation

@ Component Cycle Group
@ Duplicate Code Block

@ Component Cycle Group
@ Component Cycle Group
Component Cycle Group
@ Component Cycle Group
@ Component Cycle Group
Component Cycle Group
@ Component Cycle Group

£

Description

NCCD = 64,72 (allowed range: 0,00 to 10,00)

Java Medule 'cli’ contains 3 cyclic components

2 occurrences with 108 line(s) found in 2 file(s)

Java Medule ‘jenkins-core' contains 2 cyclic components
Java Module ‘jenkins-core’ contains 2 cyclic components
Java Medule ‘jenkins-core’ contains 2 cyclic components
Java Medule ‘jenkins-core' contains 2 cyclic components
Java Module ‘jenkins-core' contains 2 cyclic components
Java Medule ‘jenkins-core’ contains 2 cyclic components

Java Medule ‘jenkins-core’ contains 2 cyclic compeonents

[:=] Ranking 22 | € Ignore

(% Tasks| 5 Refact... | €% (1) Cy... | EF () Du... | %% Debug

Score

25,91
24,22
17,60
16,41
16,41
16,28
16,23
16,13
16,12
16,09

Urgency

1,00
3,29
12,49
3,63
3,63
3,00
27
2,02
2,00
1,67

B Properties % <}==(> Parser Dependencies (Out) <}==f> Parser Dependencies (In) [3_\ Markers | &= Architectural View Operations

{iz] Rank for Duplicate Code Block

Importance Severity

25,89
24,00
12,40
16,00
16,00
16,00
16,00
16,00
16,00
16,00

lmpcrtance 12,40 = Importance Severity [4,00] * Importance Issue Type [1,00] * Importance lmpact [3,10]
Impertance Impact 3,10 =1 + (Tetal Duplicate Line Count [210] / 100)

Importance Issue Category 1,00

Importance Severity 4,00

Mame Rank for Duplicate Code Block

Score 17,60 = sqrt((importance [12,40])% + (urgency [12,497%)

Urgency 12,49 = Urgency Ease of Fix [3,00] * Urgency System Diff [1,00] * Urgency Scm [2,50]

Urgency Ease Of Fix 5,00 = 5- (5% Overall Tolerance Lines [0] / (Total Duplicate Lines [210] / 100))

Urgency Overall Scm 2,50 = (Urgency Scm Data 30 Days [4,04] + Urgency Scm Data 90 Days [2,01] + Urgency 5cm Data 365 Days [1,44]) / 3
Urgency S5cm 30 Days 4,04 = 1+ Authors [1] + Changes [2] + Churn [4] / 100; aggregated from 2 involved source files
Urgency S5cm 365 Days 144 = 1 + (Authors [2] + Changes [3] + Churn [3] / 100) / 16; aggregated from 2 involved source files
Urgency S5cm 90 Days 2,01 = 1+ (Authors [1] + Changes [3] + Churn [5] £ 100) / 4 aggregated from 2 involved source files
Urgency System Diff 1,00

Figure 9.4. Ranking of |ssues

Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning

112

Handling Detected Issues

9.2.2. Identifying Issue Hotspots

Since release 10.4.1 Sonargraph offers treemaps for visualizing the composition of a system with respect to its source files or
components. Treemapsallow the easy identification of hotspotsas shown in the screenshot below, whereby each fileisrepresented
by asguare, the size of the square represents the size of the file. Green squares do not have issues, yellow have some, red squares
contain many issues.

e | 3| Tasks | #] Refactorings | % () Cycle Groups | BB (1) Duplicate Code Blocks | [|

Figure 9.5. Issue Hotspots Treemap Visualization

Parent elements are represented by rectangles using grey color shades to indicate the nesting depth. The representation of |eaf
elements as squares makes it easy to spot relative size differences.

A new treemap configuration can be created via application menu "File" - "New" - "Other" - "New Treemap..." or viathe
context menu of the "Treemap' folder on the Files view. The configuration of the treemap is currently focused on the type of leaf
element (‘Component' or 'Source File), metric represented by square size (‘Lines of Code' or 'Source Element Count') and the
resolution type (‘'Nong', 'Ignore, 'Task'). The red threshold configures the value that will be the first to be represented with ared
color. If set to'0" an even mapping of valuesto green, yellow and red is dynamically calculated.

TIP

When the option 'Link Master Views' in the top level toolbar is enabled, selecting a square/rectangle will revea the
corresponding underlying element in the master view.

113

Handling Detected I ssues

TIP

The Propertiesview will show information about the corresponding underlying element of the selected square/rectangle.
TIP

Hovering over a square/rectangle will open atooltip showing additional information. That tooltip can be focused by
clicking into it with aleft mouse click.

NOTE
Currently, no issues affecting elements above source file or component level are represented.

More functionality like filtering for specific issue types, categories, etc. will follow in upcoming releases.

See also Section 8.11.3, “ Treemap-Based System Exploration” for more details about the Treemap functionality.

114

Handling Detected I ssues

9.3. Ignoring Issues

The upper section of the Ignore view provides information about the type of issue the resolution resolves, the assigned priority
for it, the assignee and an optional comment put in by the creator of the resolution among other data. The lower section displays
the affected elements of the issues that match the selected "Ignore" resolution.

I—‘@ System |-5! Metrics |E?# Workspace | o (!} Issues [& Ignore 52 l [Z (1) Tasks | & Ftefactorings| ¥ cycle Gmups| |j| Duplicate Code Blocks ~ =0
Ignore Definition [115] Description Information Created Matched
& Ignore Cuplicate Code Block 1)26/16 1
= lgnore Duplicate Code Block 126/16 1
& Ignore Duplicate Code Block 1/26/186 1
& Ignore Cuplicate Code Block 1)26/16 1
& Ignore Duplicate Code Block 112616 1
& Ignore Duplicate Code Block 1/26/186 1
& Ignore Cuplicate Code Block 1)26/16 1
) Ignore Duplicate Code Block 112616 1
& Ignore Duplicate Code Block 1/26/186 1
& Ignore Duplicate Code Block 112616 1
A lanara Nuinlicrata Cada Rlacl L= LN =3 1
Matching Element Type [1] Element Element To |ssue Description
& Element |ﬂ Duplicate code block 52 nfa 2 occurrences with 53 line(s) found in 2 file(s)

Figure 9.6. Ignore View

As mentioned previously, you can also focus the analysis on certain code regions by defining an Issue Filter as described in
Section 8.8.1, “Definition of Filters, Modules and Root Directories’.

9.4. Defining Fix and TODO Tasks

"Fix" resolutions represent a proposed solution to one or many issues in the application. They are usually created to make sure
that the related issues get eventually dealt with by someone in the devel opment team.

Sonargraph allowsto define specific "TODQ" tasks for the different system elements. Those tasks can be assigned to a member
of the development team to take care of. To define a TODO task, right click on the element and select "New TODQ" in the
context menu.

The"Fix" and "TODQ" tasks are listed in the Tasks view.

9.5. Editing Resolutions

Using the context menu, you can modify the assignee, priority or comment of aresolution and even delete it if you deem it does
not represent an appropriate solution anymore.

For some resolutions, right-clicking also offers the option of editing the element pattern of the resolution. The element pattern
isan identifier of the element(s) aresolution is applied to:

115

Handling Detected I ssues

= (1) Tasks &2 = = 8
Task Definition [1] Description Information Priority Assignee Creat., Mat..,
+3| Fix Architecture Violati... l::_:l Me... 02.0... 1
B ' Sonargraph - Edit Fix - | *
Assignee: lohn Doe
Priority: High w
Description:
Dependency From Pattern Dependency To Pattern
Workspace:module:. /crm-domein-example/sro/java:comehellodmomow:dda W # Delete Pattern(s)
(Add From Pattern...) (r— —
< >

iy

Matching Element Type .. Element Element Ta lssue Description

49 Dependency & start() : void & DistnbutionPartner... [Constructor Call] 'JBSta...

Figure 9.7. Resolution Dialog

The image above shows the element pattern matching mechanism between issues and resolutions. One resolution can be used to
match several different elementsviaawildcard pattern. This mechanism allows to group together in the same resolution (ignore
or fix) current and new related issues as they are generated so to avoid the need to manually resolving each of them as they come
about. It also helps when dealing with issues that should likely be taken care of together or by the same person.

You can have an idea of what the pattern for a specific element looks like by creating a resolution for the related issue and then
looking at the element pattern section in the edit resolution dialog. Y ou can create as many patterns for aresolution as you deem
convenient.

9.6. Details about Sonargraph's Resolution
Matching

Resolutions contain the fully qualified name of the affected element, so that they can be applied again when the System is
cleared and parsed or opened. As a consequence resolutions are vulnerable against rename operations of directories and files.
With Sonargraph version 10.5 advanced resol ution matching has been introduced for cycle groups and duplicate code blocks, so
that the resolutions are matched, even if the fully qualified names of involved elements got changed. The "confidence" of the
resolution match is shown inthe "lIgnores’ and "Tasks" views. Matching succeedsif the confidence is greater than 0.6. The same
algorithms are also used by the " System Diff" to identify matching issues from the baseline.

Also with Sonargraph version 10.5, the Script APl was improved with the data type | SourceLineAccess that provides access
to file content and can be used to create issues that are more resilient against code changes by applying a similarity matching
algorithm taking into account the line's text, the line number, and surrounding lines as context. The following program listing
shows the key part of the script "FindFixmeAndTodosInComments.xml” (available in the "Core" quality model) that has been
improved with the new methods of the Script API:

116

Handling Detected I ssues

visitor.onSourceFile

{

Sour ceFi | eAccess source ->
Li st <l Sour ceLi neAccess> |ines = source. get SourcelLi nes();

f or (SourceLi neAccess line : lines)
def fixmeMatcher = (line.getText() =~ fixmePattern);
i f(fixmeMatcher.count > 0)
{

nunber O Fi xmes += fi xmeMat cher. count;
def text = extractText(fixmeMatcher);
resul t.addWar ni ngl ssue(source, "FIXMVE', text, line);

Using this API, resolutions are now only applied for the selected issue and no longer automatically for all "FIXME"-issuesin the
same file. "FIXME"-issues added later to the file need to be resolved separately offering a better control over new issues.

117

Chapter 10. Simulating Refactorings

Sonargraph allowsthe simulation of refactoringsto quickly analyze different approachesto fix structural problems. Refactorings
represent a proposed improvement to your code base. They are usually created to make sure that the related improvement is dealt
with by someone in the devel opment team, thus striving towards a healthy code base which is the ultimate goal of Sonargraph.

10.1. Creating Delete Refactorings

The Delete refactoring is available via "System" - "New Delete Refactoring..." or in the context menu when selecting an
appropriate element.

A delete refactoring may be applied to the following (physical) elements (i.e. elements that come from the parsing process and
are displayed in the Navigation view):

» Non-external programming elements (e.g. types, methods, fields)
» Non-external Directories (but not root directories)

» Non-external Namespaces

» Dependencies (parser level or aggregated)

When deleting parser level or aggregated dependencies there are up to 3 options. Their appearance, order and selected default
option depend on the current context:

» Delete Parser Dependencies: Delete the currently contained parser dependencies of a given edge based on parser dependency
patterns.

» Delete Parser Dependencies Based on Endpoints: Delete the parser dependencies of a given edge based on end point patterns,
after the next 'refresh’ there could be more or less matches.

» Delete Violating Parser Dependencies: Only delete the violating parser dependencies of a given edge based on parser
dependency patterns.

Directories are always deleted recursively. Namespaces can be deleted flat or recursively. When deleting atype all its methods
and fields or nested types are deleted.

Delete refactorings on (physical) namespaces may also be applied in the (logical) Namespaces view. Since alogical namespace
(either in system or module scope) may be based on more than one physical nhamespace, the deletion of a logical namespace
might delete several physical namespaces.

Delete refactorings may also be applied in the Architecture view.

Delete refactorings may also be applied in the Exploration, Graph and Dependencies View which are opened based on arbitrary
Navigation, Namespace and Architecture view selections.

Delete refactorings can be managed in the Refactorings view as described in Section 10.3, “Managing Refactorings”.

10.2. Creating Move/Rename Refactorings

The Move/Rename refactoring is available via "System” - "New Move/Rename Refactoring..." or in the context menu when
selecting an appropriate element.

A Move/Rename refactoring may be applied to the following (physical) elements (i.e. elements that come from the parsing
process and are displayed in the Navigation view):

* Directories (but not root directories) for C# and C/C++

» Packagesfor Java

118

Simulating Refactorings

e Componentsfor Java, C# and C/C++

» Physical top-level programming elements for Java, C# and C/C++ (e.g. types, free functions and global variables). 'Physical’
means that logical top-level programming elements are not supported (i.e. types and so forth in logical views)!

Move/Rename refactorings may also be applied in the Architecture view.

Move/Rename refactorings may also be applied in the Exploration, Graph and Dependencies View when they are opened based
on arbitrary Navigation and Architecture view selections.

10.3. Managing Refactorings

The upper section of the Refactorings view provides information about the type of refactoring, the provider, the applicability,
the assigned priority for it, the assignee and an optional description.

The lower section displays the affected elements of the refactoring.

o] System -1“ Metrics | = Workspace | , (1) Issues | & Ignore | (5 (1) Tasks | 47| Refactorings % | %% Cycle Groups | [Duplicate Code Blocks <=0
Refactoring Definition [2] Provider Applicability Description Information Priority Assignee Created
¥} Delete Core Applied

7 parser dependencies affected : Medium 8/18/16
e 8/18/18

" Delete

g&cndencies affected

¥ Delete Refactoring
/7 Edit Refactoring...
{2 Export Refactorings To Excel...

= Show in Tasks View

Matching Element Type [3] Element Element To Description

4§ Dependency & applyLogConfiguration(String) : void a4 setRootLoglLevel(String) : void Delete [Static Method Call]l applyLogCo...
4# Dependency 9 ICPlusPlusinstallationExtension 9 ISearchPathProvider Delete [Extends] ICPlusPlusinstallationE...
4® Dependency & initialize(lApplicationContext, Bundl... & create(lLicenseProvider, List<lLangu... Delete [Static Method Call] initialize(lAp...

Potentially Done Element [0]

Figure 10.1. Refactorings View

The "Sonargraph Refactorings' view offersfilter options in the top right corner. Refactorings can be filtered by status, priority,
assignee and description.

10.4. Best Practices

The code base of a living software project changes fast, therefore we recommend the following approach to work with
refactorings:

» Donot get carried away and create hundreds of refactorings! It isbetter to " simulate a little, refactor alittle".

Try to limit the impact of individual refactorings. Move and rename a package at the top of the hierarchy might have severe
consequences on the code base and are most likely high-risk operations during implementation.

If a package or class file gets renamed to a different name than specified in the refactorings, the refactorings are no longer
applicable. There might be a chance in the future to semi-automatically update refactoring definitions based on the project's
history, but we do not know when this will be implemented.

119

Simulating Refactorings

e Work with only a few virtual models.
Note that in the IDE integrations, the standard "M odifiable.vm" is aways applied and currently cannot be changed.

Virtual models are great for experimenting with refactoringsin isolation. But, since refactorings are not synchronized between
virtual models, it isrecommended to have one "main" model that contains approved refactorings and integrate the experiments
as frequently as possible. If the same compilation unit is affected by refactoring sequences in different virtual models,
implementing the refactorings of the first model will make the refactorings of the second model "inapplicable". We plan to
improve the exchange of refactorings between virtual models in future versions.

Related topics:

» Section 20.1.7, “ Execute Refactorings in Eclipse”

120

Chapter 11. Defining an Architecture

Sonargraph alows the definition of an architecture via a Domain Specific Language (DSL) that is expressive and readable
enough so that every developer is able to understand it. The graphical representation in Sonargraph 7 allowed the creation of the
architectural blueprint in onesinglediagram. Thisled to potentially very big and complex diagramsthat are difficult to understand.

The reguirements for the new DSL approach were the following:

1. It should be possible to describe an architecture in a set of files. Some of them should be generic enough so that they could
be reused by many projects, e.g. a generic template describing the layering of a system.

2. It should be possible to describe an architecture in form of several completely independent aspects. E.g. one aspect describes
layering, another aspect describes components and a third aspect |ooks at separation of client and server logic.

3. On the other hand the language should also be powerful to describe the complete architecture in asingle file.

4. The DSL must be easy to read and easy to learn.

5. Therestrictions for dependencies should allow also the specification of dependency types (e.g. "new", "inheritance”, etc.).

To create an architecture description you select "New Architecture File..." from the menu "File/New...". That will open an editor
where you can work on your architecture description. You can have as many architecture files as you like. If the description
should be used to check for architecture violations, the architecture file needs to be added to Sonargraph's architecture check.
Thisisdonein the"Files" tab of the "Navigation" view by right-clicking on your architecture file and select "Add to Architecture
Check..." from the context menu. If you later decide to remove the file from Sonargraph's architecture check you can also do
this via the context menu.

It is also recommended to open the "Architecture View" while working on an architectural model via the menu "Window" -

"Show View" - "Architecture View". Theview issplit vertically into two main sections. In the top section there are three tabsto
provide aquick overview about the checked filesin the physical and logical model aswell aswhich files are currently not part of
the architecture check. These unchecked files might also include files that are imported by currently checked architectural files.

TIP

The context menu of a selected architecture model or artifact in the Architecture view offers the option to show
the selection in the Exploration. This usually reveals very quickly where the architecture needs adjustment or where
violations exist.

TIP

The context menu of aselected (and checked) architecture model also offersthe option to show it asan UML Component
diagram in an Architecture Diagram view (See Chapter 12, Visualizing Architecture Aspects for details).

121

Defining an Architecture

I Architecture &2 S B T O |[eCs. M @Bwe | Qe S E TR SO BB Fa T T
Checked 'Physical'... | Checked 'Logical’ .. | Unchecked (4) ‘Q - | = ﬁ
w FT application.arc [Physical, Checked] A f=
- N s Starts
& Reflection [4] 5 2l Startup
Bl Startup (3] = Bl Application \
~ Bl Application [143] (5] B8 Business 'll
BE Integration [1] /
= default [139] [E 2& DistributionPartner /
o= default [143] B 28 Controller & eantroller
B Foundation [0] __ ~
~ D8 Business [142] [28 Data _ \\
58 User [42] (] 28 Domain : i . & bomain
& Contact [17] . A -
—{ default [132] 28 DataServicelnterface Y1/ ‘___/ & DataServicelnterfi
o= default [142] [2& service
08 Request [27] YOTRL . 0 /
0B Customer [20] [+] 2 Customer K\ 7 ke & Customer //
+ & DistributionPartner [36] [2 Request A\ ‘ e L& Request
> E& Controller [6] v ¢ -
58 Data [12] 1 ER User \ A s
E& Domain [4] [2& Contact el T ontact
DataServicelnterf; 8 ' \
g Sa 2 En;:]e nterface [£] 5% Integration] "~p& Integration
ervice S
=q default [33] v H Framework ramewark

Violations [2] (Of 15... From To] 5& Reflection 'j::: A\ | —E& Reflection
| 3= application.arc HE Application.Bu.., & Applicat =)
I applicat pplicat] 2 Applicatl iy)
= application.arc B& Application.Bu.. B Startup

Unassigned External Components e Unassigned Exter

Figure 11.1. Architecture View

The tabs for logical and physical models contain architecture models that are actively checked. That means you will be able to
see which elements are assigned to which artifact by browsing through the tree. Y ou can al so easily see which elements have not
been assigned to any artifact by inspecting the nodes for "Unassigned internal/external components”.

The bottom section lists al architecture violations of the element selected in the middle section. If no element is selected all
architecture violations from all models are shown. If you click on aline in that table the associated violating dependencies are
shown in the "Parser Dependencies Out" auxiliary view.

11.1. Models, Components and Artifacts

To describe architecture in aformal way we first need to think about the basic building blocks that we could use to describe the
architecture of a system. The smallest unit of design is what we call acomponent. What is represented by a component depends
on the base model you choose for you architecture.

Since version 9.7 Sonargraph supports two different base models. The "physical" model - which isthe default model and the only
model that was supported prior to 9.7 - is based on the model in the "Navigation View". Components are based on the physical
layout of your project. In Java a component is a single source files. In C# a component is a single C# source file or atop level
typein an external assembly. In C/C++ components are created dynamically out of combining associated header and sourcefiles.

The"logical" model isbased on the model in the modul e based namespace view. Here our components are top level programming
elements, which for Javaor C# is always some type, usually aclass or an interface. The logical model organizes these types only
by their namespaces/packages. The directory structure of the project is not reflected in the model. In C/C++ components can also
be functions or other top level programming elements. For Javathereisamost no difference between the physical and thelogical
model. Only in the rare case that a Javafile has more than one top level type the logical model would create one component for
each top level type, while the physical model only generates one component per source file.

So logical models are moreinteresting for languages like C++ and C# where the namespace structure is not related to the physical
organization of your project. For these languages it makes sense to use the logical model if your namespaces are in some way
reflecting your architecture.

To define an architecture you would group associated componentsinto artifacts. Then you could group several of those artifacts
together into higher level artifacts and so on. For each artifact you would also define which other artifacts can be used by them.

122

Defining an Architecture

Each component has a name which we call the architecture filter name. In the physical model the filter name starts with the
module name or "External [language]”. Then follows the path of the component relative to a modul e specific root directory. The
filter name ends with the name of the source file without an extension, All name parts are separated by slashes.

TIP

To determine the architecture filter name of a component just click on the component in the navigation or namespace
view and check the "Properties View". There you should be able to see the architecture filter name and other properties
of the selected item.

When using alogical model the filter name again starts with the module name followed by the namespace followed by the name
of the programming element. Each name part is again separated by slashes.

In most cases assignment of components to artifacts is based on their architecture filter name. But it is al'so possible to assign
components based on other attributes like annotations or implemented interfaces. This will be explained in more detail later in
this chapter.

/1 Main.java in package com hel | o2norrow.
" Cor e/ coml hel | o2nmorr ow Mai n"

/1 The Method class fromjava.lang.reflection:
"External [Java]/[Unknown]/java/lang/reflect/ Method"

/1 SinpleAction.cs in subfolder of NHi bernate:
"NHi ber nat e/ Acti on/ Si npl eActi on"

/1 An external class from Systemdl|:
"External [C#]/System Systenmf Uri"

For internal components (components that actually belong to your project) we use the following naming strategy:
modul e/r el -path-to-proj ect-root-dir/sour ce-name (physical)
modul e/namespace-or -package/el ement-name (logical)

For external components (third party components used by your project) we use a dightly different strategy. Here we might not
have access to any source files:

External [language]/jar-or-dil-if-present/rel-path-or-namespace/typename (physical)
External [language]/jar-or-dil-or-header/namespace-or-package/el ement-name (logical)

Now we can use patterns to describe groups of components:

/1 Al conponents fromthe Core nodule with "business" in their nane:
"Cor e/ **/ busi ness/ **"

/1 Al conmponents in java.lang.reflect:
"External */*/javallang/reflect/*"

As you can see a single "' matches everything except a lash, **' matches over slash boundaries. You can also use '? as a
wildcard for asingle character.

Now we can build our first artifacts:

123

Defining an Architecture

nodel "physical" // or "logical"

artifact Business

{
i ncl ude "Core/**/busi ness/**"
exclude "**/api/**"
}
artifact Reflection
{
i nclude "External */*/javallang/reflect/*"
}

In thefirst line you specify which model you would like to use. If you omit the model specification we assume "physical”.

We grouped all components from module "Core" with "business' in their name into an artifact named "Business’. As you can
see the include patterns determine which components should belong to an artifact. Y ou can also use "exclude" patternsto specify
exceptions. Thereflection classes from the Java runtime are now in their own artifact called "Reflection”. Artifacts can a so have
"exclude" filters. They help you to describe the content of an artifact with an "everything except" strategy. Exclude filters will
always be applied after all includefilters.

TIP

More than one "include" statement can be used to assign components to an artifact. It is also possible to use "exclude"
statements to specify exceptions from the elements included above.

The assignment of components to artifactsis usually determined by the order of artifactsin the DSL file. The principleis "first
come. first served”. If two patterns would match the same artifact the first pattern wins. It is however possible to assign priorities
to artifacts which changes the order in which artifacts are assigned. The default priority of an artifact is 0. You can change the
priority of an artifact with a priority definition, which aways must be the first definition in an artifact. You can also negate
patterns with the keyword 'not' or combine them with ‘and'.

nodel "physical" // or "logical"

artifact Business

{
i ncl ude "Core/**/busi ness/**"
}
artifact Reflection
{
priority 1
i nclude "External */*/javallang/reflect/*"
}
artifact NotApi Controller
{
include "**/controller/**" and not "**/api/**"
}

In the example above the artifact 'Reflection’ would get the first pick at components since it has a higher priority than 'Business,
even though it is defined after 'Business. Y ou can also assign negative priorities. That can be useful when you want to ensure
that an artifact gets a lower priority than the default of 0. Just to be clear, if two artifacts have the same priority the order in
the file determines which one picks first. The last artifact will match everything with ‘controller' in the artifact name, unless it
also contains 'api’ in the name.

124

Defining an Architecture

artifact Parent

{
artifact FirstChild
{

}

artifact SecondChild
{

}

include "**/cl/**"

i nclude "**/c2/**"

}
artifact O herParent
{

i nclude "**/other/**"

artifact FirstChild
{

}

artifact SecondChild
{

}

i nclude "**/cl/**"

include "**/c2/**"

Artifacts can be nested arbitrarily. If a parent artifact does not have any include patterns of its own it becomes a 'transparent'
artifact, i.e. it passes all components offered to it to its children for matching. 'Parent’ is an example for a transparent artifact.
'OtherParent’, on the other hand, defines its own include pattern. Now its children are only offered artifacts that are matched by
the parent artifact, i.e. artifacts that contain 'other' somewhere in their component name. Y ou can overrule this behavior by using
'strong’ include patternsin the children artifacts. They are introduced in the next section.

TIP

Transparent artifacts can still have 'exclude’ statementsto limit the elements passed on to their children.

If a pattern has no matches, Sonargraph will put a warning marker on that pattern. Y ou can suppress that warning by
either making the artifact ‘optional’ or mark the pattern as ‘optional’

11.1.1. Using other criteria to assign components to artifacts

Sometimes the information needed to properly assign acomponent to an artifact is not part of itsarchitecturefilter name. Imagine
for example a code generator that generates classes for different functional modules. If al those classes end up in the same
package it becomes very hard to assign the generated classes to the right functional modules unless the class hame contains some
clue. If those generated classes could be properly assigned based on an annotation that would be a far more effective method
of assignment.

The following class shows a practical example:
package com conpany. gener at ed;
i mport com conpany. Functi onal Modul e;

@-uncti onal Modul e(nane = "Custoner")
class E5173

{
}

A

Neither the class name nor the package name contain a clue that this class is associated with the functional module " Customer".
Only the annotation gives that information away.

125

Defining an Architecture

Since Sonargraph 9.7 it is possible to use what we call "attribute retrievers' in name patterns. In our example we would do the
assignment as shown below:

artifact Custoner

{
}

i ncl ude "JavaHasAnnot ati onVal ue: com conpany. Functi onal Modul e: nane: Custoner”

If asearch pattern contains colonsit is split up into the parts separated by the colons (colons must be followed by asingle space).
The first part must be the name of an existing attribute retriever, in our example "JavaHasAnnotationValue". The last part is
always a pattern describing what we would like to match and can make use of the wildcards "**", "*" and "?". Everything in
between the first part and the last part are parameters for the retriever. Here we tell the retriever that we want to match with the
"name" attribute of the annotation "com.company.FunctionalModule". Most retrievers don't need parameters, the example above
istherefore already a pretty sophisticated use of attribute retrievers.

11.1.2. List of predefined attribute retrievers

Language Independent Retrievers
PhysicalFilterName

Thisretriever only worksin the context of alogical model and will return the physical architecturefilter name of acomponent. The
component in this casewould be alogical element, e.g. aclass. Theresult isthe architecturefilter name of the physical component
containing this element. Using this retriever allows you to mix physical and logical assignment strategiesin alogical model.

WorkspaceFilter Name

Thisretriever will return the workspace filter of any component. The workspace filter name isthe relative path of the source file
containing an element. This can be useful to separate assignment by root directory (e.g. test code versus generated code), since
root directories are not part of any architecture filter name.

FileName

This retriever will return the file name of the component including extension. The path is the identifying path relative to the
Sonargraph root directory. For external components an absolute path might be returned.

Java Attribute Retrievers

TIP

Java attribute retrievers require a fully qualified type name. The Properties view shows the "Name" property for a
selected type and you can copy it from there as the fully qualified type name.

JavaHasAnnotation

Thisretriever only worksfor Javaand will match if the pattern matchesthe fully qualified type name of any annotation of aclass,
itsfields and its methods. In a physical model if a Javafile has more than one top level type we only consider the Java class that
has the same name as the file. Please note that "*" will match anything except dots (".") for this retriever.

artifact Controller

{

i ncl ude "JavaHasAnnot ati on: org. springfranework. st ereotype. Conponent "
i ncl ude "JavaHasAnnot ation: **.Conponent"

The"include" statement of thethisexamplewill match any component with atop-level typethat isannotated with " @Component"
of the Spring framework. The second statement matches any component with atop-level type having an annotation ending with
"Component".

126

Defining an Architecture

JavaT ypeOf

This retriever only works for Java and will match if the pattern matches the fully qualified type name of any direct or indirect
super type (class or interface). In a physical model if a Java file has more than one top level type we only consider a Java type
that has the same name as the file. Please note that "*" will match anything except dots (".") for this retriever.

JavaExtendsClass

This retriever only works for Java and will match if the pattern matches the fully qualified type name of any direct or indirect
base class of aclass. In aphysical model if a Javafile has more than one top level type we only consider the Java class that has
the same name as the file. Please note that "*" will match anything except dots (".") for thisretriever.

Javal mplementsinterface

Thisretriever only worksfor Javaand will match if the pattern matchesthe fully qualified type name of any interfaceimplemented
by the class. In aphysical modéd if a Javafile has more than one top level type we only consider the Java class that has the same
name as the file. Please note that "*" will match anything except dots (".") for this retriever.

Javal sl nterface

This retriever only works for Java and will match if the pattern matches the fully qualified type name of any interface. In a
physical model if a Javafile has more than one top level type we only consider the Java class that has the same name as the file.
Please note that "*" will match anything except dots (".") for thisretriever.

Javal sClass

Thisretriever only works for Java and will match if the pattern matches the fully qualified type name of any class. In aphysical
model if a Javafile has more than one top level type we only consider the Java class that has the same name as the file. Please
note that "*" will match anything except dots (".") for thisretriever.

JavaExtendsl mplementsi nterface

Thisretriever only worksfor Javaand will matchif the pattern matchesthefully qualified Javaname of any interfaceimplemented
by aclass or extended by an interface. In aphysical model only the Javamain type (i.e. the type matching the component's name)
is considered. Thisonly works on 'internal’ types. Please note that “*” will match anything except dots (".").

JavaHasAnnotationValue

This retriever only works for Java and will match if the pattern matches value of a specific annotation of a class. It has two
parameters: the fully qualified Java name of the annotation class and the name of the annotation property to extract. In aphysical
model if a Javafile has more than one top level type we only consider the Java class that has the same name as the file. Please
note that "*" will match anything except dots (".") for thisretriever.

C# Attribute Retrievers
TIP

C# attribute retrieversrequire afully qualified type name. The Properties view showsthe "Fully Qualified Type Name"
property for a selected type and you can copy it from there.

CSharpTypeOf

Thisretriever only works for C# and will match if the pattern matches the fully qualified type name (namespace plus class name
separated by ".") of any direct or indirect super type. In a physical model a C# file will only be considered if it contains atype
that has the same name as the file. Please note that "*" will match anything except dots (".") for this retriever.

CSharpExtendsClass

Thisretriever only works for C# and will match if the pattern matches the fully qualified type name (namespace plus class name
separated by ".") of any direct or indirect base class of aclass. In aphysica model a C# filewill only be considered if it contains
atype that has the same name as the file. Please note that "*" will match anything except dots (".") for this retriever.

127

Defining an Architecture

CShar pl mplementsl nterface

Thisretriever only works for C# and will match if the pattern matches the fully qualified type name (namespace plus class name
separated by ".") of any interface implemented by the class. In a physical model a C# file will only be considered if it contains a

type that has the same name as the file. Please note that "*" will match anything except dots (".") for this retriever.
CSharplsinterface

Thisretriever only works for C# and will match if the pattern matches the fully qualified type name (namespace plus class name
separated by ".") of any interface. In a physical model a C# file will only be considered if it contains a type that has the same
name as the file. Please note that "*" will match anything except dots (".") for this retriever.

CSharplsClass

Thisretriever only works for C# and will match if the pattern matches the fully qualified type name (namespace plus class name
separated by ".") of any class. In aphysical model a C# file will only be considered if it contains a type that has the same name
asthefile. Please note that "*" will match anything except dots (".") for thisretriever.

CSharplsEnum

Thisretriever only works for C# and will match if the pattern matches the fully qualified type name (namespace plus class name
separated by ".") of any enum. In aphysical model a C# file will only be considered if it contains atype that has the same name
asthefile. Please note that "*" will match anything except dots (".") for thisretriever.

C/C++ Attribute Retrievers

CppExtendsClass

TIP

Thisattributeretriever requiresafully qualified type name. The Propertiesview showsthe"Fully Qualified Type Name"
property for a selected type and you can copy it from there.

This retriever only works for C++ and will match if the pattern matches the fully qualified type name (namespace plus class
name with "." as separator) of any direct or indirect base class of a class. In a physica model a C++ component will only be
considered if it contains a type that has the same name as the component. Please note that "*" will match anything except dots
(".") for thisretriever.

CppHeader Path

This retriever only works for physical models in C and C++ and will match if the pattern matches the identifying path of the
main header file of a component. The main header is the header file that has the name of the component, while the identifying
path is the relative path of the header relative to the Sonargraph system directory. Use this retriever if the location of a header
fileismore relevant for the architecture than the source file location.

TypeScript Attribute Retrievers
TypescriptTypeof

This retriever only works for TypeScript and will match if the pattern matches the fully qualified type name (separated by ".")
of any direct or indirect super type. Since TypeScript does not have alogical model, acomponent (always a sourcefile) contains
any type with a base type matching the pattern.

TypescriptExtendsClass

Thisretriever only works for TypeScript and will match if the pattern matches the fully qualified type name (separated by ".") of
any direct or indirect base class of a class. Since TypeScript does not have alogical model, a component (always a source file)
contains any type with a base type matching the pattern.

Typescriptl mplementsl nterface

128

Defining an Architecture

Thisretriever only works for TypeScript and will match if the pattern matches the fully qualified type name (separated by ".") of
any interface implemented by the class or extended by theinterface. Since TypeScript does not have alogical model, acomponent
(always a source file€) contains any type with a base type matching the pattern.

129

Defining an Architecture

11.2. Interfaces and Connectors

To define allowed relationshi ps between artifactsit hel psto use some simple and effective abstractions. L etsassume every artifact
has at least one incoming and one outgoing named port. Artifacts can connect to other artifacts by connecting an outgoing port
with an incoming port of another artifact. We will call outgoing ports "Connectors' and incoming ports "Interfaces'. By default
each artifact always has an implicit connector called "default” and an implicit interface also called "default”". Those implicit ports
always contain al the elements contained in an artifact, unless redefined by the architect.

L et us now connect our artifacts:

artifact Business

{

i ncl ude "Core/**/busi ness/**"
connect default to Reflection.default

}

artifact Reflection

{
}

include "External */*/javallang/reflect/*"

Thiswill allow all elementscontainedin"Business' useall elements containedin"Reflection" by connecting the default connector
of "Business" with the default interface of "Reflection”. In our architecture DSL you can also write this shorter:

artifact Business

{
1.

connect to Reflection

...

If we reference an artifact without explicitly naming a connector or an interface the language will assume that you mean the
default connector or interface. Connections can only be established between connectors and interfaces. The syntax of the connect
featureis asfollows:

connect [connector Name] to interfaceList

The interface list is a comma separated list of interfaces to connect to. The connector can be omitted, in that case the default
connector will be used.

A dependency from a component A to another component B is not an architecture violation if any of the following conditions
istrue:

« Either A and/or B do not belong to any artifact.

» A and B belong to the same artifact.

» Theartifact of B is nested in the artifact of A.

» Thereisan explicit connection from a connector that contains A to an interface that contains B.

» B belongsto the default interface of a"public” artifact that is a sibling of a artifact that has a default connector containing A.
The artifact of A must be defined before the artifact of B. In other words, "public" artifacts are accessible by sibling artifacts
defined above them. ("public" will be introduced later)

e The artifact of A or one of its parent artifacts is "unrestricted" and B is assigned directly or indirectly to a sibling of the
unrestricted artifact. In other words, unrestricted artifacts have access to all of their siblings. ("unrestricted" will also be
introduced later)

130

Defining an Architecture

e Theartifact of A or one of its parent artifactsis"strict” (i.e. isastrict layer) and B isassigned directly or indirectly to the next
following sibling of the strict artifact. More precisely: A must be part of the default connector of the strict artifact, while B must
be part of the default interface of its next sibling. Strict layers are allowed to access the layer (artifact) directly below them.

e Theartifact of A or one of its parent artifactsis "relaxed" (i.e. isarelaxed layer) and B is assigned directly or indirectly to the
any of the siblings of the relaxed artifact that are defined after it. More precisely: A must be part of the default connector of
the relaxed artifact, while B must be part of the default interface of any of its siblings that are defined after it. Relaxed layers
are alowed to access all the layers (artifacts) defined below them.

Any dependency that does not meet any of the above conditionsis considered to be an architecture violation.
"strict", "relaxed" and "unrestricted" are mutually exclusive, i.e. an artifact can have at most one of those three stereotypes.

Now let us assume that we would not want anybody to use the class "Method" of the reflection artifact. This can be achieved
by redefining the default interface of "Reflection”:

artifact Reflection

{

include "**/javallang/reflect/*"

interface default

{

i ncl ude al
excl ude "**/ Met hod"

Doing that makes it impossible to access the Method class from outside the "Reflection” artifact because it is not part of any
interface. Here we used an include all filter to add all elementsin "Reflection” to the interface. Then by using an exclude filter
we took out Method from the set of accessible elementsin the interface.

Most of the time you will not need to define your own connectors. Thisisonly necessary if you want to exclude certain el ements
of the using artifact from accessing the used artifact. Using more than one interface on the other hand can be quite useful. But
for the sake of completeness let us also define a connector in "Business':

artifact Business

{
i ncl ude "Core/**/busi ness/**"
connect or CanUseRefl ecti on

/1 Only include the controller classes in Business
include "**/controller/**"

}

connect CanUseReflection to Reflection

...

Now only classes having "business" and "controller” in their name will be able to access " Reflection™.

Let us do something more advanced and assume that the architect wants to make sure that "Reflection” can only be used from
elementsin the"Business' layer. To achieve that we can simply nest "Reflection” within the "Business" artifact and hide it from
the outside world:

131

Defining an Architecture

artifact Business

{
i ncl ude "Core/**/busi ness/**"
hi dden artifact Reflection
{
/'l Need a strong pattern to bypass patterns defined by parent artifact
strong include "**/javal/lang/reflect/*"
}
}

By declaring anested artifact as "hidden" it will be excluded from the default interface of the surrounding artifact. We also don't
need to connect anything because parent artifacts always have full accessto the artifacts nested within them. In general an artifact
can access anything that belongs to itself including nested artifacts and all components that are not part of any artifact. Access
to other artifacts requires an explicit connection.

Notice the strong include pattern. Without using a strong pattern the elements belonging to reflection would not make it past
the pattern filters defined by "Business".

You can aso use the "local" modifier for artifacts. A local artifact will not be part of the default connector of the surrounding
artifact.

If you later find out that another part of your software needs access to "Reflection” too you have several options. Y ou could add
aninterfaceto"Business' exposing "Reflection” or you could again make atop level artifact out of it. Hereishow you'd exposeit:

artifact Business

{
i ncl ude "Core/**/busi ness/**"

hi dden artifact Reflection

/1l Need a strong pattern to bypass patterns defined by parent artifact
strong include "External */*/javallang/reflect/*"

}

interface Refl

{
}

export Reflection

With export you can include nested artifacts or interfaces of nested artifacts in an interface. Now clients can connect to the
"Business.Refl". The counterpart of export for connectors is the keyword include. It will include nested artifacts or connectors
from nested artifactsin a connector.

In that particular example we can expose "Reflection” even more easily:

artifact Business

{
i ncl ude "Core/**/busi ness/**"
exposed hidden artifact Reflection
{
/1l Need a strong pattern to bypass patterns defined by parent artifact
strong include "External */*/javal/lang/reflect/*"
}
}

Now that looks a little strange on first sight, doesn't it - "exposed" and "hidden" at the same time? Well, "hidden" will exclude
"Reflection” from the default interface of "Business', while "exposed" makesit visibleto clients of "Business'. Now clients can

132

Defining an Architecture

connect to "Business.Reflection” which is a shortcut for "Business.Reflection.default”. If "Reflection” had more interfaces they
could also connect to those other interfaces.

That brings us to another important aspect of our architecture DSL - encapsulation. An artifact only exposes its interfaces or
the interfaces of exposed artifacts to its clients. It is not possible for a client to connect to a nested artifact until it is explicitly
exposed by its surrounding artifact.

export and include can be used together with the keyword any. The following example shows how you could explicitly define
the default interface and the default connector of any artifact:

artifact SomeArtifact
{

i ncl ude "**/somet hi ng/ **"

hi dden artifact Hi dden
{

}

| ocal artifact Loca

{
}

artifact Nested

11

11

{
Il
}
interface default
{
i nclude "**"
export any /1 will export 'Local.default' and ' Nested. default
}
connector default
{
i ncl ude "**"
i ncl ude any /1 will include 'Hi dden.default' and 'Nested. default'
}

If you use any by itsalf it will include all nested artifacts except hidden artifacts for export and local artifactsfor include. You can
also explicitly name an interface or a connector of a nested artifact after any. In that case the interface or connector is included
if it exists, even if itsartifact is marked as hidden or local (see next example).

133

Defining an Architecture

artifact SomeArtifact

{
i ncl ude "**/sonethi ng/ **"
hi dden artifact Hi dden
{
...
interface U { /* ... */ }
}
artifact Nested
{
...
interface U { /* ... */ }
}
interface default
{
export any. Ul /1 will export 'Hidden.U"' and 'Nested. U
}
}

This feature can become quite useful if there are many nested artifacts with a similar structure.

We mentioned before that an artifact can have the modifier unrestricted. This means that dependencies coming out of such an
artifact to any of itssiblingswill not be checked. That can be useful if you are creating an architecture description for an existing
system with many violations. By declaring some artifacts as unrestricted you are not being overwhelmed by violations and can

focus on the most important violations first. It is also useful for grouping legacy code that you want to exclude form architecture
checks.

strict artifact SonmeArtifact

{

i ncl ude "**/somet hi ng/ **"
}
strict artifact GtherArtifact
{

include "**/other/**"
}

unrestricted artifact Legacy

/1 Al remaining internal conponents
i ncl ude "**"
exclude "External */**"

In the example above the two artifacts above "Legacy" have clear architecture rules. They are both defined as strict layers, i.e.
they have accessto the artifact defined directly below them. All remaining internal components are assigned to "Legacy". Since
"Legacy" is unrestricted, its dependencies towards its siblings are not checked. That can be quite useful when you start defining
an architecture for an existing system and only want to focus on certain parts of the system. Just keeping components unassigned
would have adlightly different effect. | our example we do not allow dependencies from "SomeArtifact” to "Legacy" because we
have defined "SomeAvrtifact" as astrict layer. That restriction could not be checked if we had kept the componentsin "Legacy"
unassigned.

Hereisasummary of the different stereotypes that can be used on artifacts:

Stereotype Description

hidden The artifact will not beincluded in its parents default interface.

local The artifact will not be included in its parents default connector.

public All sibling artifacts defined above this artifact can implicitly access the default interface from this
artifact using their default connector.

134

Defining an Architecture

Stereotype Description

unrestricted All elements of this artifact can freely access the default interfaces of all the siblings of this artifact.

strict Creates an implicit connection from the default connector of this artifact to the default interface of its
next sibling. (strict layering)

relaxed Creates implicit connections from the default connector of this artifact to the default interfaces of al
sibling artifacts defined after this artifact. (relaxed layering)

exposed Makes this artifact visible to clients of its parent.

optional Don't warn if this artifact has no components assigned to it.

deprecated Do create awarning if any components are assigned to this artifact.

Table 11.1. Artifact stereotype summary

Additionally, in order to ease the visualization of the different stereotypes that can modify the behavior of an artifact, Sonargraph
uses the following icons and/or decorators:

via" apply" |via"require" public local hidden
artifact | B)| s u =
unrestricted artifact | = O " a =
strict artifact = = = = @ =
relaxed artifact = = =] = = =

Table 11.2. | cong/Decor atorsfor Artifacts
Note that artifacts via"apply" or "require" can also have decorators for public, local and hidden stereotypes.

At the end of this section let us have alook at the general syntactic structure of artifacts, interfaces and connectors:

artifact nane

{
/1 include and exclude filters
/'l nested artifacts
/1 interfaces and connectors
/'l connections
}
interface inane
{
/1 include and exclude filter
/1l exported nested interfaces
}
connect or cnane
{
/1 include and exclude filters
/1 included nested connectors
}

The order of the different sections isimportant. Not following this particular order will lead to syntax errors.

Now that we have covered the basic building blocks we can progress to more advanced aspects. In the next section | will focus
on how to factor out reusable parts of an architecture into separate files that can best be described as Architecture Aspects. We
will also cover the restriction of dependencies by dependency types.

135

Defining an Architecture

11.3. Reusing Architecture Aspects

L et us assume we want to use a predefined layering for several modules of our software system. Without a mechanism for reuse
we would have to write something like that:

artifact Mdul el

{
i ncl ude "Modul el/**"
artifact U
{
i nclude "**/ui/**"
connect to Business
}
artifact Business
{
i ncl ude "**/busi ness/**"
connect to Persistence
}
artifact Persistence
{
i ncl ude "**/persistence/**"
}
public artifact Mbodel
{
i nclude "**/nodel / **"
}
interface Service
{
export Business, Mbdel
}
}
artifact Mdul e2
{
i ncl ude "Modul e2/**"
artifact U
{
i nclude "**/ui/**"
connect to Business
}
artifact Business
{
i ncl ude "**/busi ness/**"
connect to Persistence
}
artifact Persistence
{
i ncl ude "**/persistence/**"
}
public artifact Model
{
i nclude "**/nodel / **"
}
interface Service
{
export Business, Model
}
}

Asyou can see the inner structure of both modulesis completely identical. Now imagine having dozens of modules. We clearly
need a better way to model that. That is where the apply directive (see below) comes into the game that allows splitting the
architecture into several architecture aspects, each contained in its own file.

136

Defining an Architecture

Wealso introduced anew artifact modifier onthefly: public. All artifacts marked as public can be used by all non-public artifacts
on the same level (siblings in the artifact tree). "Ul", "Business" and "Persistence” therefore have an implicit connection to
"Model" (from default connector to default interface).

/1 File layering.arc
artifact Ul

{ include "**/ui/**"
connect to Business

Lrti fact Business

{ i ncl ude "**/busi ness/**"
connect to Persistence

}arti fact Persistence

{ i nclude "**/persistence/**"

Lubl ic artifact Mbdel

{ i ncl ude "**/ nodel / **"

}

/1 Top level interfaces only nmake sense, when used together with "apply" (see bel ow)
interface Service

{
}

/1 New file nodul es. arc
artifact Mdul el

export Busi ness, Mdel

{ i ncl ude "Modul el/**"
apply "layering"

}

artifact Mdul e2

{ i ncl ude "Modul e2/**"
apply "layering"

}

Now we only have to describe the inner structure of modulesin one separate file and apply this structure to them using the apply
directive. That is avery powerful construct that will enable you to define reusable patterns.

Let us introduce two additional artifact modifiers that can be useful in certain situations; "optional" is used for artifacts defined
within an aspect that could potentialy be empty. Using "optional" will suppress the warning marker that is attached to artifacts
that have no components assigned to them.

"deprecated” works the other way around. Artifacts declared as " deprecated” will get awarning marker if they have components
assigned. That features is very useful to catch components that are not named correctly. The next example will show both
modifiersin action:

137

Defining an Architecture

/1 File layering.arc
artifact U
{
include "**/ui/**"
connect to Business

}
artifact Business
{
i ncl ude "**/busi ness/**"
connect to Persistence
}
artifact Persistence
{
i ncl ude "**/persistence/**"
}
public artifact Model
{
i ncl ude "**/nodel /**"
connect to Util // since Mddel is public this is required
}
optional public artifact Util
{
include "**/util/**"
}
deprecated artifact Deplorables
{
i nclude "**"
}

/1 Top level interfaces only nmake sense, when used together with "apply" (see bel ow)
interface Service

{
}

export Business, Mdel

We added two more artifacts. "Util" isfor utility classes that might or might not be present. That iswhy we added the "optional
modifier. "Util" isalso "public"" so that all non-public sibling artifact can use the utility classesimplicitly. Since"Model" isalso

declared to be "public" we need to make an explicit connection to "Util" if we want "Model" to have access to "Util".

The artifact "Deplorables’ catches all remaining components that are assigned to the surrounding artifact. Note that the order
of artifactsis critical in this case. "**" matches everything, so if we would move "Deplorables’ to the top of the artifact list it
would get al available components assigned. At the end of thelist it will only get those components that have not been assigned
to the artifacts above. If we did not have the "Deplorables’ artifact those would usualy stay assigned to the parent artifact or
stay unassigned if there is no parent artifact.

So, having an unconnected deprecated artifact like "Deplorables’ is useful for several reasons:
* It catches all components that are not properly named.

e Usudly it is desirable that parent artifacts distribute all their components among their children and do not keep components
to themselves. Thisis achieved by using the "**" patternin "Deplorables’.

« If there are components that are not properly named the artifact will get a warning marker and all dependencies to those
components are marked as architecture violations.

138

Defining an Architecture

11.4. Extending Aspect Based Artifacts

Now let us assume we want to refactor one of our modules to have an extra layer. We cannot do this change in the aspect file
because thiswould apply to all modules. If we still want to be able to use the aspect for this module we need some way to extend
or modify the elementsin the aspect file:

artifact Mdul e2

{

i ncl ude "Modul e2/**"
apply "layering"

/1l New | ayer
artifact Businesslinterface

{
}

/1 Now Business and U need access to Businesslnterface
ext end Busi ness

i nclude "**/busi nessinterface/**"

{
connect to Businesslnterface
}
extend Ul
{
connect to Businesslnterface
/1 U should not use Business directly
di sconnect from Busi ness
}

Extending an artifact only makes sense in the context of apply directives. It allows us to add nested elements to an artifact and/
or modify its connections to other artifacts. Within an extended artifact you can also use the keyword override to override the
definitions of interfaces or connectors defined in the original version of the artifact:

artifact Mdul e2

{

/1
ext end Busi ness

/1 This assunmes that the inported version of Business has an interface nanmed "X
override interface X

/'l Use other patterns or other exports
include "**/x/*"

}

connect to Businesslnterface

This allows you to adapt the architecture elements derived from an aspect file when needed.

139

Defining an Architecture

11.5. Extending Interfaces or Connectors

It is also possible to extend interfaces or connectors defined via apply. That is sometimes quite useful as shown in the following
example:

artifact Mdul e2

{

i ncl ude "Modul e2/**"

apply "layering"

/1 New artifact that should also be part of the service interface
artifact Servicelnterface

{
}

/1 Make the Servicelnterface artifact part of the interface Service
extend interface Service

i nclude "**/serviceinterface/ **"

/1 add an extra export
export Servicelnterface

Without the possibility to extend interfaces or connectorswe would beforced to create acompletely new interface with adifferent
name.

140

Defining an Architecture

11.6. Adding Transitive or Deprecated Connections

Transitive dependenciesare auseful addition to formal architecture descriptions. Thefollowing example showsatypical use case:

artifact Controller

{
include "**/controller/**"
connect to Foundation
}
artifact Foundation
{
i nclude "**/foundation/**"
}

Here Controller depends on Foundation. We also assume that classes from Foundation are used in the public interface of the
controller classes. That means that each client of Controller must also be able to access Foundation.

artifact Controllerdient

{

include "**/client/**"
connect to Controller, Foundation

Thisis certainly not ideal because it requires the knowledge that everything that uses the Controller artifact must also connect
to Foundation. It would be better if that could be automized, i.e. if anything connects to Controller it will automatically be
connected to Foundation too.

Using transitive connectionsthisis easy to implement:

artifact Controllerdient

{
include "**/client/**"
connect to Controller // No need to connect to Foundation explicitly
}
artifact Controller
{
include "**/controller/**"
connect to Foundation transitively
}

Using the new keyword transitively in the connect statement will add Foundation to the default interface of Controller. That
means that anybody connecting to the default interface of Controller will also have access to Foundation without needing an
explicit dependency.

The new keyword only influences the default interface. For explicitly defined interfaces the transitive export also has to be made
explicit:

141

Defining an Architecture

artifact Controllerdient

{
include "**/client/**"
connect to Controller.Service // WIIl also have access to Foundation
}
artifact Controller
{
include "**/controller/*=*"
interface Service
{
include "**/servicel/**"
export Foundation // Transitive connection nust be explicit here
}
connect to Foundation transitively // only affects default interface
}

Before we had transitive connections an interface could only export nested artifacts. Now interfaces can also export connected
interfaces. In the example above we add the default interface of Foundation to the Service interface of Controller. Exporting
interfaces that are not a connection of the parent artifact will cause an error message.

Deprecated dependencies are used when to warn about dependencies that are tolerated for now, but should be removed from
the code. Instead of producing architecture violation errors they produce deprecation warnings on dependencies. The following
example shows atypical use case:

artifact Controller

{
/1

connect to Gther deprecated // All dependencies to "Oher" wll now produce warnings

}

artifact O her

{
/1

}

You can add "deprecated” at the end of most "connect to" statements.

142

Defining an Architecture

11.7. Restricting Dependency Types

Sometimes you are in a situation, where you allow one artifact to use another one, but would like to restrict the usage to
dependencies of acertain type. For example let us assume you do not want the Ul layer to create new instances of classes defined
in the "Model" layer. Only "Business" and "Persistence" would be allowed to create "Model" instances. Y ou can solve this by
creating a new interface that restricts the usage of certain dependency types:

artifact U
{

include "**/ui/**"
connect to Business, Model. Ul

}
artifact Business
{
i nclude "**/busi ness/**"
connect to Persistence, Model
}
artifact Persistence
{
i ncl ude "**/ persistence/**"
connect to Mbde
}
artifact Mde
{
i nclude "**/nodel / **"
interface Ul
{
include all // everything in "Mdel"
excl ude dependency-types NEW
}
}

Now it would be marked as an architecture violation if a class from the Ul layer would create a new instance of an object from
the model layer. Please note that we had to remove the public modifier from "Model". If we had kept it there would have been
an implicit connection from Ul to the default interface of Model bypassing our specia restriction.

Currently the language supports the following list of language agnostic abstract dependency types:

/1 instance creation
NEW

/1 inheritance
EXTENDS

/1 interface inplenentation
| MPLEMENTS

/1 function or nethod calls
CALL

/'l reading a field or variable
READ

/1 witing to a field or variable
WRI TE

/1 all other uses
USES

In the next section we will look at another advanced concept called " connection schemes”.

143

Defining an Architecture

11.8. Connecting Complex Artifacts

In this section we will examine the different possihilities to define connections between complex artifacts. Let us assume we use
the following aspect file to describe the inner structure of a business module:

/'l File layering.arc
exposed artifact U

{

include "**/ui/**"
connect to Business

}

exposed artifact Business

{

i nclude "**/busi ness/**"

interface default

{
/1l Only classes in the "iface"
include "**/ifacel*"
}
connect to Persistence
}
artifact Persistence
{
i ncl ude "**/persistence/**"
}

exposed public artifact Model
{

}

i nclude "**/nodel /**"

package can be used from outside

This example also show a special feature of our DSL. Y ou can redefine the default interface if you want to restrict incoming
dependencies to a subset of the elements assigned to an artifact. Our layer "Business' is now only accessible over the classes

inthe "iface" package.

Now lets bring in some business modules:

/1 File nodul es. arc
artifact Custoner

{
i nclude "Custoner/**" [/ Al
apply "layering"
connect to Core

}

artifact Product

{
i nclude "Product/**" // Al
apply "layering"
connect to Core

}

artifact Core

{
include "Core/**" // Al in nodule
apply "layering"

}

in nodul e "Custoner"

i n nodul e "Product"

"Core"

Here "Customer" and "Product” are connected to "Core". We used the most simple way to connect those artifacts which means
that all elementsin"Customer" or "Product” can use everything in the default interface of "Core". Since we redefined the default
interface of "Business' this is not everything in "Core". The default interface of "Core" exports all default interfaces of non-
hidden nested artifacts which means that the restrictions defined in "Business" are respected by surrounding artifacts.

144

Defining an Architecture

Nevertheless this way of connecting artifacts does not give us enough control. For example "Product.Model" could now access
"Core.Ul" - not pretty. That means we need to put a bit more effort into the connection:

/1 File nodul es. arc
artifact Customer

{
i nclude "Custoner/**" // Al in nodule "Custoner"
apply "layering"
connect U to Core.U, Core.Controller, Core.Mdel
connect Controller to Core.Controller, Core.Mdel
connect Model to Core. Mbdel

}

artifact Product

{
i nclude "Product/**" // Al in nodule "Product"
apply "layering"
connect U to Core.U, Core.Controller, Core.Mdel
connect Controller to Core.Controller, Core.Mdel
connect Model to Core. Mbdel

}

artifact Core

{
include "Core/**" // Al in nodule "Core"
apply "layering"

}

Now we are more specific about the details of our connection. Please note that we can only connect to "UI", "Controller" and
"Model" of "Core" because we have marked those artifacts as exposed. Otherwise they would be encapsulated and not directly
accessible. The "Persistence” layer is not exposed and can therefore only be used from inside its enclosing artifact.

145

Defining an Architecture

11.9. Introducing Connection Schemes

If you look closely you will find that both connection blocks in " Customer" and "Product” are absolutely identical. Now image
you had to connect dozens of artifactsin thisway. That would be quite annoying and error prone. To avoid thiskind of duplication
we added the concept of connections schemes:

/1l File nodul es.arc
connecti on-scheme C2C

{
connect U to target.U, target.Controller, target.Mdel
connect Controller to target.Controller, target. Mdel
connect Mbdel to target. Mdel
}
artifact Customer
{
i ncl ude "Customer/**" // Al in nodule "Custoner"
apply "layering"
connect to Core using C2C // connection schene C2C
}
artifact Product
{
i nclude "Product/**" // Al in nodule "Product"
apply "layering"
connect to Core using C2C
}
artifact Core
{
include "Core/**" // Al in nodule "Core"
apply "layering"
}

Now | hope you agree that thisis cool. Using connection schemes it becomes possible to describe the wiring between artifacts
in an abstract way. That makes it easy to change the wiring if the architect comes up with a new idea or wants to add or remove
restrictions.

In big systems you may need some additional nesting to avoid having too many toplevel artifacts:

146

Defining an Architecture

artifact SystenmPartA

{
...

artifact A

{
/...

apply "layering"
}

artifact B

{
/...

apply "layering"
}

connect to SystenPartB using Part2Part

}

arifact SystenPartB

{
...

artifact C

{
/...

apply "layering"
}

artifact D

{
/...

apply "layering"
}

connecti on-schene Part2Part

{

/'l Please note the use of "any"

connect any.U to target.any.U, target.any.Controller, target.any.Mdel
connect any.Controller to target.any.Controller, target.any. Mdel
connect any.Mbdel to target.any. Mdel

Here parts contain nested parts which share acommon layering. The use of the keyword any allowsto insert awildcard for those
nested parts into the scheme. In our example each wildcard connection defined in the scheme would result in 4 real connections
since each part has 2 nested parts here (A.x to C.x, A.x to D.x, B.x to C.x and B.x to D.x). To keep the number of connections
under control only one any is allowed on each side of awildcard connection.

147

Defining an Architecture

11.10. Artifact Classes

Artifact classes have been added as an optional and advanced feature that can be really useful in larger projects or in conjunction
with connection schemes. An artifact class basically names the connectors and interfaces an artifact is supposed to have. If an
artifact is declared to have a specific class Sonargraph will verify that it defines all the interfaces and connectors required by
the class. Moreover connection schemes can now aso define source and target classes which allows immediate checking of
correctness.

Another benefit isthat artifact classes make it alot easier to organize artifactsinto atree so that the number of top-level artifacts
stays manageable.

Let usintroduce areal example:

/1 File "layering.arc"
artifact Service

{
/1
connect to Controller
}
artifact Controller
{
/1
connect to DataAccess
}
artifact DataAccess
{
/1
}
public exposed artifact Model
{
/1
}
interface |Service
{
export Service, Mdel
}

/1 Main file "business.arc"
cl ass Busi nessConponent

{
interface | Service, Model
connector Controller, Mdel
}
connecti on-scheme BC2BC : Busi nessConponent to Busi nessConponent
{
connect Controller to target.| Service
connect Mddel to target. Mdel
}
artifact Custoner : Busi nessConponent
{
apply "layering"
}
artifact Oder : BusinessConmponent
{
apply "layering"
connect to Custoner using BC2BC
}

148

Defining an Architecture

The artifacts "Customer” and "Product” are specifying "BusinessComponent” as their artifact class. Therefore they must have
"IService' and "Model" either as an interface or as an exposed artifact. They also must have connectors or artifacts named
"Controller" and "Model". In our example the artifacts conform to the class. Otherwise Sonargraph would report an error.

The advantage of using artifact classes together with connection schemes. Now we can check the connection scheme for
correctness at the point of definition. Without the use of classes we can only do checks at the point of use.

Another aspect of artifact classesisthat they help grouping componentstogether in an elegant way. Let'slook at another example:

artifact OrderProcessing : BusinessConponent

{

| ocal artifact Custonmer : Busi nessConponent

{

apply "layering" // see above

artifact Oder : BusinessConponent

{
apply "layering"
connect to Custoner using BC2BC // defined above

}

connect to Product Managenent using BC2BC

}

artifact Product Managenent : Busi nessConponent

{
artifact Product : Busi nessConponent
{
apply "layering"
connect to Part using BC2BC
}
hi dden artifact Part : BusinessConponent
{
apply "layering"
}
}

Thefirst thing you should noticeisthat neither "OrderProcessing” nor " ProductM anagement” definetheinterfacesand connectors
required by "BusinessComponent”. They don't have to, because their nested artifacts do provide those connectors and interfaces.
If an artifact belongs to a class and does not explicitly define a required interface or connector Sonargraph will check if it has
nested artifacts that do.

In the case of interfaces Sonargraph will implicitly create a missing interface by exporting the matching interfaces of nested
artifacts that are not hidden. In the case of connectors Sonargraph will implicitly create a missing connector by including the
matching connectors of nested artifacts that are not local.

Here is the same example with all those implicitly defined interfaces and connectors explicitly defined:

149

Defining an Architecture

artifact OrderProcessing : BusinessConponent

{ | ocal artifact Custonmer : BusinessConponent
{ apply "layering" // see above
artifact Order : Busi nessConponent
{ apply "layering"
connect to Custoner using BC2BC // defined above
3/ Inplicitly defined
connector Controller
{ i nclude any.Controller // will not include Custoner.Controller because Custoner is |ocal
ionnect or Model
{ i ncl ude any. Mbdel /1 will not include Custoner.Mdel because Custoner is |ocal
i}nterface | Service
{ export any. | Service
i}nterface Model
{ export any. Model
3/ end of inplicit definitions
connect to Product Managenment using BC2BC
}
artifact ProductManagerment : Busi nessConponent
{ artifact Product
{ apply "layering"
connect to Part using BC2BC
Eﬂ dden artifact Part
{ apply "layering"
3/ Inplicitly defined
connector Controller
{ i ncl ude any. Controller
ionnect or Model
{ i ncl ude any. Model
i}nterface | Service
{ export any.lService // wll not include Part.|Service because Part is hidden
i}nterface Model
{ export any. Model /1 will not include Part.Mdel because Part is hidden
3/ end of inplicit definitions
}

The implicit definitions only occur when you do not make an explicit definition. So you can always override those definitions
although this should hardly ever be necessary.

150

Defining an Architecture

Using artifact classes can become a very powerful pattern especialy for the design of larger systems with many components
that have asimilar internal structure.

Y ou can also use classes to define connections:

artifact Cl : Busi nessConponent

{

apply "layering"

connect to class Busi nessConponent using BC2BC
}
artifact C2 : Busi nessConponent
{

apply "layering"

connect to class Busi nessConponent using BC2BC
}
artifact C3 : Busi nessConponent
{

apply "layering"

connect to class Busi nessConponent using BC2BC
}

This allows each of the 3 components to talk to the two other using the given connection scheme. Since this approach will lead
to cyclic dependencies between artifacts the cycle check for architectures using this feature is disabled.

151

Defining an Architecture

11.11. How to Organize your Code

Inthisarticle | am going to present a realistic example that will show you how to organize your code and how to describe this
organization using our architecture DSL. Let us assume we are building a micro-service that manages customers, products and
orders. A high level architecture diagram would look like this:

Customear

Order ﬁ) QO Product

|

Customer Product

Figure 11.2. Architecture of the order management micro service

It isaways a good ideato cut your system along functionality, and here we can easily see three subsystems. In Java you would
map those subsystems to packages, in other languages you might organize your subsystem into separate folders on your file
system and use namespaces if they are available.

Let us assume the system is written in Java and its name is "Order Management”. In that case we would organize the code into
those 3 packages:

com hel | o2ror r ow. or der managemnent . or der
com hel | o2nor r ow. or der managenent . cust omer
com hel | o2nor r ow. or der managenent . pr oduct

This can easily be mapped to our DSL:

artifact Order
{

include "**/order/**"
connect to Custoner, Product

}

artifact Customner

{
}

include "**/custoner/**"

artifact Product

{
}

i ncl ude "**/product/**"

Internally all three subsystem have a couple of layers and the layering is usually the same for all subsystems. In our example
we have four layers:

152

Defining an Architecture

—O order
Service [—

Controller

C

IService
Data Access
ol
% Model

Figure 11.3. Layering of a subsystem

A servicewould only exposeits service ad its model layer to the outside. The service layer contains all the serviceinterfaces and
talks to the controller and the model layer. The controller layer contains all the business logic and uses the data access layer to
retrieve or persist data using JDBC. The model layer is defining the entities we are working with.

We will use a separate architecture file named "layering.arc" to describe our layering:

/1 1layering.arc
artifact Service

{
include "**/servicel **"
connect to Controller

}

artifact Controller

{
include "**/controller/**"
connect to DataAccess

}

require "JDBC'

artifact DataAccess

{
include "**/data/**"
connect to JDBC
}
public artifact Mbodel
{
i nclude "**/nodel / **"
}
interface | Service
{
export Service, Mdel
}

Please note, that we declared "Model" as a public artifact. That saves us the need to explicitly connect all the other layers to
"Model". Also notethe"require" statement. Hererefer to athird architecturefile, that containsthe definition of the artifact JDBC.
This way we can ensure that only the data access layer can make JDBC calls. using "require” will only declare the artifacts

153

Defining an Architecture

contained in the required file, but not define them. This means that the artifactsin "JDBC" have to be defined on another level.
The interface is used to define the exposed parts of a subsystem. When connecting to the "IService" interface you have only
access to the "Service" and the "Model" layer.

NOTE

Architecture files using "require" are not self-contained and cannot be added to the architecture check!

Now we use apply statements to apply the layering to our three subsystems:

artifact O der

{
i nclude "**/order/**"
apply "layering"
/1 Connect to the | Service interface of Custoner and Product
connect to Custoner.!|Service, Product.!|Service
}
artifact Customer
{
i nclude "**/custoner/**"
apply "layering"
}
artifact Product
{
i ncl ude "**/product/**"
apply "layering"
}

/1 By using apply we define the artifacts of "JDBC' in this scope
apply "JDBC'

We also apply "JDBC" in the outermost scope to ensure that the artifactsin there are defined exactly once.

For the sake of completeness, hereis the definition of "JDBC.arc":

/1 JDBC. arc
artifact JDBC
{

i nclude "**/javax/sql/**"

}

By using smart package naming it becomes easy to map your code to the architecture description. For examplethe order subsystem
would have four packages:

com hel | o2nor r ow. or der managenent . or der. servi ce
com hel | o2ror r ow. or der managenent . order. control | er
com hel | o2nor r ow. or der managenent . or der . dat a

com hel | o2nor r ow. or der managenent . or der . nodel

Asyou can seeit required relatively little effort to create aformal and enforceable architecture description for our example.

154

Defining an Architecture

11.12. Designing Generic Architectures Using
Templates

Many companies already have some established design patterns which are supposed to be used in most of their applications. For
example it makes sense to standardize the layering of business components. It also makes sense to establish specific rules how
one business component can access another one. The template feature in our architecture DSL makesit very easy to add generic
architecture blueprints to a quality model which would allow automatic verification of those architecture design patterns on any
business component without having to create a component specific architecture.

For generic architectures to work properly it is a good idea to think about code organization, in particular the efficient use of
name spaces or packages to reflect architectural intent. That can be easily done by using naming conventions:

com hel | o2nor r ow. { conponent - nane}. {| ayer - nane}

In this simple example we assume that the component name is always the third part of a package/namespace name. The fourth
part represents the layer. Knowing that we can how create a generic architecture description for this example:

155

Defining an Architecture

/'l aspect file layering.arc
strict exposed artifact Service

{
i nclude "**/servicel **"
}
strict exposed artifact Controller
{
include "**/controller/**"
}

require "JDBC

exposed artifact DataAccess

{
i nclude "**/data/**"
connect to JDBC
}
public exposed artifact Mde
{
i ncl ude "**/ nodel / **"
}
public exposed optional artifact Ui
{
include "**/util/**"
}
deprecated hidden artifact Leftovers
{
i nclude "**"
}

/1 main file conponents. arc
tenpl at e Conponents

{
i nclude "**/com hel | o2nmorrow (*)/**"
exclude "**/conf hel | o2nmorrow framewor k/ **"
artifact capitalize($1l)+"Conponent"
{
apply "layering"
}
}
public artifact Framework
{
i ncl ude "**/coni hel | o2norrow framewor k/ **"
}

In the aspect file "layering.arc" we define our standardized layering. At this point the layer artifacts do not really need to be
exposed. That will be needed later when we add connection schemes to our example.

In the main file we use the new template feature. An template is a specia kind of artifact that can dynamically create children
artifacts out of elements that are matched by the pattern. The pattern must include at least one pair of parentheses so that we
can extract the component name and use it as part of the name of a generated artifact. Inside of a template there dways is a
prototype artifact that uses a string typed expression as its name. '$1" represents the first extracted name part from the matched
architecture filter name. We append "Component" to the capitalized extracted name part to form the name of a generated artifact.
We explicitly exclude classes of a framework that is mapped to an extra artifact that has been declared to be public so that
everything defined in "Components' can useiit.

For our example we assume there are 3 components distributed over the following 3 packages:

156

Defining an Architecture

com hel | o2nor r ow. or der
com hel | o2nor r ow. cust omrer
com hel | o2nor r ow. pr oduct

Then the template artifact " Components" would generate 3 children artifacts named " OrderComponent", " CustomerComponent”
and "ProductComponent”. All of those would have access to "Framework" because it is a public artifact defined beneath
"Components'. But on the other hand the three generated components would not be allowed to access each other. Using templates
there are currently three ways to regul ate dependencies between generated artifacts:

» No dependency allowed (like in the above example)

« By marking the prototype artifact as "unrestricted”" the generated artifacts could use each other (from default connector to
default interface). It isalways possible to restrict the default interface and/or the default connector by defining them explicitly.

By using connection schemesin combination with artifact classes. That approach will be explained further down.

11.12.1. Using unrestricted generated artifacts

In the next example we use "unrestricted" in combination with aredefined default interface:

/1 main file conponents.arc
t enpl at e Conponents

{

i nclude "**/con hel |l o2norrow (*)/**"
exclude "**/com hel | o2norrow franmewor k/ **"

unrestricted artifact capitalize($1)+"Conponent"

{
apply "layering"

interface default

{
}

export Service, Mdel, Uil

}

public artifact Framework

{
}

i nclude "**/cont hel | o2norr ow f ranmewor k/ **"

Now the 3 generated artifacts can call each other, but only the "Service", "Mode" and "Util" layers are exposed. If one of those
generated artifacts were to access the "DataAccess' layer of another one this would be marked as an architecture violation.

11.12.2. Using connection schemes to regulate accessibility

If you need more control about the way generated artifacts can interact with other generated artifacts we need to use connection
schemes in combination with artifact classes.

157

Defining an Architecture

/1 main file conponents. arc
class Layered

{
interface Service, Controller, DataAccess, Mdel, Util
connector Service, Controller, DataAccess, Mdel, Uil
}
connecti on-scheme C2C : Layered to Layered
{
connect Service to target.Service, target.Controller, target.Mdel,
connect Controller to target.Controller, target.Mdel, target. Uil
connect DataAccess to target.DataAccess, target.Mdel, target. Uil
connect Mbdel to target.Mdel, target. Uil
connect Uil to target. Uil
}
tenpl ate Conponents : Layered
{
i nclude "**/conif hell o2norrow (*)/**"
exclude "**/coni hel | o2norrow framewor k/ **"
artifact capitalize($1)+"Conponent"
{
apply "layering"
connect all using C2C
}

target. Util

Now you have total control about the way components access each other. The connection scheme determines for each of the
layerswhich layers can be used in the target artifact. The"connect all" statement declares the connection schemeto be used. The
scheme has to connect an artifact class to itself ("Layered” to "Layered" in this example) and prototype artifact must be of the

matching class. In our example that happens implicitly by using the class on the templ ate.

158

Defining an Architecture

11.13. Best Practices

This section explains how the views of Sonargraph can be used efficiently while working with the architecture definition and
investigating reported architecture violations.

Investigate Violations

Architecture violations listed in the Issues view can have different root causes. a) There is a violating dependency, b) the
architecture definition needs to be updated.

For further investigation, you can do the following:

Check the source code: Simply double-click on the violation.

I nvestigatethe dependency with mor e context: Right-click on theviolation and select " Show in Exploration View" — "Out".

Check the architectur e definition: Right-click on the violation and select "Show in Architecture View". The Architecture
view is opened with the artifact selected that contains the element causing the violation. Double-click on the artifact and the
Architecture File view is opened, highlighting the line of the artifact's definition.

Check the artifact dependencies. The description of the architecture violation contains more details, e.g. "[Static Method
Call] 'X" cannot access 'TypeA.java from'Y' ...". If you are interested in the context of the involved artifacts X' and "Y', open
the Architecture view viaright-click "Show in Architecture View". Open the context menu for the selected artifact and open

the architecture-based Exploration view via " Show in Exploration View" - "In And Out".

NOTE

The architecture-based Exploration view offers dependency information down to the component level, since that is
the smallest unit of assignment to an artifact.

Related topics:

Section 8.11.2.1, “Focus’

Section 8.11.1, “Exploration View”

159

Defining an Architecture

11.14. Architecture DSL Language Specification

For the sake of completeness please find aformal grammar of our architecture DSL in EBNF form. The semantics of the language
have been described in the preceding sections.

Body

Decl aration

d assDecl

C assMenber

Li st

Artifact Decl

Ext endDecl

Priority

Ext endBody

Di sconnect Decl

St er eoTypes

St ereoType

Decl arati on* Connecti on*

Artifact Decl
Ext endDecl
Appl yDecl
Requi r eDecl

I ncl udeDecl
Excl udeDecl

I nt erf aceExt
Connect or Ext
I nterfaceDecl
Connect or Decl

Schene

Cl assDecl

Tenpl at eDecl

"class" IDENT "{" O assMenber* "}"
"interface" List

"connector" List

I DENT ("," |DENT)*

StereoTypes "artifact” IDENT (":" IDENT)? "{"

"extend" | DENT "{"
St ereoType+ "extend"

Ext endBody "}"
| DENT "{" ExtendBody "}"

"priority" NUMBER

Decl arati on* Di sconnect Decl * Connecti on*

"di sconnect” | DENT? "from' |dentList

St er eoType*

"public"

"hi dden"

"l ocal "
"exposed"
"unrestricted"
"rel axed"
"strict"
"optional"
"depr ecat ed"

Priority? Body "}"

160

Defining an Architecture

Appl yDecl

Requi r eDec

I ncl udeDec

Excl udeDec

DependencyTypes

DependencyType

I nt erfaceDecl

I nt erfaceExt

I nt er f aceBody

| Decl aration

Connect or Decl

Connect or Ext

Connect or Body

CDecl aration

Export

I ncl ude

Specl dent Li st

Specl dent

"appl y" STRI NG

"require" STRING

"strong"? "include" STRI NG

"include" "all"

"include" "dependency-types" DependencyTypes
"excl ude" STRI NG

"excl ude" "dependency-types" DependencyTypes
DependencyType ("," DependencyType)*

| DENT

("override"|"optional")? "interface" I|DENT "{"

"extend" "interface" |DENT "{"

| Decl ar ati on*

I ncl udeDecl
Excl udeDecl
Export

| DENT

"override"? "connector"

"extend" "connector" |DENT "{"

CDecl ar ati on*

I ncl udeDecl
Excl udeDecl
I ncl ude

"export" SpecldentList

"include" SpecldentList
Specldent ("," Specldent)?*
"any" ("." |DENT)*

I DENT ("." |DENT)*

I nterfaceBody "}"

"{" ConnectorBody "}"

Connect or Body "}"

161

I nt erfaceBody "

Defining an Architecture

| dent Li st

Identifier ("," ldentifier)*

I DENT ("." |DENT)*

ldentifier

Connecti on "connect" "to" ldentList "transitively"?
"connect" ldentifier "to" ldentList "transitively"?

"connect" "to" IdentList "using" |DENT

"connection-schene" I DENT (":" IDENT "to" IDENT)? "{" TargetUse* "}"

Schene

Tar get Use "connect" ldentifier "to" TargetldentList

"connect" "any" "." Ildentifier "to" TargetldentList

TargetldentList = Targetldent ("," Targetldent)*

Tar get | dent = "target" ("." |DENT)+

! "target" "." "any" ("." IDENT)+
| DENT f("A".. RVAN - L A N G- A I W 2 R O L
Tenpl at eDecl ?&edems”wmﬂMe"I%M‘UH'HEWM“%”Tmmaw&My"P
Tenpl at eBody f Tenpl at el ncl ude+ Tenpl at eExcl ude* Tenpl Artifact Tenpl at eConnect *
Tenpl at el ncl ude = "include" STRI NG

Tenpl at eExcl ude = "excl ude" STRI NG

Tenpl at eConnect "connect" "to" ldentList "transitively"?
"connect" ldentifier "to" ldentList "transitively"?

|
| "connect" "to" ldentList "using" |DENT
|

"connect" "all" "using" |DENT

Tenpl Arti fact = StereoTypes "artifact” NameExpr (":" IDENT)? "{" Body "}"
NaneExpr = Naneltem

| Nameltem "+" NameExpr
Nanel t em = STRI NG

| "$" ["1"-"9"]

| TDENT "(" NaneExpr ")"

/1 '@ stands for any character except the context specific term nator
STRI NG ='" (@l A\ @* v | niom (@l T\ @* wion

162

Chapter 12. Visualizing Architecture
Aspects

Sonargraph’s domain specific language (DSL) to describe architecture aspects is very powerful. An architecture aspect consists
at least of 1 top-level architecture file that has been added to the architecture configuration and is checked automatically. Such a
top-level architecture file can include other architecture files reusing common definitions. For any checked architecture file (i.e.
an aspect) it is possible to generate a UML component diagram.

A UML component diagram complements in several ways our text based architecture aspects:

1. Itisacommonly accepted form of communicating architecture definitions.

2. It shows the resulting architecture aspect in 1 diagram even if it is spread over several files.

3. It can be used to cross-check the underlying text based architecture aspect (i.e. are the resulting restrictionsthe intended ones?).
Let's have alook at a concrete example. Suppose we want an architecture aspect containing 2 (vertical) slices (domain driven
divisions) Customer and Common and 3 layers (technical divisions) View, Model and Persistence. Furthermorewewant aseparate

License component usable only from the Common slice and a JDBC component usable only from the Persistence layers.

One way to express this with our architecture DSL would be the following:

163

Visualizing Architecture Aspects

&.Navigation|a?ﬁ Namsspacss['ﬂi Filssl = = O ||t Workspace | ' Issues[ﬁ, Slices.arc B@l 2 = A8
I:stystem.sonargraph 1 ?555 Slice
2
> (L Analyzers 3 interface View, Model
[Z] Architectural Views 4
hd [:Mrchitecturs 5 connector View, Model
FZJdbc.arc [Physicall ? ¥
8 connection-scheme Slicefccess : Slice to Slice
¥ Slices.arc [Physical, Chacked] 9 {
DBasslines 18 connect View to target.View, target.Model
5 (] Dashboards E connect Model to target.Model
> [Z]Models 13
[Z1Plugins 14 apply “./Jdbc.arc"
. 15
(21 Quality Gates 16 artifact Customer : Slice
DScripts 17
> [Z]Settings 18 apply "./Layers.arc"
19 connect to Common using SliceAccess
f:lTreamaps 28}
[Workspace 21
22 artifact Common : Slice
23
24 apply "./Layers.arc"
25 connect te License
26 }
27
28 artifact License
29 {
38
i1}
T Layers.arc &3 2 = 0
1 exposed artifact View
2{
3 connect te Model
4}
5
6 exposed artifact Model
71{
8 connect to Persistence
9}
1@
11 require "./Jdbc.arc"
12
13 hidden artifact Persistence
14 {
15 connect te JDBC
16 }
E, Jdbc.are 3 ’e = 0
1 artifact JDBC
2{
3
4}

Figure12.1. DSL Example

Our top-level architecture file would be Sices.arc, using Layers.arc and Jdbc.arc. Make sure to add the top-level architecture
file to the architecture check via the context menu entry Add To Architecture Check on the corresponding file. As you can see
above the Slices.arc is checked. Note that in the example above we have omitted al include patterns that would be needed to
match the code for the sake of simplicity.

Once we have a checked architecture file we can simply generate an UML component diagram via the context menu entry Show
in Architecture Diagram View on the corresponding file.

164

Visualizing Architecture Aspects

= Navigation |$‘ﬂ Namespaces |'?¢:T_ Filas| = = 0 |t§:ﬂ Workspace | ; Issues | E
& system.sonargraph 1 E'LBSS Slice
2
> [(Z1Analyzers 3 interface View,
[Z] Architectural Views 4
hd Dﬁrchitectura 5 connector View,
FIjJdbc.arc [Physical] ? ¥
fZ Layers.arc_[Physical] E connection-scheme S1
[g Sicos.rgy ¥
] Baselines & Delete Architecture File [./Slices.arc] connect View to

connect Model ta
> [Z]Dashboards ' Edit Architecture File [./Slices.arc]...

> [Models 1= Export Architecture to XML... . .
[Z1Plugins apply “./Jdbc.arc

" Remove From Architecture Check
(21 Quality Gate % artifact Customer :

[Z1 Scripts = " . " {
> [C]Settings = Show in Architecture Diagram View apply "./layers.

1 Treemaps = 2 Show in Architecture File View connect to Comma

}
[ZdWorkspace I Show in Architecture View

__ artifact Common : S1
23 {
24 apply "./Layers.
25 connect to Licen
26 }
27

28 artifact License

p—

Figure 12.2. Generate UML Component Diagram

In our example that results in the following UML component diagram:

Customer 3 |

111
P

= Common 3]

<<Exposed>> Common.View 3 |

<<Exposed>> Common.Model 3 |

=0— —C

<<Hidden>> Common.Persistence E —C

License 3 | JDBC T

Figure 12.3. UML Component Diagram

The generated UML component diagram is interactive in the sense that you can select different elements (e.g. components,
connectors, interfaces). The selected element is highlighted in yellow along with it’s connected elements (e.g. a connector that
isincluded in ahigher level connector), reachable (i.e. allowed) elements are highlighted in green. Components a so might have
child components, such components can be expanded and collapsed (e.g. Customer and Common).

Connectors and interfaces that show a small solid black rectangle on their anchor point are directly defined by their component.
The ones without that decorator are coming from child components.

165

Visualizing Architecture Aspects

The different elements also offer a tooltip showing interesting information about incoming/outgoing connections and other
aspects. Clicking into the tooltip window will leave it open (until pressing ESC). The content of the tooltip may be selected

and copied.

The currently visible UML diagram may be exported as an image using the context menu.

The components are layout in a levelized grid. Components with no incoming connections are on top, components with no
outgoing connections are on the bottom. The further down acomponent is, the more other components depend on it. Components
on the same level have more incoming dependencies from left to right. Components with the same number of incoming
dependencies have more outgoing dependencies from left to right.

Aslong asthe view stays open it is also updated when saving changes to the underlying architecture file(s).

L ets cross-check the usage of our JDBC component by selecting it:

= Customer 3]
<<Exposed>> Customer.View $:|
O—
o— —
<<Exposed>> Customer.Model E
o—]
<<Hidden>> Customer.Persistence E
o—|
= Common]
<<Exposed>> Common.View 3 |
O—
o— —
<<Exposed>> Common.Model [|
o—]
o— —C
<<Hidden>> Common.Persistence $:|
o—|
o —q

License 3 |

JDBC £]

<
Artifact: JDBEC

Incoming connections: 2
- [Customer] Customer.Persistence.default
- [Cemmen] Common.Persistence.default

Outgoing connections: 0
ESC to close

Figure 12.4. Cross-check the JIDBC Component

Aswe can see JDBC may only be used from the Persistence layers. More details are provided by the tooltip of the component.

166

Visualizing Architecture Aspects

Let's check our License component:

Customer 3 |

111
L1

B Common]

<<Exposed>> Common.View 3 |

<<Exposed>> Common.Model T |

o —

<<Hidden>> Common.Persistence 3 | —C

License 1 | JDBC]

= | —
Interface: [License] License.default

|z not experted by any interfaces.

Does not export any interfaces.

May be used from 4 connector(s):

- [Common] Commeon.default

- [Common.Model] Common.Model.default

- [Common.Persistence] Common.Persistence.default
- [Common.View] Common.View.default

ESC to close

Figure 12.5. Cross-check the License Component

Great, our License component may only be used from the Common dlice. Again, more information is provided by the tooltip
of theinterface.

167

Chapter 13. Interactive Restructuring and
Code Organization

Sonargraph offers the concept of the architectural view to enable:

Interactive restructuring a software system via refactorings.

Interactive organization of a software system via architecture artifacts. Components (physical) or top-level programming
elements (logical) are assigned to those artifacts based on the package, namespace or directory structure or based on an
architectural pattern language overcoming structural constraints.

Generation of architecture DSL files that can be automatically checked.

Generation of refactoring lists that are applied to the "production” modifiable (virtual) model.

An Architectural view isan Exploration view with architecture modeling capabilities (see Section 8.11.1, “Exploration View”).
An Architectural view is created using a specific structure mode and by applying operations to it. It is created based on the
currently loaded (parsed) system after applying the selected virtual model. Multiple architectural views can be defined that are
each persisted in an individual file.

Creation of an architectural view which is persisted in afile. Use menu "File" - "New" - "Architectural View" — "New
Architectural View..." or right-click inthe Filesview on the Architectural Views node and use the corresponding context menu
entry. Choose between 4 model structures (physical with or physical without root directories, logical system or logical module
scope) when creating an architectural view. An existing architectural view can be opened from the files view via the context
menu or via double-click. Both "create" and "open" interactions require aloaded parser model.

The architectural view shows a tree-like structure down to component level (physical) or top-level programming element
(logical).

Selection support by pressing SHIFT in combination with the arrow keys (up and down) or left mouse click for bulk selection.
Use the modifier key (CMD, CTRL) of your operating system in combination with left mouse-click to add or remove elements
to/from the current selection.

Artifacts with their properties can be created either based on a selection or empty. Try the context menu on selections (right
mouse click) to see what is possible. F2 allows editing 1 or multiple artifacts.

Assign/remove elements to/from existing artifacts via drag and drop.
Change parent/child structures of artifacts via drag and drop.

Assign components (physical) or top-level programming elements (logical) to artifacts with manual filter definition using
patterns. All assignment strategies from the architecture DSL are supported, see Section 11.1, “Models, Components and
Artifacts” and following chapters.

Define explicitly allowed artifact connections.

Hide non-artifact/non-module nodes in their corresponding artifacts to make them unaccessible.
Apply delete refactorings to non-artifact/non-modul e nodes.

Apply delete refactorings to dependencies.

Apply move refactorings to components (physical) or top-level programming elements (logical).
Apply rename refactorings to non-artifact/non-modul e nodes.

Use focus operations to visualize only certain elements of the Architectural view.

Create packages, namespaces or directories when needed as targets for move refactorings.

168

Interactive Restructuring and Code Organization

 Create 'Findings' based on dependencies. Those findings appear in a list, have a name an optional description. Optionally
dependencies violating the architecture contained in a finding can be ignored. It is also possible to apply focus operations
based on findings.

» Theoperationsyou apply (e.g. create/edit artifacts, move elements, delete elements...) may be seenin the operationsview. The
operations may aso be deleted from that list using the context menu. Operations that have no effect (e.g. a previous element
isno longer their because the code changed) are marked with awarning marker.

» Thearchitectureischecked in real-timemeaning that you see the dependencies changing their colorsaccordingtotheir violation
state when applying operations.

 Undo/redo of operations.

» Forward/backward navigation.

» Export what you see into images files on disk.

* Generation of an architecture DSL file based on the model defined in the architectural view.
» Export of resulting refactorings into an Excel file.

» Export of resulting violationsinto an Excel file.

» Theviews Properties, Parser Dependencies (Out) and Parser Dependencies (In) react to the selection in the Architectural view
and show the corresponding additional information of the selected element.

Levelization Mode and Operations

Since the Architectural view is designed to create architecture aspects it aways shows the levelization mode widget (see
Section 8.11.1.1, “Levelization”). Architectural view operations can only be applied when the levelization mode is set to 'Non
Artifacts Only' since the artifacts are not shown in their definition order.

169

Interactive Restructuring and Code Organization

13.1. Assigning Elements to Artifacts

The Architectural view offers 2 strategies to assign elementsto artifacts:

» Explicit assignment per drag and drop based on either package/namespace/directory or components (physical) or top-Level
programming elements (logical). Alternatively the ‘Move' dialog can be used.

» Manual filter management based on components (physical) or top-Level programming elements (logical) based on patterns
supporting different underlying identifiers or annotation, super class or super interface dependencies.

NOTE: An artifact has either explicitly assigned elements or has a manual filter but not both. Artifacts with explicitly assigned
elements and manua filters can be mixed in one Architectural view.

When creating/editing an artifact the manual filter can be managed on the second page of the artifact wizard.

[0]) ® Sonargraph - Mew Artifact
| Filter
/* [Core] Architecture Filter Name Physical: v
Filter [O] Matching " 2
Matching
@ < Back cancel | (ETINEN

Figure 13.1. Artifact Filter
The basic flow to add a new pattern is as follows:

» Choose the assignment strategy by pressing the button marked with '1'. There you can choose between several options
summarized below.

» Add anew pattern by pressing the button marked with 2",
* Edit the pattern in the field marked with '3'. The currently matching elements are show in the area labeled with 'Matching'.

» Once the pattern is valid the icon on the button marked with '4' turns green. If you are satisfied press the button to add it to
the already existing pattern shown in the area labeled with 'Filter'.

170

Interactive Restructuring and Code Organization

HINT

Moving the mouse pointer on top of the assignment strategy label (‘[Core] Architecture Name Physica:' in the
screenshot) will show atool tip explaining the pattern usage with example. The tool tip is focusable. Clicking into it
will convert it into asmall dialog staying o top supporting selection/copy of the shown text.

Available assignment strategies:

Strategy Structure Mode Type Languages
Architecture Filter Name Physical All
Physical

Architecture Filter Name Logica All
Logica

Physical Filter Name Logical All
Workspace Filter Name Physical, Logical All
Extends Class Physical, Logical All
Implements Interface Physical, Logical Java, C#
Has Annotation Physical, Logical Java
Has Annotation Value Physical, Logical Java
Header Path Physical C,C++

Table 13.1. Available Assignment Strategies

See Section 11.1, “Models, Components and Artifacts’, Section 11.1.1, “Using other criteriato assign components to artifacts”
and Section 11.1.2, “List of predefined attribute retrievers’ in the architecture DSL documentation for examples.

171

Chapter 14. Examining Changes

Sonargraph provides an overwhelming amount of information for large systems. Most of the times comparing the information
against abaseline and focussing on the changesis enough - like anewspaper versusawhole encyclopedia. Thisfeatureisavailable

in Sonargraph viathe " System Diff" view that can be opened via"Window" - "Show View" - "System Diff" . The baselineis
represented by an XML report and can be applied by clicking the links at the top of the view opens the dialogs:

1. "New Baseline": Allows creating and directly applying a new baseline, e.g. at the beginning of a feature implementation or
before changing the software system. Adding some context info makes it easier to identify the report later on.

2. "Open Baseline": Allows selecting an existing XML report from disk, e.g. to compare the current system against a report
generated by Sonargraph-Build at the end of the last sprint. Previously selected baselines are displayed in the table with the
most recently used at the top.

3. "Download Baseline": Allows downloading an existing XML report from your Sonargraph-Enterprise server.
4. "Export Diff Report": Generatesa HTML report of the current diff information.

5. "Detach Baseling": Disablesthe System Diff analyzer. Thisisuseful to speed up processing when you modify the configuration
for alarge system.

TIP

The same can be achieved by changing the analyzer execution level to anything below "Full" viathe menu " System™
- "Analyzer Execution Level".

Two types of baselines can be created: "System" and "Local" baselines. A system baseline is meant to be useful for all users
of the Sonargraph system and is used by Sonargraph-Build. Thus, it is stored in the Sonargraph system's directory "Baselines".
System baselines are usually created at the beginning or end of arelease. A local baselineis only useful for the current user and
usually has a shorter life-span. Examples are baselines created before a feature isimplemented.

TIP

If abaselineis generated at the beginning of afeature implementation, the System Diff view provides a quick overview
about changes related to Sonargraph issues and how the overall state of the system has devel oped.

NOTE

Thisfunctionality isonly available in the commercial version of Sonargraph.

Differences are detected related to the system configuration (path, name, features, analyzers, scripts, plugins), system-level
metrics, workspace (filter, modules, root directories), issues, resolutions (ignores, tasks, refactorings), cycle groups, duplicate
code blocks and Architecture Models, i.e. checked architectures. More information about a detected change is provided in the
"Details" column. The comparison for architectures is done on the 'model’ level, i.e. changes in comments, formatting changes
and changes that do not alter the semantic of the model are not reported. The following screenshot shows changes in the issues
view with afocus on cycle group issues;

172

Examining Changes

I-‘QjS)rstem éE' System Diff &2 ,‘}* Metrics | % Workspace | ;' (1) Issues| 9 Ignore| (2 () Tasks| 4% (1) Refactorings | £3% (1) Cycle Groups 5| Duplicate Code Blocks

E,E' Mew Baseline E5* Open Baseline 4@ Download Baseline 2 Export Diff Report - Detach Baseline

Status: Diff computed on 2020-11-25 15:07:17

Configuration \-‘Qg () System \-}* Systemn Metrics | B8 Workspace | 'y (1) Issues & Ignore| [5 () Task| 4 (1) Refactoring L340 Cycle Groups @ Duplicate Code Blocks

Issue [14] Severity Category Element Change Dretails Provider Resolution
¥ Component cycle .. & Warning Cycle Group %% Component cycle group 1.7 ! Added 3 cyclic compeonents Core = MNone
¥ Component cycle .. & Warning Cycle Group %Y Component cycle group 1.2 “ |mproved Parser dependencies to remove: 6-> 4 Core = MNone
%% Component cycle .. & Warning Cycle Group %% Component cycle group 1.4 “ |mproved Mew cycle group split from: Compenen... Core = MNone
¥ Component cycle .. & Warning Cycle Group %% Component cycle group 1.6 = |mproved Mew cycle group split from: Compenen... Core = MNone
¥ Component cycle .. & Warning Cycle Group %% Component cycle group 1.8 < |mproved Involved cyclic elements: 4 -> 3 Core = None
¥ Component cycle ... & Warning Cycle Group %% Component cycle group 1.5 & Medified 1 of 5 cyclic elements has changed (20... Core = MNone
¥ Component cycle .. & Warning Cycle Group % Component cycle group 1.10 & Meodified 2 of 5 cyclic elements have changed (60... Core = MNone
%% Compenent cycle .. & Warning Cycle Group k5 Component cycle group 1.9 [Baseling] v Removed Integrated into: Compenent cycle grou.. Core = MNone
%% Component cycle .. & Warning Cycle Group % Component cycle group 1.6 [Baseling] v Rermoved Integrated inte: Compenent cycle grou.. Core = Mone
%% Component cycle ... & Warning Cycle Group k31 Component cycle group 1.10 [Baseline] v Removed Split into: Component cycle group 1.4, .. Core = MNone
£ Component cycle .. & Warning Cycle Group E31 Component cycle group 1.5 [Baseling] v Removed 3 cyclic components Core = None
%% Component cycle .. & Warning Cycle Group %8 Component cycle group 1,11 A Worsened Parser dependencies to remove: 4 -> 6 Core = None
%% Component cycle .. & Warning Cycle Group %% Component cycle group 1.9 A Worsened Mew cycle group integrating baselineg.. Core = MNone
%% Component cycle .. & Warning Cycle Group % Component cycle group 1.1 A Worsened Invelved cyclic elements: 3 -> 4 Core = None

Figure 14.1. System Diff View (I ssues)
NOTE

Since the cycle group names are not stable, the matching is done based on the contained elements. If up to 40% of
the cyclic elements have changed, the cycle groups are matched, otherwise they are treated as different groups and are
reported as removed from the baseline and added in the current system.

A similar approach istaken for duplicate code blocks, where the individual occurrences are matched against each other,
tolerating extension and shortening of blocks.

The following types of changesin cycle groups are detected:
1. Added: Cycle group was not present in baseline.

2. Removed: Cycle group existed in baseline but is no longer present. If two or more baseline cycle groups are integrated into a
single cycle group or abaseline cycle group is split into several smaller cycle groups, thisisindicated in the "details* column.

3. Improved: Cycle group consists now of fewer elements and/or has fewer parser dependencies to remove.

If acycle group is the result of splitting a baseline cycle group, thisisindicated in the "details" column. Cyclic elements of
this group are reported as added.

4. Worsened: Cycle group consists now of more elements and/or has more parser dependencies to remove.
If acycle group isthe result of integrating two or more baseline cycle groups, thisisindicated in the "details" column.

5. Modified: If up to 40% of the cyclic elements have changed but the number of cyclic elementsin the cycle group isthe same
it isidentified as the same group and marked as modified.

If aworsened cycle group is opened in the Cycle view, the added elements are highlighted. See “Highlighting Added Cyclic
Elements’ for details.

The tab "Cycle Groups' provides additional details about the added/removed cyclic elements. Filter options on the top-right
corner of the tab allow to hide unmodified cyclic elements or issues with resolution.

173

Examining Changes

5 System | £ System Diff 52| J4 Metrics| 15 Workspace|) (1) Issues| & Ignore| 5| () Tasks| % (1) Refactorings | % (1) Cycle Groups | Bl Duplicate Code Blocks = 0

£ New Baseline €5 Open Baseline @ Download Baseline {2 Export Diff Report &% Detach Baseline

Status: Diff computed on 2020-11-25 15:07:17

Configuration ﬂqj (1) System rE" System Metrics | Bl Workspace | ;' (1) Issues & Ignore | (=] (1) Task | 44l (1) Refactoring E3 4] Cycle Groups |f].| Duplicate Code Blocks =R
Cycle [14] Size Scope Change Details Resolution Filter Options
w &% Component cycle group 1.9 5 miml /4 Worsened New cycle group integrating baseline groups: Component cycle group 19, Co... = MNone
JSeom/hZm/test/unified/Ajava @ Unmodified Baseline cycle group: Compenent cycle group 1.6
JScom/hZm/test/unified/B.java @ Unmodified Baseline cycle group: Compoenent cycle group 1.6
Jcom/hZm/test/unified/C java @ Unmodified Baseline cycle group: Compenent cycle group 1.9
Jcom/hZm/test/unified/D java @ Unmodified Baseline cycle group: Compenent cycle group 1.9
Jeom/h2m/test/unified/E.java 9 Added
%% Component cycle group 1.5 5@iml & Modified 1 of 5 cyclic elements has changed (80% similarity). Component cycle group 1.4.. = Mone
%% Component cycle group 1.10 [Baseling] 5@iml + Removed Split into: Compenent cycle group 1.4, Component cycle group 1.6 = Mone
w % Component cycle group 1,10 5@iml & Modified 2 of 5 cydlic elements have changed (60% similarity). Component cycle group 1. = Mene
Jeom/h2m/test/modifiedtoomuch/Ajava @ Unmodified
JSeom/h2m/test/modifiedtoomuch/B java @ Unmodified
JSeom/h2m/test/modifiedtoomuch/Cjava @ Unmodified
JSeom/h2m/test/modifiedtoomuch/D.java + Removed
JSeom/h2m/test/modifiedtoomuch/D1 java 9 Added
JSeom/h2mj/test/modifiedtoomuch/E java + Removed
JSeom/hZm/test/madifiedtoomuch/El.java 1 Added
%% Component cycle group 1.1 4 miml /i Worsened Invohved cyclic elements: 3 -= 4 = None
~ &% Component cycle group 1.8 3 Eiml = Improved Involved cyclic elements: 4 -» 3 = MNone
JSeom/hZm/test/improved/smaller/Ajava @& Unmodified
Jcom/hZm/test/improved/smaller/B java @ Unmodified
JScom/hZm/test/improved/smaller/C.java @& Unmodified
Jeom/h2m/test/improved/smaller/D.java + Removed
~ %% Component cycle group 1.7 3miml ¥ Added 3 cyclic compenents = Mene v

Figure 14.2. System Diff View (Cycle Groups)

Current Limitations

Thefollowing changes only indirectly affect the Sonargraph issues, but will be treated as changes by the diff detector. Theissues
in the baseline report will be reported as removed and the issues from the current system as added, despite the fact that the issues
arelogically the same:

1. If an element (e.g. type, method) or one of its parents (e.g. namespace, module, root) is renamed, its fully qualified name
changes and thus its issues are reported as changed.

2. If ascript or an architecture file is renamed, the origin of the issues generated by those resources is changed.

3. If artifactsin architectures are renamed, the resulting issues cannot be matched.

NOTE

Aswith every modification: Frequent and small changes are easier to review than big-bang refactorings.
This feature has been introduced with the Sonargraph release 9.13 and we will continue improving the precision of

the results and integrating it into other views in upcoming releases. Feedback is always welcome and can be sent to
<support @el | o2nor r ow. conp.

Export Diff Report to HTML

The System Diff view alows exporting the current info to HTML as the following screenshot illustrates. Sections that contain
changes are marked with an exclamation mark "(!)" in the navigation area on the top left.

174

Examining Changes

HELLOZ2MORROW

(1) System

SONARGRAFPH
Workspace

(1) Issues
Ignored Issues
Tasks

i) s System Diff Report for CyclesDiff
(1) Cycle Groups

Path: D:\00_repo\sangicom.hello2morrow.sonargraph.language.provider.java\src\test\diff Cycles\current\CyclesDiff.sonargraph
System Description:

Sonargraph Version: 9.13.0.100

Current Virtual Model: Modifiable.vm

Analyzer Execution Level: Full

Diff Creation: 2020-02-03 10:21:25 +0100

Baseline Report: D:\00_repo‘sgng\com.hello2morrow.sonargraph.language.providerjava\src\test\diffCycles\baseline\CyclesDiff_Baseline.xml
Baseline Creation: 2020-01-29 10:35:52

Baseline Context Info: Baseline for testing cycle diff

System Properties

Property Change Details
Id Modified f6dac8962bc63a6549cdd3781e473df0_b -> fodac8962bc63a6549cdd3781e473df0_c
Description Modified This is 3 multi line test ->
Path Modified D:\00_repo'\sgng\com.hello2morrow.sonargraph.language.providerjava'srcitest\diffCycles\baseline\CyclesDiff. sonargraph -» D:

\src\test\diffCycles\current\CyclesDiff. sonargraph

System Metrics (Unmodified) 7.

Workspace (Unmaodified) 1.

Issues [wop)
Issues: 15
Change Issue Details Severity Category
Added Component cycle group 1.7 3 cyclic components Warning Cycle Group
Added Component cycle group 1.10 5 cyclic components Warning Cycle Group
Worsened Component cycle group 1.11 Parser dependencies to remove: 4 -> 6 Warning Cycle Group
‘Waorsened Compaonent cycle group 1.9 New cycle group integrating baseline groups: Component cycle group Warning Cycle Group
1.9, Component cycle group 1.6
‘Worsened Component cycle group 1.1 Invalved cyclic elements: 3 -> 4 Warning Cycle Group
Modified Component cycle group 1.5 1 of 5 cyclic elements has changed (20% tolerance). Component cycle Warning Cycle Group
group 1.4 -> Component cycle group 1.5
Improved Component cycle group 1.2 Parser dependencies to remove: 6 -> 4 Warning Cycle Group
Improved Component cycle group 1.4 New cycle group split from: Compeonent cycle group 1.10 [Baseline] Warning Cycle Group

Figure 14.3. HTML Diff Report

175

Chapter 15. Defining Quality Gates

Starting with version 10.3 Sonargraph provides the option to define quality gates (commercial license required). A "quality gate"
consists of aset of conditions. If one or more conditions are not met, thisis flagged by a"Quality Gate Condition Failed" issue.
Conditions define the expectations for the current system's state as well as for an expected quality trend w.r.t adefined baseline.
Some sample conditions:

+ "Lessthan 10 error issues without resolution."

* "No threshold violations for metric 'Core:SourceFile:TotaLines."

» "No additional error issues."

» "Number of architecture violations must be reduced by at least 10%."

* "Anincrease in the Average Component Dependency (ACD) must be lower than 5%."

Sonargraph allows the definition of any number of quality gates and validates those that are "activated”, similar to architectures
and scripts. Activated quality gates are validated by the "Quality Gate" analyzer. A quality gate consists of two sections, the
section for conditions based on the current system state and the section for conditions based on the system diff with respect to a
baseline (see Chapter 14, Examining Changes). The Quality Gate view shows the conditions at the top and the table in the lower
half lists the matched issues/ elements for the selected condition.

e System | £ System Diff ,I.—o Metrics | 1% Workspace |y () Issues | €5 Ignore | (3 (1) Tasks | # Refactorings E,} Coupling 2

Condition Status Information
~ BB Current System Conditions 4 Passed
B <= 0issues of type 'ComponentCycleGroup' with severity 'Any' and resolution 'Mone' 4" Passed 0 issues matched (0 excluded)
B <= 0issues of type 'NamespaceCycleGroup' with severity 'Any' and reselution 'Mone’ 4 Passed 0 issues matched (0 excluded)
ﬂ <= 0 issues of type 'CriticalComponentCycleGroup’ with severity 'Any' and resolution 'None' " Passed 0 issues matched (0 excluded)
B <= 0issues of type 'CriticalNamespaceCycleGroup' with severity 'Any' and resclution 'None' 4 Passed 0 issues matched (0 excluded)
~ BB Baseline Conditions 4 Passed
ﬂ Change of metric value for 'Core:Systern:Acd’ must be <= 5,00% 4 Passed 166,02 -> 168,57 (+1,54%%)
ﬂ Change of metric value for 'Core:Systerm:MaxAcd’ must be <= 5,00% 4 Passed 95,93 -» 96,42 (+0,51%)
ﬂ Change of metric value for 'Core:Systerm:Meccd' must be <= 5,00% + Passed 14,35 -= 1453 (+1,28%)
Element [1] Change Information Category Provider
M ACD M Worsened 166,02 -= 168,57 (+2,53) Cohesion/Coupling, John Lak.. Core

Figure 15.1. Quality Gate View
TIP
Anunlimited number quality gatesis supported, so thereisno reason to put too many conditionsinto asingle quality gate.

NOTE

Conditionsfor the current system's state can only be defined on issues. If you want to set a condition for a certain metric
value, define athreshold for that metric and then check on the existence of threshold violations.

176

Defining Quality Gates

15.1. Creating Quality Gates

A new quality gate can be created via the main menu "File" - "New" - "New Quality Gate..." or by selecting the "Quality
Gates' folder in the "Files" view and opening the context menu.

Define Conditions for the Current System's State

A condition for the current system'’s state can be created via the context menu of the "Current System Conditions' node. If a
metric id is specified, only threshold violations for that metric are matched.

2 System | 27 System Diff [Metrics | 1% Workspace | 'y (1) Issues | & Ignore | (2 (1) Tasks | #5] Refactorings | [Code Smells &2 | ¥% Cycle Groups| EHl Duplicate Code Blocks | |

Condition Status Information
~ BB Current System Conditions 4 Passed
ﬂ <= (thresholdudalatinne far metric 'CareCanrcaFilelinacOfC adel with it Ereae Warnina lafal and recalytion ' o Passed 0 issues matched (0 excluded)
w m Baseline Conditiq A Sonargraph - Edit Quality Gate Condition O * @ Failed
E Mo additional o 'Stri(@ Failed 2 izsues matched (0 excluded)
ﬂ No additional| Quality Gate Condition esoluti 4 Passed 0 issues matched (0 excluded)

Issue Type: | 8y |
Severity: [Error [“1Warning [Info
Resolution: [“]Mone [Jignore []Task

Upper Limit: | 0 |
| Metric ID: | Core:SourceFile:linesOf Code | L
lzsue/Metric [0] Info Text nation

<= 0 threshold violations for metric 'Core:SourceFile:LinesOfCode’ with severity 'Error,
Warning, Info' and resolution ‘None'

|f?> Finish Cancel

Figure 15.2. Current System Condition Dialog
TIP
To match threshold violations, simply specify ametric id and use the wildcard "any" as issue type.

Define Conditions With Respect to a Baseline

Conditions with respect to a baseline can either be defined based on issues or metric values. The "Baseline Issue Dialog" looks
similar to the "Current System Condition" dialog and adds additional input fields for threshold violations.

177

Defining Quality Gates

3 Systemn | £ System Diff 5 Metrics te% Workspace | ;' () Issues | €9 Ignore | (5] () Tasks | @] Refactorings [¥ Code Smells 22 | 8% ¢

Condition

~ B Current System Conditions

Status
4 Passed

g <= Othreshold violations for metric 'Core:SourceFile:LinesOfCode' with severity 'Error, Warning, Info' and resolution ' 4 Passed

Vv m Baszeling Candit
ﬂ Mo ad| A Sonargraph - Edit Baseline Quality Gate Issue Condition O

g MNoad

Quality Gate Condition

4 Passed
% |g' and resolut 4 Passed
p' and resoluti 4 Passed

Issue Type: | ThresholdViclation |

Severity: [Error [Warning | Info

Resolution: [IMone [Jignore []Task

Metric ID: | Core:Systermn:Acd |
Issue/Metric [0]] Operator: =

[] Absclute Threshold:

et Information

Relative Threshold: | [(fiE

Type of Check: (® Strict () Relaxed

Info Text

‘Error, Warning' and resclution 'Mone’, relative value diff must be <= 500%

Mo additicnal or worsened threshold viclations for metric 'Core:Systern:Acd’ with severity

|:?>| Finish Cancel

Figure 15.3. Baseline I ssue Condition Dialog

TIP

If small changes to existing threshold violations should be tolerated, define an absolute or relative threshold for the

metric value difference.

Some issues support a"relaxed" check, meaning that already existing issues that got dlightly worse are tolerated. The following
table provides the details about the effect of "relaxed" and "strict", an "X" means that the condition will fail for this change, "-"

means that the change is tolerated:

Change

"Relaxed" | "Strict" (default)

Any added issue of severity error or warning.

X

Any issue that changed severity from warning to error.

Any issue whose resolution got removed.

Cycle group with more involved elements.

X
X
X

Cycle group with more parser dependencies to remove.

Threshold violation with a worsened metric value, if no diff threshold is defined.

Threshold violation with a worsened metric value, if the value diff is below the defined
threshold.

X | X | X| X| X| X]| X

Duplicate code blocks with more occurrences.

X
X

Duplicates code blocks with more involved lines.

Table 15.1. Effect of " Relaxed" and " Strict"

178

Defining Quality Gates

Define Baseline Metric Conditions

Values for some metrics will grow as more code is added to the system. An example are coupling metrics. It is nevertheless
useful to monitor how much a metric value changes, as abig increase is usualy an indicator for abad design decision. Changes
in metric values can be monitored via "Baseline Metric Conditions'. The dialog alows the configuration of an absolute and/
or relative threshold:

- -] Baseline Conditions & Passed
ﬂ Change of metric value for 'Core:Systern:Acd’ must be <= 500% & Passed 166,02 -= 168,57 (+1,54%)
8 ch A Sonargraph - Create New Baseline Quality Gate Metric Condition O X i 95,93 -> 96,42 (+0,31%
g ch Passed 14,35 -» 14,53 (+1,28%
Quality Gate Metric Condition
Element [1] Category Prow
M ACD Metric |D: | [Core:System:Acd | Cohesion/Coupling, John Lak... Core
Operatorn: = ~
[] Absolute Threshold: | |
Relative Threshold: | 0.05 |
Info Text
Change of metric value for 'Core:Systern:Acd’ must be <= 500%
= Propertie | View Operations | & [Automated] ./SuperTypel
—) S c | nust be <= 5,00%
Fully Qualifie{ = i ance ns:BaselineMetricCondition|Core\:System’: Acd|Le
Mame T ¥ T e b L b
Figure 15.4. Baseline Metric Condition Dialog

Only metrics on 'System' level are supported because only those values are currently part of the 'System Diff".

179

Defining Quality Gates

Define Quality Gate Exclude Filters

For both sections of the quality gate it is possible to define "Exclude Filters'. |ssues matched by an exclude filter will no longer
affect the outcome of any issue condition contained in the same section, i.e. either conditions for the current system'’s state or

baseline conditions.

I-‘@S)rstem ’E'E' System Diff ,51 Metrics | 15 Workspace | j (1) Issues | & Ignore | (3 (1) Tasks | 4] Refactorings &}Code_Smells %% Cycle Groups B Duplicate Code Blocks E,\:}Coupling E

Condition Status Information
BB Current System Conditions MNeone
w H Bazeline Conditions @ Failed
£ No additional or worsened issues of type 'Any’ with severity ‘Error, Warning, Info' and resolutior &3 Failed 8 issues matched (1 excluded)

= Exclude issues of type 'ClassFileQutOfDate’ with severity "Warning' and resclution 'None' Filter matches 1 issue(s) of which 1 issue(s) match 1 condition(s)

A\ Sonargraph - Edit Quality Gate Exclude Filter O X

Quality Gate Exclude Filter

Issue Type: | [ClassFileQutOfDate

Severity: Error [#] Warning Info
- < Resolution: [Mone Dlgnore [Task =
Issue/Metric [1] Catego
. Metric ID: | Any | X
@ Class file is out-of-date - file ./com/hello2morrow/sonargraph/build/c.. Worksp
Info Text

Exclude issues of type 'ClassFileQutOfDate’ with severity "Warning' and resolution ‘Mone’

'\/7\' Finish Cancel

Figure 15.5. Exclude Filter Dialog

TIP

The column "Information" provides details about how many issues a filter matches and how many conditions are
affected.

180

Defining Quality Gates

15.2. Using Quality Gates in the Continuous
Integration (CI) Build

Sonargraph-Build can be used to enforce quality gates. All that is needed is a failSet configuration including the issue type
"QualityGatelssue'. The example below shows the XML configuration file for the shell integration of Sonargraph-Build. The
same options exist for the other integrations (Ant, Maven, Gradle):

<sonar graphBui | d

<fail Set>
<fai | OnEnpt yWor kspace>f al se</ f ai | OnEnpt yWor kspace>
<i ncl udes>
<i ncl ude>
<i ssueType>Qual i t yGat el ssue</i ssueType>
</incl ude>
</incl udes>
</fail Set >
</ sonar gr aphBui | d>

Theresult of the quality gate check is printed to the console (slightly formatted here):

Checking active quality gate(s)...
[Failed] Quality Gate ' No_Additional _Cycl eG oups
[Fail ed] Baseline Conditions:
[Failed] Condition "Change of netric value for 'Core: System CyclicConponents' nust be
<= 1,00 (absolute)" [0 -> 2 (+2)]
[Failed] Condition "Change of netric value for 'Java: System CyclicityPackages' nust be
<= 1,00 (absolute)" [0 -> 4 (+4)]

[Failed] Quality Gate 'No_Threshol d_Viol ati ons
[Failed] Current System Conditions
[Failed] Condition "<= 0 threshold violations for netric ' Core: Type: Sour ceEl enent Count
with severity 'Any' and resolution 'None'" [5 issues matched (0 excluded)]
[Passed] Condition "<= 0 issues of type 'Threshol dViolation
with severity '"Error' and resolution 'None'" [0 issues matched (0 excl uded)]
[Passed] Baseline Conditions:
[Passed] Condition "No additional or worsened threshold violations for netric
' Cor e: Type: Sour ceEl enent Count' with severity 'Any' and resol ution ' None'"
[0 issues matched (0 excluded, O tolerated)]
Check of quality gates failed
Quality Gate Summary: 2 of 2 failed.

1

181

Defining Quality Gates

15.3. Current Quality Gate Limitations

Asthe Quality Gate feature is pretty new, there are still some things on our roadmap that will be implemented in the following
releases:

e TheQuality Gate analyzer isthe last analyzer executed, therefore changesin quality gate issues are not part of the system diff.

182

Chapter 16. Extending the Static Analysis

Sonargraph presents the possibility to write Groovy scripts that will be run over the current software system in order to get
specific results.

Scripts support the following use cases (among others): Create and calculate custom metrics, identify specific elements, list
dependencies to methods, create issues for detected anti-patterns.

To get an idea of the Script API's power, it is recommended to examine the existing scripts contained in the provided quality
models. For the core and each of the supported languages (Java, C#, C++) ascript named VisitorExample.scr existsthat illustrates
the available Script API.

BN #gN | F | T O ||&Csyst.. | Metri.. | 8 Work... | 5, Work... | ' Issu... | (3 Reso..| 9 Core.. 52 | €% Cycl.. | B Dupl...| - Model| = B
A
{/Create visitor
.:Qj system.sonargraph ICoreVisitor v = coreAccess.createVisitor()
» (21 Analyzers //Visit Togical modules
. 2] Dashboards v.onLogicalModule
~ {
= Models LogicalModuleAccess TogicalModuleAccess -»
4 |_] Scripts

~ imt incoming
4[] Core int outgoing
- %9 CoreVisitorExample

TogicalModuleAccess. getReferencingElementsRecursively(Aggregator.MODULE_N
logicalModuledccess. getReferencedElementsRecursively (Aggregator.MODULE_NA

i L NodeAccess nextNode = result. addNode(modulesNode, TogicalModuleaccess. getModule())
- %" CompilationError.ser result.addNode(nextNode, "Used from “+incoming+” and using "+outgoing+” namespaces in ot

- % CountlinesOfCode.scr bon't £ - M visitchild £t isit al th

) . //Dan orget to call visitChildren - we want to visit also the namespaces.
- % FindSynchronizedMeth v.visitChildren(logicalModuleAccess);
> % Testscr h

//Visit namespaces
v.onLogicalModuleNamespace

LogicalNamespaceAccess namespacefccess -»
if (I namespaceAccess. isExcluded() && !namespaceAccess.isExternal())

if (! namespaceAccess.isPart())

S raata +ha rarcacanndina nada

< >
% [Default] ¥ | P Run Update Automated Script
@ Elements| & Dependencies LE&E Tree| ;' Issues Preview | M Metrics Preview

Marme [0 elements]

Figure 16.1. Script View
The Script view has two main sections:

e Script editing area: Inthisareayou can write Groovy based scriptsto retrieve information of your system in ways that would
not be possible otherwise.

» Resultsarea: Shows the results from the executed script which can be software system elements, dependencies between the
different components of the system, atree structure of elements, alist of issues, or metrics created by the script.

The execution of the current script can be triggered by clicking the button "Run" below the text edit area.

16.1. Interaction with Auxiliary Views

The Script view offers interaction with the Markers Auxiliary view which lists all markers of the script file. Typically those
markers indicate compilation errors.

183

Extending the Static Analysis

16.2. Groovy Scripts from Quality Model

When creating a new system , an existing quality model can be used, which usually contains some scripts. (See Section 6.4,
“Quality Modd”)

QT Use quality model
Core/Default.sggm v/ B

> ./SuperTypeUsesSubType.scr
% ./BadSmells/FeatureEnvy.scr
% ./BadSmells/UnusedTypes.scr
% ./BadSmells/Bottlenecks.scr

JURIK

Figure 16.2. Quality Model

16.3. Creating a new Groovy Script

A new Groovy script can be created by "New" — "Other" - "Script" , or by selecting a Groovy script directory in the Files view

(See Section 8.7, “Managing the System Files’) and choosing "New Script..." in the context menu. The "New Script Wizard"
will open.

Specify name and description and manage parameter definitions

MName: MyMNewScript

Description: | This is a new script to detect cool stuff]

Languages: ¥ Core Etg# [NJava []C/C++

Parameter [2 elements] Type Description Default V... Possible Values on
P timeout Integer When scripts are scheduled for automated execution they .. 10
77 output String When a path is specified the output of the script is written...

®

Figure 16.3. New Script
On the main page the following metadata of a Groovy script can be edited:
* the name of the Groovy script (must be unique in its directory)
* adescription for the Groovy script
* atimeout value in seconds: whenever the Groovy script takes more time to run, it is stopped automatically
« the output file path where the textual output produced by println-Statements within the script is written.

 alist of APIsthe Groovy script can use: "Core" contains functionality available to all languages, selecting any of the other
languages offers additional functionality. Obviously, relying on alanguage specific APl makes the script language dependent.

184

Extending the Static Analysis

16.3.1. Default Parameters in a Script

Every Groovy script has abinding with some predefined parameters

* out the output stream of a Groovy script. Useout . println "nmessage" orprintln "message" inthescript. The
output will appear in the Console view and in the output file (in case an output parameter has been specified).

* result of type Result Access (see JavaDoc) for adding the results of a Groovy script.
* coreAccess of type CoreAccess (see JavaDoc) for al Groovy scripts.

 javaAccess of type JavaAccess (see JavaDoc) for Groovy scripts using the Java API.
» cppAccess of type CppAccess (see JavaDoc) for Groovy scripts using the C++ API.

 csharpAccess of type CSharpAccess (see JavaDac) for Groovy scripts using the C# API.

16.3.2. Adding Parameters

User defined parameters may be added to a Groovy script. In the Groovy script they can be referenced by their name, preceded
by "parameter".

There are three different types of parameters:
» String parameter adefault value can be given, alist of candidates (allowed values) can be given
» Integer parameter adefault value can be given, alist of candidates (allowed values) can be given

» Boolean parameter alowed values are "true” or "false" (case insensitive)

Mame: level

Description: Artifact Level

Type: @) String (lnteger () Boolean
Default Value: | Class W

Possible Values: | Class SourceFile Namespace

0K Cancel

Figure 16.4. Parameter Definition

Now if you defined a parameter "level", it can be referenced in your script with name "parameterLevel":

185

./html/scriptApi/index.html/../com/hello2morrow/sonargraph/core/controller/system/script/ResultAccess.html
./html/scriptApi/index.html/../com/hello2morrow/sonargraph/core/controller/system/script/CoreAccess.html
./html/scriptApi/index.html/../com/hello2morrow/sonargraph/languageprovider/java/controller/system/script/JavaAccess.html
./html/scriptApi/index.html/../com/hello2morrow/sonargraph/languageprovider/cplusplus/controller/system/script/CppAccess.html
./html/scriptApi/index.html/../com/hello2morrow/sonargraph/languageprovider/csharp/controller/system/script/CSharpAccess.html

Extending the Static Analysis

W Ef:’;i Workspace | - Workspace D... | , Issues (!)

2

4

5
6
7
8
9
10
11
12
13

= q
[=| Resolutions

1 ICoreVisitor v = coreAccess.createVisitor()

3 switch(parameterLevel)

case "Class™
NodeAccess classNode = result.addNode("Bottleneck Classes")
v.onType

{

TypeAccess type ->
if(type.isExternal() || type.isExcluded())
{

return

Figure 16.5. Parameter Usagein Script

186

Extending the Static Analysis

16.3.3. Creating Run Configurations

Run Configurations allow a parameterized execution of ascript. Right-click on aGroovy script in the Filesview and select "New
Run Configuration...".

Specify name. description and values for the defined parameters.

Mame: SourceFile
Description:
Parameter Type Value From [Default]
timeout Integer 10 Yes
output String Yes
level String SourceFile w | Mo - Restore?

®

Figure 16.6. Create Run Configuration
A Run Configuration consists of
¢ aname
 adescription
* alist of parameters and values that are inherited from the script's default Run Configuration.

Run configurations are used in two places. When a Groovy script isrun manually, and when aGroovy script isrun automatically.
They are saved in the same directory as the script as <scriptname>#<runconfigname>.rcfg

16.4. Editing a Groovy Script

To edit the metadata (description, APl use, parameters, run configuration) of a Groovy script, select the script and choose "Edit
Script..." from the context menu, or press F2 . To edit the Groovy script source code, open it in the Script view.

16.4.1. Auto Completion

To start auto completion inthe Script view, placethe cursor at the position you want autocompletion for and pressCTRL+SPACE .

TypeAccess type ->

:f(t‘lpe-is # isAbstract() : boolean - TypeAccess

retul @ isAnonymous() : boolean - TypeAccess
} @ isDefinedInEnclosingElement() : boolean - ProgrammingElementAccess
@ isExcluded() : boolean - ElementAccess

I_/Top-_le @ isExternal() : boolean - ElementAccess
List refin

List refec

Figure 16.7. Auto Completion

187

Extending the Static Analysis

Delayed Auto Completion

The first request for the auto completion might take several seconds to complete since some initialization needs to be
done behind the scenes.

16.4.2. Compiling a Groovy Script

After editing a script the "Run" button changes to "Compile". Press " Compil€" first, and after successful compilation the button
will change its caption to "Run". If the Groovy script wasn't compiled successfully, there will be some Markers applied to the

Groovy Script.

switch(parameterLevel)

{
case "Class™
NodeAccess classNode = result.addNode("Bottleneck Classes")

v.onType
{

[x] TypeAcces type ->
if(type.isExternal() || type.isExcluded())
{

return

}

//Top-level type

llck vallm T aTiiman dmoema masla Lmnim B L L L A B R e AN PV TVAR feaea AN
Compile Update automated Script
& Elements 3 Dependencies | [2- Tree| ;' Issues Preview | [Metrics Preview
Name

2. Parser Dependencies (Out) | "% Parser Dependencies (In) [2(Markers 23] console
Line Provider

Name [1 elements] Description
9 Core

€3 Script compilation error unable to resolve class TypeAcces

Figure 16.8. Script View Marker

[}

X Script compilation error (Core: unable to resolve class TypeAcces
@ line 9, column 13.)

ALE & od AVAR R § o

{

return

}

N

Figure 16.9. Script View Marker Tooltip

Update Automated Script

If this Groovy script is configured to be run automatically, the button "Update automated Script” will be active after a
change, successful compilation and saving the script.

16.5. Producing Results with Groovy Scripts

Press the "Run" button to run a Groovy script manually. The combo box allows to change the Run Configuration to be used.

After a script was executed, the results of the scripts appear in five different tabs. The tabs that really hold results are marked
with an exclamation mark. The class ResultAccess (see JavaDoc) provides methodsto add different types of results.

The "Elements” and "Dependencies’ tab hold alist of elements/dependencies, which were added by the script with

resul t. addEl enent ()

188

./html/scriptApi/index.html/../com/hello2morrow/sonargraph/core/controller/system/script/ResultAccess.html

Extending the Static Analysis

@ Elements (1) '% Dependencies 'T:EETree ()| ', Issues Preview (1) | ™ Metrics Preview

Name [2 elements]
[J] ./com/hello2morrow/foundation/utilities /OperationResult.java

./Jcom/hello2morro
|J] ./com/hello2morrow/foundation/utilities /StringUtility.java

Figure 16.10. Script View Elements Tab

The"Tree" tab holds structure of nodes, which were added by the script with
resul t. addNode()

A node can have child nodes, or child e ements.

& Elements (1) '% Dependencies T:;; Tree (1) o Issues Preview () | ™ Metrics Preview
W (00 Bottleneck Source Files (2)

¥ |J]./com/hello2morrow/foundation/utilities /OperationResult.java (2)
p- 00 refingTo (18)
P 00 refedBy (12)

P |J] ./com/hello2morrow/foundation/utilities /StringUtility.java (2)

Figure 16.11. Script View Tree Tab

The "lssues Preview" tab shows alist of issues, which were added by the script with one of
resul t. addl nf ol ssue()

resul t. addWar ni ngl ssue()

result.addErrorlssue()

& Elements (1) '% Dependencies EfTree ()| ' Issues Preview () ™ Metrics Preview

¥ /% Warning
Vv ', Bottleneck

[J] ./com/hello2morrow/foundation/utilities/OperationResult.java
|J] ./com/hello2morrow/foundation/utilities /StringUtility.java

Figure 16.12. Script View I ssues Preview
The "Metrics Preview" tab shows a list of metrics, which were added by the script with

Metricl dAccess id = coreAccess. getOr CreateMetricl d(
" Supert ypeUsesSubt ype",

"Supertype uses subtype",

"A super type nust not know its subtypes",
false /*non-float*/);

resul t.addMetricVal ue(id, coreAccess, warnings)

Elements % Dependencies LEEE Tree | 'y lssues Preview (1) | M Metrics Preview (1)

Metric / Element Metric Yalue
4 ¥ Supertype uses subtype - 4 super type must not know its subtypes
&5 project_1 4

Figure 16.13. Script View Metrics Preview

189

Extending the Static Analysis

16.6. Running a Groovy Script Automatically

It is possible to run Groovy scripts automatically whenever the workspace is refreshed. Go to "System™ - "Configure..." -
"Automated Scripts' and add the Groovy script + Run Configuration.

‘> Automated Scripts Automated Scripts

Bl Duplicate Code

&) Thresholds Script [0 elements] Run Configuration E
Sonargraph - Add As Automat.. = O
Seript: % JFindSynchronizedMethods.scr %
Run configuration: C@D [Default] w

Figure 16.14. Script Runner

Run a Script With Different Run Configurations

It is possible to add the same Groovy script multiple times with different run configurations to the list of automated
scripts.

Metrics and I ssues

When a script running automatically creates a metric, this metric is displayed in the Metrics view. Executing the same
script manualy lets the metric show up in the "Metrics' tab of the Script view, but not in the Metrics view.

The same applies for any issues created during the script execution.

16.7. Managing Groovy Scripts

The Files view shows the organization of Groovy scripts. To add a new Groovy script directory, select an existing one (or the
root directory "Scripts") in Files view, and choose "New Script Directory..." from the context menu.

To delete a script directory, select it in Files view, and press DEL , or select "Delete Script Directory" from the context menu.
All contained Groovy scripts and Groovy script directories will be deleted recursively.

Single or multiple selected Groovy scripts can be deleted via DEL , or viathe context menu.

Automated Scripts

If any of the deleted Groovy scripts was configured to be run automatically, it will be automatically removed from the
list of automated scripts.

16.8. Groovy Script Best Practices

This chapter provides hints for improving the performance of Groovy scripts. This becomes more important the more scripts are
configured to be executed automatically and thus run on every "refresh".

16.8.1. Only Visit What is Needed

The Script API uses the "Visitor" pattern to traverse the information of a software system. The pattern is very popular and
explanations are easy to find.

190

Extending the Static Analysis

Use the Right "visit" Method

Choosing the "visit" method that matches the script's purpose leads to fewer methods being called by the visitor and faster
execution:

1. CoreAccess.visitLogicalModuleNamespaces() : Visits logical module namespaces and contained elements. See Section 5.4,
“Logica Models’ for details.

2. CoreAccess.visitLogica SystemNamespaces() : Visits logical system namespaces and contained elements. See Section 5.4,
“Logical Models’ for details.

3. CoreAccess.visitParserModel() : Visits all elements of the parser model, i.e. no logical system or module namespaces.

4. CoreAccess.visitModel() : Visitsall elementsof themodel. Most powerful, but obviously the most detailed and slow execution.

Only Visit Interesting Parts of the Model

If you are not interested in visiting externals or certain root directories, stop the visitor traversing that part of the model. The
easiest way to exclude external elements from the analysis:

vi si tor.onExterna

//We are not interested in externa
return;

}

Similarly, if you only want to investigate dependenciesto external elements, you can stop the visitor from traversing the internal
model:

vi sitor.onMdul e

//We are not interested in interna
return;

}
If you want to check only a specific module named "Test", you can do the following:

v. onExt er na

{
}

vi sitor.onMdul e

return;

Mbdul eAccess nodul e ->
if (modul e. get Nane().equal s("Test"))

/lonly visit children of this nodule
vi sitor.visitChildren(nodul e);

}
}
visitor.onType
{
TypeAccess type ->
//Prints out only types of nodule "Test"
println "Type $type";
}

The same approach should be used to limit the visiting of other model elements (e.g. namespace, component, type, method, field).

191

Extending the Static Analysis

16.8.2. Find Text in Code

If you want to create metrics or issues based on text contained in source files, the visitor offers the method onSourceFile() and
the class SourceFileAccess that provides access to individual lines.

Combined with regular expressions this is a very powerful method to identify anything in the code that is not contained in the
model, e.g. FIXME or TODO in comments.

The following is an excerpt from the script FindFixmeAndTodolnComments.scr contained in the "Core" quality model:

def todoPattern = ~/\/\/\s?TODQO ?\b/;
I CoreVisitor visitor = coreAccess.createVisitor();

vi sitor.onSourceFile

{

| Sour ceFi | eAccess source ->
i f(source.isExcluded())

{
}

Li st <l Sour ceLi neAccess> |ines = source. get SourcelLi nes();

return;

TIP

The compilation of the regular expression pattern is an expensive operation and should be done in the "global" section
of ascript, not within avisit() method.

TIP

Limit the number of scripts using SourceFileAccess. Sonargraph does not keep file contents in memory, thus visiting
source files and traversing individual lines causes the actua files being opened. This is a costly operation and slows
down the execution.

If you notice that various scripts contain source matching and this is time consuming, think about minimizing file
operations by violating the "Single Responsibility Principle’ and merge the functionality of several scriptsinto one.

192

Chapter 17. Using Additional Plugins

Sonargraph offers a plugin infrastructure, so that it is possible to extend Sonargraph's internal model and to create additional
issues. Plugins can contribute to the internal model during the ‘create model' and 'create dependencies phases and create issues
during the 'analysis phase. Currently the following plugins are available:

* Spring Microservices
» Swagger

» Spotbugs

e PMD

* |ssues Importer

17.1. Plugin Configuration

Configuration of a Sonargraph plugin is system specific, and stored in Sonargraph's system file folder 'Plugins as file
‘<pluginld>.xml'. For every plugin there will be an initial default configuration in memory with the 'Enabled’ parameter set to
‘false’. The configurations can be edited either by double clicking the corresponding configuration or by using the menu 'System-
>Configure..." and locating the corresponding plugin property page manually. Changing the default configuration will create the
corresponding file on disk containing the settings.

17.2. Spring Microservices Plugin

The'Spring Microservices plugin for Java exposes web resources of SpringBoot applications and dependencies between them. It
finds exposed web service end points by |ooking at annotati ons like org.springframework.web.bind.annotati on.RequestM apping.
If amethod is annotated with one of those annotations the web resource will be added as a child to the method in the Navigation
view.

Currently, clients using the Spring FeignClient annotations are detected as 'Web Call' elements. More client frameworks will
be added in the future. For each of those methods, a 'Web Call' child element is created, and a corresponding 'Web Resource
element istried to be found in the workspace. The web resources could have been created by another plugin. If no matching 'Web
Resource' is found, an 'External Web Resource' element is created as child element of the plugin's external node.

SpringBoot offers various ways of configuration. The plugin currently expects a standard directory layout for SpringBoot
modules, with configuration files (application.properties, application.yml, bootstrap.properties, bootstrap.yml) contained in the
modul€'s 'src/main/resources/' directory. It can also analyze configuration files contained in SpringBoot applications annotated
with org.springframework.cloud.config.server.EnableConfigServer. Currently, configuration loaded from classpath is supported
(spring.cloud.config.server.native.search-locations = classpath:/shared).

Please contact us if you have a use case and need some support!

The following screenshots have been created for the Piggy Metrics application.

193

https://github.com/sqshq/PiggyMetrics

Using Additional Plugins

=i Navigation E?;B Mamespaces | o Files =
W B, account-service
w [Jcode/account-service/src/main/java
w f com.piggymetrics.account
~ £ client
v [J] AuthServiceClientjava
5 AuthServiceClient java
~ 3 AuthServiceClient
Jw_-,} AuthServiceClient.class
v a createlser(User) : void
#. fuaafusers [POST]
[J] StatisticsServiceClient.java
[J] StatisticsServiceClientFallback java
£ config
~ £ controller
v [J] AccountController.java
5 AccountControllerjava
w {5 AccountCentroller
Jw_-,} AccountController.class
@ accountService
v & createMewhccount(User) : Account

= faccounts/ [POST]

a nethcrountBulamelStrinal » Account

Figure 17.1. Spring Microservices Plugin Web Call (above) and Web Resour ce (below)
Dependencies between web calls and web resources are treated like any other dependency and can cause architecture violations.

ﬂQijstem EE' System Diff &IME‘U\[S e Workspace | 'y (1] lssues & Ignore| = Tasks 4] Refactorings 0 Cycle Groups @ (!) Duplicate Code Bloc... | 3> FindWebResourcesAnd... Q Exploration E Modulesare, — O

= @ 3
Element Affected Elements @ Eror A& Warn... @ Info)
i Installation 0 0 0
w o€ PiggyMetrics 3 3 0 0
v =) Workspace 2 3 0 0
v B account-service 2 2]]
w [} Jcode/account-service/src/main/java 2 2 0 0
~w 1 com.piggymetrics.account.client 2 2 0 0
v [J] AuthServiceClient.java 1 1 0 0
w &3 AuthServiceClient 1 1 o o
v & createUser(User) : void 1 1 0 0
%. /uaa/users [POST] 1 1 0 0
[J) StatisticsServiceClient java 1 1 0 0
~ =} notification-service 1 1 [} [}
"7 fcode/notification-service/src/main/iava 1 1 0 0 7
Issue [3] Description Severity Category Element To Element
i 4 Architecture Violation [Http Call] 'account-service' cannot access 'UserController.java’ from 'auth-service' @ Error Architecture Violation % /uaa/users [POST] =" fuaafusers [POST]
¥ Architecture Violation [Http Call] 'account-service' cannot access 'StatisticsController.java’ from ‘statistics-service’ @ Error Architecture Viclation %- /statistics/{accountMame} [PUT] U= /statistics/{accounthame} [P
4® Architecture Violation [Http Call] 'notification-service’ cannot access 'AccountControllerjava’ from 'account-service' @ Error Architecture Violation %= /accounts/{accountMame} [GET] 0= /accounts/{name} [GET]
< >
=] Properties &2 | ‘5. Parser Dependencies (Out) | ‘5. Parser Dependencies (In) | [2i Markers | &= Architectural View Operations| Bl /FindWebResourcesAndCalls, [Default] = 3
@ Architecture Violation
Artifact Dependency J/Modules.arcaccount-service -> ./Modules.arcauth-service
Dependency From Name /uaa/users [POST]
Dependency Te Name Juaa/users [POST]
Dependency Type Http Call
Description [Http Call] ‘account-service' cannot access 'UserControllerjava' from 'auth-service'
Name Architecture Violation
Resolution No resclution
Type Core:ArchitectureViolation

Figure 17.2. Architecture Violations for Dependencies between Plugin Elements
Related topics:
» Chapter 18, Investigating Microservice Dependencies

 Section 17.3, “ Swagger Plugin”

194

Using Additional Plugins

17.3. Swagger Plugin

The 'Swagger' plugin for Java exposes web resources and dependencies between them. It finds exposed web service end points
by looking at the javax.ws.rs.Path annotation. If a method is annotated with this annotation the web resource will be added as
a child to the method in the Navigation view.

The much more difficult part is to find out who is calling those web end points. Right now the plugin detects calls generated
by Swagger for the OkHttpClient framework. The generated client code and its class files need to be added to the Sonargraph
workspace. The plugin scans the generated Java code for web calls, creates a 'Web Call' element as a child element of the
originating method, and tries to resolve the web resource within the scope of the project. The web resources could have been
created by another plugin. If no web resource is found the called end point will show up under the "External (Web)" node in
the navigation view.

With the help of the plugin you can visualize the dependencies between your web/micro-services and al so define an architectural
model that would enforce restrictions on those dependencies. To achieve that just create a big Java project containing the code of
all your web/micro-services. The Swagger plugin will then automatically add web/micro-service dependenciesto the Sonargraph
model.

Please contact us if you have a use case and need some support!

Related topics:

» Chapter 18, Investigating Microservice Dependencies

 Section 17.2, “ Spring Microservices Plugin”

17.4. SpotBugs Plugin

SpotBugs (successor of FindBugs) looks for 'bugs' in Java code.

17.5. PMD Plugin

PMD finds 'violations (common programming flaws) in Java code.

The user can specify custom rule setsfor the PMD plugin as comma separated entries of the 'Rule Sets field on the corresponding
property page. If no rule set is specified for the PMD plugin an internal default rule set is used.

NOTE: The path of a custom rule set needs to start with either ./ or '../". Those relative paths are resolved relative to the parent
directory containing the Sonargraph system folder. E.g.: If the system is called 'MySystem' those relative paths are resolved
relative to the parent directory of the directory 'MySystem.sonargraph’.

17.6. Issues Importer Plugin

The plugin allows you to import issues generated by other toolsinto Sonargraph.
In the corresponding property page you can configure the following:

» A comma separated list of csv files. The file names should be relative to the Sonargraph system directory. Each line in these
files should have five columns separated by semicolons. The columns are line number, column number, affected file (absolute
path), error code as an integer and the error message itself.

» The ranges of error codes that would lead to an error, awarning or and info level issue. Ranges are described as a comma
separated list of integer ranges, e.g. '1-500, 600-999'

195

Chapter 18. Investigating Microservice
Dependencies

A lot of applications have been developed around 'Microservices. One big advantage of Microservices is their loose coupling
viaHTTP(S), which can turn into a disadvantage because dependencies between a large number of services are hard to track.

Sonargraph exposesthe dependenciesviaits'Spring Microservices and 'Swagger' plugins. All detected 'Web Resources and 'Web
Calls can belisted with the script 'Core/FindWebResourcesAndCalls.xml" which can beimported from the built-in quality model.
Executing the script, multi-selecting all found elements in the 'Elements Tab' of the Script View and opening the Exploration
View via the context menu creates a nice dependency overview between microservices as shown in the following screenshot
for the Piggy Metrics application.

L notification-service

[E = account-service
Bl & feode/account-service/src/main java
[1 com.piggymetrics.account

5] = statistics-senvice

B G fe istics-service/sro/mai
= £ com.piggymetrics.statistics

=P ava] [com.hell plugin.spring.microservices]

:_‘..u A i.ioflatest [GET] :-‘-u i.exch i.io/latest [GET]

[H = auth-service |, auth-service

Figure 18.1. Exploring Micr oser vice Dependencies

196

https://github.com/sqshq/PiggyMetrics

Investigating Microservice Dependencies

NOTE

With the help of the plugins and the script you cannot only visualize the dependencies between your microservices, but
also define an architectural model that would enforce restrictions on those dependencies. To achieve that just create a
big Java project containing the code of all your microservices.

Currently, calls and resources are detected for the above mentioned Java frameworks (see the detailed sections for
implementation details) as a starting point. Dependencies are resolved between web calls and web resources detected
by a plugin for any of the supported languages.

If you have the need for the support of a specific framework, please get in contact with us via
<support @el | o2nor r ow. conp!

Related topics:

» Chapter 17, Using Additional Plugins

e Section 17.2, “ Spring Microservices Plugin”
» Section 17.3, “ Swagger Plugin”

» Chapter 16, Extending the Static Analysis

197

Chapter 19. Build Server Integration

Several integrations exist to run the same Sonargraph quality checks on your build server. Sonargraph-Build can be downloaded
from our web site: https://mww.hello2mor row.convproducts/downloads Integrations are availableto start Sonargraph using Ant,
Maven, Gradle or Shell scripts. Plugins are available to visuaize the resultsin SonarQube and Jenkins . More details about
configuration options can be found in the user manual of Sonargraph-Build.

If you want to analyze a Java system with Ant on the build server, chances are high that the workspace definition contains class
root directories of the development environment and that those directories are not available on the build server. The following
section describes how workspace profiles can be used to solve this problem: Section 8.8.3, “Creating Workspace Profiles for
Build Environments’

Related topics:

» Section 8.8.3, “ Creating Workspace Profiles for Build Environments”

198

https://www.hello2morrow.com/products/downloads
http://www.sonarqube.org/
https://jenkins-ci.org/

Chapter 20. IDE Integration

The purpose of the IDE integrations of Sonargraph is to run the quality checks continuously during development. This helps
to prevent new problems being introduced into the shared code base: It is not needed to wait for the build server to report any
problems, but instead the IDE integrations of Sonargraph run quality checks in the background, whenever the IDE compiles Java
code. Problem and task markers are created for issues and resolutions and support the developer to fix the problems.

NOTE

The IDE must be started at least with a Java 21 runtime for the integration to work.

To ease navigating between Sonargraph and the Eclipse IDE, a remote selection mechanism has been introduced with version
11.1. This enables quick navigation to the right spot to fix something, when analyzing the code base with Sonargraph. And also
the other way, when the advanced visualization mechanisms of Sonargraph need to be used to get a better understanding while
coding. More details are provided in Section 20.3, “ Collaboration between Sonargraph and IDE”.

Currently, the IDE integrations only support Java systems.

20.1. Eclipse Plugin

To install the Sonargraph Eclipse plugin, run Eclipse and open menu "Help" — "Install New Software...". Add this update site
asanew location: https://eclipse.hello2mor row.com/SonargraphEclipse.site

After successful installation and arestart of Eclipse the additional menu entry "Sonargraph” should be visible. If not, check the
Eclipse "Error View" for any errors related to the plugin and get in contact with <suppor t @el | o2nor r ow. conp.

NOTE

Installing Sonargraph Eclipse plugin on Eclipse Oxygen with an already installed Groovy plugin may lead to some
Eclipse editors or views showing errors after arestart of Eclipse, dueto Groovy plugin's compiler resolver being broken
when there are multiple Groovy compiler bundles for the same Groovy compiler version. In this case it may help to
delete the Groovy compiler bundleintroduced by Sonargraph Eclipse plugin from pluginsfolder of your Eclipse Oxygen
installation. If you need further assistance please get in contact with <suppor t @el | o2nor r ow. conp.

TIP

Occasionally, Eclipse gets confused after installing plugins. If Eclipse fails to startup, configure the "-clean" startup
option inthe eclipse.ini file within you Eclipseinstallation. Thiswill clear any cached data. If the slightly longer startup
time bothers you, remove the option again. More details are available here: https://help.eclipse.org/index.jsp?topic=
%2Forg.eclipse.platform.doc.isv9o2Fr efer ence%2F mi sc%o2Fr unti me-opti ons.html

Activation

Y ou need to have avalid license or activation code in order to use the plugin. More details can be found in Chapter 3, Licensing.

Open the dialog via the menu "Sonargraph” — "Manage License..." and supply either the activation code or license file and
hit "Reguest”.

The Sonargraph iconin the Eclipsetoolbar indicates the current status of the plugin and itstooltip providesadditional information.
This makesit easy to spot, if the pluginis still analyzing, if there are any issues, etc.

199

https://eclipse.hello2morrow.com/SonargraphEclipse.site
https://help.eclipse.org/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fruntime-options.html
https://help.eclipse.org/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fruntime-options.html

IDE Integration

: P
- | |

S sgng-4.11 - com.helloZmorrow.sonargraph.star

Eile Edit 5g Llavigate Search Project

2@ viw|

-

[Pac.. &3

| Sonargraph - Analyzing... i

Figure 20.1. StatusIcon

The following sections describe common interactions and usage of the plugin.

NOTE

The IDE must be started with a Java 21 (or higher) runtime for the integration to work.

We tested the plugin successfully with Eclipse 4.32.0. If you notice any compatibility problems during installation,
please send us the Eclipse error log or a screenshot of the error and details about your Eclipse installation to

<support @el | o2nor r ow. conp.

20.1.1. Assigning a System

The next step after the successful installation and activation of the plugin isto open a Software System that has been previously
created using Sonargraph. Open the menu "Sonargraph” — "Open System..." and select the Sonargraph system.

B ' Sonargraph - Open Sonargraph Software System

Sonargraph Systemn Directory: | D:\Dﬁ_rep05\00_94—sgng\cDm.heIIDP_mDrrow.sonargraph.ide.ecIipse\src\test\exampIeSetup\prc| L

Filter:

Eclipse Java Projects
v (= project_1

v &

v (=4 project 3

v (=4 project_4

Thered decorators and black font indicate, which Eclipse projects could be mapped to Sonargraph modul es and which source and
class directories are part of the Sonargraph workspace. The mapping is done based on matching source root directories. Projects

Sou Show Matched Only onargraph Module Senargraph Source Directories
Show Unmatched Only iy module_1
s src/main/java [Z2 ./project_1/src/main/java
£ bin
2
= module_3
£5 5rc [Z2 ./project_3/src
=
£ bin
=i module_4
£ orc B ./project_4/src
=
A i

Figure 20.2. Open Sonargraph System

and directories that are not part of the Sonargraph analysis are indicated by a gray font.

20.1.2. Displaying Issues and Tasks

NOTE

The plugin currently always applies the default virtual model "Modifiable.vm®".

200

IDE Integration

NOTE

The number of Sonargraph issues and resolution markers might differ from the number of issues and resolutions
displayed in the Sonargraph application for the following reasons:

 Individual markers are created and attached to source files for each duplicate code block occurrence and each
component involved in a component cycle group. This makes it easier for the developer to spot a problem while
editing a source file, but results in a higher number of markers.

» No markers are created for ignored issues, because the developer cannot resolve them in the IDE.

» Markersare only generated for elements that are part of the currently monitored workspace. If a Sonargraph module
cannot be mapped to an Eclipse project, no issues and resolutions for elements contained in that module are shown.

Detected issues are shown in the standard Eclipse Problems and Tasks views. The view options allow to group problems by
"Type" as shown in the screenshot.

| Tasks % Sonargraph Issues [#] Markers %% Sonargraph Cycle Groups |[§] Problems 5% | = Progress fe Type Hierarchy = 0
=
3 errors, 24 warnings, 0 others - Show 3
Description Resource Type Severity Group By 5
~ @ Sonargra.ph Issue FES |t.ems) . Bl e l} Sort By 5
@ Architecture Vielation: [Constructor Call] 'Module3' canr ControllerTest3 java Sonar
@ Architecture Violation: [Local Variable] 'Module3' cannot ControllerTest3.java Sonar Java Problem Type New Problems View
@ Architecture Violation: [New] 'Module3' cannot access 'F ControllerTest3 java Sonar None Configure Contents...
t, Component cycle group 1.1: Java Module ‘'module_1" col Sonargraph Cyclelssue Configure Columns...
f, Component cycle group 1.1: Java Module 'module_1' coi FoundationTest! java Sonargraph Cycle Issue R —
f, Component cycle group 1.1: Java Module 'module_1" coi FoundationTest1_2,java Sonargraph Cycle Issue
&, Component cycle group 4.1: Java Module 'module_4' coi Sonargraph Cycle Issue
L e e T I B B B e LTI LIy e I Cmmarmran L LT EEP

Figure 20.3. Show Issuesin Problems View

It is also possible to configure a new Problems view via the Problems view's view menu and exclusively show the Sonargraph
issues by selecting "Configure Contents..." and filtering for the Sonargraph issues as shown below in the screenshot. This
configuration dialog can be opened via Problems view's view menu "Configure Contents...".

TIP

The same grouping and filtering options are applicable on the standard Eclipse Tasks and Markers views.

201

IDE Integration

S

[Show all items

() Show items that match all the configurations checked below
(®) Show items that match any configuration checked below

Configurations:

All Errors ~ Scope

New
[] Warnings on Selection (®) On any element

[] Errors/Warnings on Selection Remove (O On any element in same project
[J Errors/Warnings on Project (O On selected element only
(") On selected element and its children

() On working set: Multiple Working Sets

Rename

Select...

+ Description:

Text: | contains ~ |

Where severity is: []Error [] Warning [~] Info

~ Types

v Sonargraph Issue I
Senargraph Architecture 0T
Sonargraph Cycle Issue Deselect All
Sonargraph Duplicate |ssue
Sonargraph Generic Issue
Sonargraph Script lssue
Sonargraph Threshold Viol

[] Validation Message v
£ >

Select All

Use item limits

Mumber of items visible per group:
Restore Defaults Cancel

Figure 20.4. Problems View Configuration for Sonargraph Issues

Examining Cycle Group Issues

Sonargraph calculates logical namespace cycle groups, i.e. physical namespaces are merged on module or system level. The

Sonargraph Cycle Groups view can be opened via the main Sonargraph menu or via the context menu of a Sonargraph Cycle
| ssue marker.

202

IDE Integration

[] []

+=| Tasks |l Problems &3 |gi{ Sonargraph lssues |2/ Markers %% Sonargraph Cycle Groups =g Progress "Es Type Hie

3 errors, 24 warnings, 0 others

Description Resource Type
v 3 Sonargraph Issue (25 items)
@ Architecture Violation: [Constructor Call] 'Module3' canr ControllerTest3.java Sonargraph Architectur
@ Architecture Violation: [Local Variable] 'Module3' cannot ControllerTest3.java Sonargraph Architectur
@ Architecture Violation: [New] 'Module3' cannot access 'F ControllerTest3.java Sonargraph Architectur
Component cycle group 1.1: Java Module 'module_1' col a B 77 Tssue
Component cycle group 1.7: Java Module 'module_1' cor FoundationTes sote sue
Y Component cycle group 1.7 Java Medule 'medule_1' cor FoundationTes [Copy Ctrl+C sue
Component cycle group 4.1: Java Module 'module_4' col Delete Delete SUE
Component cycle group 4.1: Java Module ‘'module_4' cor Testd.java sue
Y Component cycle group 4.7: Java Module 'module_4' cor Testd_2.java e B0 sue
& Java Package cycle group 1: (45 Sonargraph Cycle Groups Vi Show In |
Y Duplicate code block 1 {line: B Project Explorer K ’ Quick Fix Cirl+1 te I=

Munlicrate Fadae klack 1 flinae ta e

Figure 20.5. Context Menu To Open Sonargraph Cycle Groups View

More detailed cycle group analysis (including possibilities to break them up) should be done with the Sonargraph-Architect
application as described in Section 8.10, “Analyzing Cycles’.

20.1.3. Suspending / Resuming Quality Monitoring

The Sonargraph quality checks are executed as an additional "builder" in the background whenever the project is built. If this
is too time consuming or you are currently not interested in the Sonargraph checks, the plugin can be disabled quickly viathe

menu " Sonargraph” — "Suspend Analysis’. Thisisequivalent to closing the system. Once the checks should be resumed, simply
select "Sonargraph” — "Resume Analysis'. Thisis equivalent of opening the system from snapshot and doing arefresh.

NOTE

If the class path of a monitored Eclipse project is modified or a monitored project is closed, the monitoring is
automatically suspended. Resume the monitoring, once you are finished with the workspace modifications.

20.1.4. Setting Analyzer Execution Level

The Sonargraph Analyzer Execution Level can be set viathe menu "Sonargraph” — "Anayzer Execution Level".

20.1.5. Getting Back In Sync with Manual Refresh

If you updated Sonargraph system files in parallel using the Sonargraph-Architect application, you can choose " Sonargraph” —
"Refresh System Files" to just update those resources.

If you naotice that some markers are not properly updated, or that the Sonargraph analysis has not picked up the latest changes,
please use the menu "Sonargraph” - "Reparse System" to bring the Sonargraph model back in sync with the Eclipse workspace.

Since Eclipse caches resources sometimes, you might see Sonargraph " Classfile out of date" issueson Eclipse startup. A "refresh”
of the Eclipse workspace followed by a build should solve it. If the changes are not picked up by Sonargraph, trigger a manual
"reparse” as described above.

TIP

If you notice any problem using the plugin, we a grateful to receive your feedback! The easiest way is to use the menu
"Sonargraph” - "Send Feedback".

203

IDE Integration

TIP

Wethink assertions are really helpful to ensure proper program execution and we are using them alot in Sonargraph.
Y ou can enable assertions for Eclipse by adding the -eaVM argument at the end of your eclipse.ini configuration file.

An error dialog will show up if an assertion error happens. Please take the opportunity to let us know about the error!
We will do our best to fix it as soon as possible.

20.1.6. Examining Changes

Similar to Sonargraph application, the Eclipse plugin allowsto track changes of issueswith respect to a baseline. The Sonargraph
menu allows the following interactions:

* New Basdline: Create and apply a new baseline, i.e. at the beginning of a feature development, to ensure that no new issues
are introduced.

* Open Baseline: Open an existing baseline, i.e. an XML report generated at the end of the previous release.

» Activate System Baseline: Switch to the baseline that is configured in the software system. Obviously, this menu is only
enabled if there is abaseline configured and it is currently not activated.

» Detach Baseline: Disconnect the current Sonargraph system from the baseline to see all existing issues.
» Export HTML Report: Create and open an HTML report focussed on the differences w.r.t the baseline.

Sonargraph issues are converted to Eclipse problem markers. If a baseline is applied, all unmodified issues are assigned the
severity "info". This sets them clearly apart from the added or changed issues which keep their original severity. The following
screenshot shows an Eclipse Problems view that has been configured to focus on Sonargraph issues only:

1*! Sonargraph lssues 3

0 errors, 1 warning, 2 others

Description Resource
w & Warnings (1 itern)

t, [Added] Threshold Vielation: Lines of Code = 1,111 (allowed range: 0 to 1.000) ProjectHandler.java
w 1 Infos (2 items)

i [Unmodified] Threshold Violation: Lines of Code = 1.004 (allowed range: 0to 1.000) BasicSystemInfoDiffProcessor.java
i [Unmodified] Threshold Vielation: Lines of Code = 1.006 (allowed range: 0 to 1.000) ReportExtensionjava

Figure 20.6. Sonar graph Issuesin Eclipse with Baseline Applied

There are no markers created for resolved issues. If you are interested which issues have been resolved, you need to create the
HTML report.

Sonargraph tasks and refactorings are also converted to Eclipse task markers. The change info (Added, Unmodified, etc.) is
prepended to the tasks description.

Current Limitations

Not all functionality related to the system diff has been implemented yet in the Eclipse plugin and the following list summarizes
the current limitations, which will be resolved in future releases:

1. The"Sonargraph Cycle Groups' view does not support the system diff and always shows the complete list of cycle groups.
To see diff information about cycle groups, you currently have to generate the HTML report.

2. The"Sonargraph Refactorings' view does not support the system diff and always shows the complete list of refactorings. To
see diff information about refactorings, you currently have to generate the HTML report.

Related topics:

204

http://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

IDE Integration

e Chapter 14, Examining Changes

20.1.7. Execute Refactorings in Eclipse

The list of Sonargraph refactorings definitions is shown in the Sonargraph Refactorings View. The view can be opened from

the Eclipse main menu "Window" - "Show View" - "Other...". Select the folder "Sonargraph” and select "Sonargraph
Refactorings'.

The "Sonargraph Refactorings” view offersfilter options in the top right corner. Refactorings can be filtered by status, priority,
assignee and description.

NOTE

Refactorings defined in Sonargraph might affect alot of resources. We recommend committing all pending changes to
your version control system before executing the refactorings, so you have a safe fallback.

NOTE

Executetherefactoringsin the order of their definition. Otherwise subsequent refactorings might no longer be applicable.

The Sonargraph plugin delegates the refactorings to the refactoring mechanism of Eclipse. Some Sonargraph refactorings cannot
be converted into a single Eclipse refactoring. The following refactorings need to be split:

1. Namespacerefactoringsthat effectively merge two packages by moving or renaming apackage into an existing target package.
2. Move refactorings that change the source root of a namespace or compilation unit.

3. Move refactorings of a package containing subpackages.

4. Movet+Rename refactorings are not supported as an atomic operation in Eclipse and need to be split.

The following steps are executed for each refactoring:

1. If the Sonargraph refactoring needs to be split, a confirmation dialog will inform you about the necessary actions.

2. The standard Eclipse refactoring dialogs are shown that allow you to control the affected resources (e.g. change names in
non-Java files) and preview the changes.

3. If you chose to deviate from the planned refactoring, a dialog prompts you to add a comment.

NOTE

Subsequent Sonargraph refactorings might become obsolete if you deviate from the planned refactoring!

4. Therefactoring log containing thelist of changed resourcesisshownintheend. Y ou can copy& paste these detailsas a protocol
e.g. into your task management system.

Related topics:
» Chapter 10, Smulating Refactorings

» Section 10.4, “Best Practices’

205

IDE Integration

20.2. Intellid Plugin

Toinstall the Sonargraph Intellij plugin run Intellij, open the Intellij Settings dialog, go to "Plugins' — "Browse repositories..."

- "Manage repositories...” and add a new repository supplying hello2morrow's Intellij plugin repository URL: http://
intellij.hello2morrow.com/sonargraphl ntelliJ/updatePlugins.xml

Once the repository is configured, select Sonargraph from the plugin list and click on the green install button in the description
area.

After successful installation and a restart of Intellij, the Sonargraph entry should appear under the "Other Settings' node in

Intellij's setting dialog. If not, check the Event Log view and Intellij's notifications for any errors related to the plugin and get
in contact with <suppor t @el | o2mor r ow. conp.

NOTE

Intellij version 2018.2 or newer is required for Sonargraph Intellij plugin to run.

Activation

Y ou need to have avalid license or activation code in order to use the plugin. More details can be found in Chapter 3, Licensing.

Open the dialog via Intellij's settings, then go to "Other Settings' — "Sonargraph” — "Manage License..." and supply either a
license file or the activation code, hit "Request” and "Install License" before closing the dialog.

The following sections describe common interactions and usage of the plugin.

NOTE

The IDE must be started with a Java 21 (or higher) runtime for the integrations to work.
We tested the plugin successfully with Intellid 24.2. If you notice any compatibility problems during installation,

please send us the IntelliJ error log or a screenshot of the error and details about your Intellid installation to
<support @el | o2norrow. conp.

20.2.1. Assigning a System

The next step after the successful installation and activation of the plugin isto open a Software System that has been previously
created using Sonargraph. On the Intellij settings, go to "Other Settings' — "Sonargraph” and select the Sonargraph system.

206

http://intellij.hello2morrow.com/sonargraphIntelliJ/updatePlugins.xml
http://intellij.hello2morrow.com/sonargraphIntelliJ/updatePlugins.xml

IDE Integration

[) ® Preferences
Q Sonargraph For current project

Appearance & Behavior Sonargraph Project Directory:

Keymap /Users/andreas/git/sgng2/com.hello2morrow.sonargraph.ide.intellij/intellij-plugin.sonargraph Select

Editor Sonargraph system directory is valid

Plugins

Version Control = Mapping of Modules

Build, Execution, Deployment IntelliJ Module » Sonargraph Module

Languages & Frameworks com.hello2morrow.common com.hello2morrow.common
com.hello2morrow.ext.slf4j <No Mapping>

Tools com.hello2morrow.license com.hello2morrow.license

Sonargraph com.hello2morrow.sonargraph.core com.hello2morrow.sonargraph.core
com.hello2morrow.sonargraph.ide.intellij com.hello2morrow.sonargraph.ide.intellij
com.hello2morrow.sonargraph.language.provider.java com.hello2morrow.sonargraph.language.provider.java
com.hello2morrow.sonargraph.plugin.api <No Mapping>
com.hello2morrow.sonargraph.plugin.api.java <No Mapping>

Activate Sonargraph on Project

Analyzer Execution Level: Basic E
Manage License... License Agreement... External Licenses ... About...
? Cancel “

Figure 20.7. Open Sonargraph System

Sonargraph will match its own modulesto Intellij's modules based on source root directories. The "Mapping of modules' table
shown above indicates the result of the matching process.

Once the system is opened and the matching is completed, use the "Activate Sonargraph on Project” to enable Sonargraph's
analysis and user interface componentsin your Intellij IDE.

The "Analyzer Execution Level" can be set to one of "Full", "Advanced", "Basic", or "Minimal". The tooltip shows which
Analyzerswill be run for each of the levels.

20.2.2. Displaying Issues and Tasks
NOTE

As of now, the plugin always applies the default virtual model "Modifiable.vm".

NOTE

The number of Sonargraph issues and resolution markers might differ from the number of issues and resolutions
displayed in the Sonargraph application for the following reasons:

« Individual markers are created and attached to source files for each duplicate code block occurrence. This makes it
easier for the devel oper to spot a problem while editing a source file, but results in a higher number of markers.

» No markers are created for ignored issues, because the developer cannot resolve them in the IDE.

207

IDE Integration

» Markersare only generated for elements that are part of the currently monitored workspace. If a Sonargraph module
cannot be mapped to an Intellij project, no issues and resolutions for elements contained in that module are shown.

Detected issues are shown in the standard Sonargraph tool window in the Intellij IDE. The tool window has the following tabs:
Architecture Violations, Issues, Cycles, Tasks, and Refactorings.

Sonargraph - L
ﬁ‘j Architecture Violations (0) Issues (3) | Cycles (18) | Tasks (2) | Refactorings (0)
'8‘ Issue ~ Description Severity Element To Element
® Duplicate Code Block 2 occurrences with 50 line(s) found in 2 file(s) % Warning FH Duplicate code block 1
% | @ Duplicate Code Block 2 occurrences with 50 line(s) found in 2 file(s) Y, Warning FH Duplicate code block 1
“~ Threshold Violation Comment Lines = 70 (allowed range: 0 to 67) | & Warning | B Appjava [|

@)

»

':‘ 6: TODO gcg:\-’ersion Control Terminal ASonargraph

Figure 20.8. Sonargraph Tool Window

20.2.3. Toolbar

Sonargraph's tool window has atoolbar on the left hand side which has four buttons :

Make Project & : Triggers the source code compilation directly from Sonargraph's tool window.

Synchronize # : Reloads the information that is currently contained in Sonargraph's system files. If changes are detected, the
user interface will be updated accordingly.

Reset % : Recreates graphical the components in Sonargraph's tool window and synchronizes the information contained in
the system files.

Send Feedback @ : This button will open Sonargraph's feedback dialog. Any information submitted from this dialog will be
sent to support@hello2morrow.com

Scroll to Source & : When this toggle button is pushed, any click on an architecture violation, issue, task or compilation unit
cycle group whose affected element is a source file will open the java source editor and go to the line containing the marker
associated with the clicked issue.

Toggle Markers @ : Shows/hides the different markers that the Sonargraph Intellij plugin will add for issues/tasksin the IDE
source editor.

20.2.4. Getting Back In Sync with Manual Refresh

If you updated Sonargraph system filesin parallel using the Sonargraph Architect application, you can use the "Synchronize"
button in the toolbar to get these filesin sync.

If you notice that some markers are not properly updated, or that the Sonargraph analysis has not picked up the latest changes,
please compile your code to bring the Sonargraph model back in sync with the Intellij project. Y ou can use the "Make Project"
button in the toolbar.

TIP

If you notice any problem using the plugin, we are grateful to receive your feedback! The easiest way isto use the"Send
Feedback" toolbar button.

TIP

If an exception happensin our plugin, you will get an error naotification from Intellij and if you click on it, you will get
the Intellij feedback dialog. Since this dialog only sends feedback to Intellij's bug tracking system, please click on the

208

IDE Integration

"Add Details..." button to get the Sonargraph error feedback dialog, fill in the details and click on the "Ok" button. This
way the information gets to us directly and we can address errors quickly.

20.2.5. Examining Changes

Similar to Sonargraph application, the IntelliJ plugin allows to track changes of issues with respect to a baseline. The Sonargraph
menu allows the following interactions:

* New Basdline: Create and apply a new baseline, i.e. at the beginning of a feature development, to ensure that no new issues
are introduced.

» Open Baseline: Open an existing baseline, i.e. an XML report generated at the end of the previous release.

» Activate System Baseline: Switch to the baseline that is configured in the software system. Obviously, this menu is only
enabled if there is abaseline configured and it is currently not activated.

» Detach Baseline: Disconnect the current Sonargraph system from the baseline to see all existing issues.
» Export HTML Report: Create and open an HTML report focussed on the differences w.r.t the baseline.

Sonargraph issues are converted to IntelliJmarkers. If abaselineis applied, all unmodified issues are assigned the severity "info".
This setsthem clearly apart from the added or changed i ssues which keep their original severity. The following screenshot shows
the Sonargraph Tool Window and the possible menu interactions:

Sonargraph

f,ﬂ Architecture Violations (16) lssues (1) Cycles (1) Tasks (7) Refactorings (&)

9 lssue Description Severity ~
('S 45 Architecture Violation [Added] [New] 'inDefault’ cannot access 'T2.java’ frem 'com’ m € Aggregator

@ 4® Architecture Violation [Added] [Field] 'inDefault’ cannot access ‘T2 java' frem 'com’ @ Error @ 122
~— | §® Architecture Violation [Unmodified] [Mew] 'inDefault’ cannot access Te11_Sourcejava’ from 'com’ @ Info c] Aggregator
4# Architecture Violation [Unmodified] [Mew] ‘inDefault’ cannot access 'T61_Source.java’ from 'com’ @ Info ® Aggregator
rEF'. 4® Architecture Violation [Unmodified] [Mew] 'inDefault’ cannot access 'T6_Sourcejava’ from 'com’ @ Info ® Aggregator
_:%El Create Baseline on [Unmodified] [Mew] 'inDefault’ cannot access 'T31,java’ from 'com’ @ Info [C] Aggregator
22> Open Baseline on [Unmodified] [Mew] 'inDefault’ cannot access ‘T3.java’ from 'com’ @D Info ® Aggregator
&7 Detach Baseline on [Unmodified] [Mew] ‘inDefault’ cannot access ‘T2,java’ from 'com’ @ Info ® Aggregator
2 Export HTML Report g [Unmodified] [Mew] ‘inDefault’ cannot access T1_Rjava' from 'com’ @ Info ® Aggregator

i= & TODO H g Version Control A Sonargraph 3 Terminal

Figure 20.9. Sonargraph Issuesin IntelliJ with Baseline Applied

There are no markers created for resolved issues. If you are interested which issues have been resolved, you need to create the
HTML report.

Current Limitations

Not all functionality related to the system diff has been implemented yet in the IntelliJ plugin and the following list summarizes
the current limitations, which will be addressed in future releases:

1. The"Sonargraph Cycle Groups' view does not support the system diff and always shows the complete list of cycle groups.
To see diff information about cycle groups, you currently have to generate the HTML report.

Related topics:

e Chapter 14, Examining Changes

20.2.6. Execute Refactorings in IntelliJ

Thelist of Sonargraph refactorings definitionsis shown in the "Refactorings' tab of the Sonargraph tool window. A refactoring
can be executed viaright-click.

209

IDE Integration

NOTE

Refactorings defined in Sonargraph might affect alot of resources. We recommend committing all pending changes to
your version control system before executing the refactorings, so you have a safe fallback.

NOTE

Executetherefactoringsin the order of their definition. Otherwise subsequent refactorings might no longer be applicable.

The Sonargraph plugin delegates the refactorings to the refactoring mechanism of IntelliJ. Sonargraph "Movet+Rename"
refactorings of compilation units cannot be converted into a single IntelliJ refactoring and therefore needs to be split.

The following steps are executed for each refactoring:
1. If the Sonargraph refactoring needs to be split, a confirmation dialog will inform you about the necessary actions.

2. The standard IntelliJ refactoring dialogs and views are shown that allow you to control the affected resources (e.g. change
names in non-Java files) and preview the changes.

Related topics:
¢ Chapter 10, Smulating Refactorings

» Section 10.4, “Best Practices’

210

IDE Integration

20.3. Collaboration between Sonargraph and IDE

Asof version 11.1, Sonargraph offers a close integration with the Eclipse plugin to make it easier to fix issues right away when
analyzing the code base in Sonargraph. And also vice-versa, making it easy to investigate dependencies using Sonargraph's
advanced visualizations when coding in the IDE.

NOTE

The integration is currently only implemented for the Eclipse plugin!

Interactions

* # Connect / Disconnect: If selected, the application listens to incoming selection requests.

* [# Send Selection Request: Information about the current selection is sent.

* = Reveal Selection Request:
Sonargraph -> IDE: The matching element is highlighted in the 'Package Explorer' or 'Project Explorer' in Eclipse and if
the selection has been within a source file in Sonargraph, the editor is opened automatically in Eclipse and the matching

lineis selected.

IDE -> Sonargraph: The matching element(s) are selected in the 'Navigation' view. From there the appropriate
visualization can be opened via the context menu.

NOTE
The following preconditions must be fulfilled for the integration to work:
» The same Sonargraph system must be opened in Sonargraph and the IDE.

» Thereceiving application must be 'connected’, i.e. must listen to incoming selection requests.

NOTE

Y ou need to manually trigger arefresh (F5) in Sonargraph after changing code in the IDE.

Configuration

Default ports for listening to selection requests are 42420 (Sonargraph) and 42421 (IDE). This can be changed via a preference
page in Sonargraph or viathe menu " Sonargraph” — "Configure Remote Selection..." in Eclipse.

NOTE

The configuration is shared between the two applications, so that ports need to be configured only once. Just re-connect
in the other application to activate the new configuration.

211

IDE Integration

Sample Use Cases

Fixing a Detected Issue in the IDE

A Sonargraph [Architect] - step8_crm-domain-example - Medel loaded (applied snapshot) - O X
File Edit System Window Help
i = @ -
Ele@|@|g1ql@||@c§|@g}|ﬂ=bl]}b B Modifiablewm W o
_ == = g I | [[= % ». = g
=) Nawgatmnl%} Namespaces| - F|Ies| Sgs Send Selection Request to IDE & TR & BuR|>
BE® 3 P
dul - 25 {) . "
v BA module . 26 private static Logger s_Logger = Logger.getlLogger(l
» [Jerm-domain-example/target. maven/cls 27
Jerm-domain- ! ' 28 ’
v (3 Jerm-domain-example/src/java 29 Adda-service LOGIN_CMD = "User::LoginCmd”
vt com.helloZmorrow 30
> 8 dda 31 public ContextDto login(LoginDto loginDto) throws B
32
v H ddaexample 33 assert loginDto != null;
v E business 34 ToginDto.validate(UserControllerServicelIf.class,
35
> H common.startup 36 User user = User.findUserByName(loginDto.getUsert
37 it (user == null)
» 3 contact s
» B3 customer 39 throw new BusinessException(“uszer '" + Togir
> £ distributionpartner jf
» B request @ 42 String test
43 System.ou H
v i user 44 assert user != null; ’
v {3 controller j?; user.Togin(loginDto. getEncryptedPwd(}));
LoginEventDioM J
? m oginEventiito lapper]ava 47 Role[] roles = user.getRoles();
» [4] RoleDtoMapper.java 48 ContextDto contextVo = new ContextDto(user.getOb
N m ServerCommandDtaMapper,] -513 for (Ant 1 = 0; 1 < roles.length; 1++)
> [J] UserControllerjava 51 Role nextRole = roles[il;]
UserControllerServicefdapt 52 0ObjectIdIf roleReference = nextRole.getObject
? m ser-ontrofler eln.rlc apter 53 contextVo. addRole{nextRole. getName(), roleRef
> [J] UserDtoMapper.java 54
55
? EE data L6 return contextiin:

File Edit

‘O-E

Source Refactor Navigate

veilie v - pdm

S workspace - crm-domain-example/sre/java/com/helloZmorrow/ ddaexample/business/user/ controller/UserController java ...

Search Project Sonargraph Window Help

T~ FHroP oD

O X

Q gL

= =

B - = M] o
5 Project Explorer &2 |_‘ Reveal

v‘f’;—‘,{ crm-domain-example
» [srcfconfig/ear
» [srefconfig/test
v 55 srcfjava
v B com.hello2maorrow
» 0B dda
v [ddaexample
wv iH business
» ## common.startup
» 3 contact
> fH customer
> i distributionpartner
> i request
w [user
~ i controller
> [J] LoginEventDtoMapper.ja
» m RoleDtoMapper.java
» _m ServerCommandDtoMag
> 4J] UserController.java
3 m UserControllerServiceld:
5 [J] UserDtoMapper.java
> i data
» 4 domain
> B dsi

Selection Requested by Sonargraph
Fbi i

erjava 4] UserControll... &% l [J] LoginEventDit... i = 0
Ny ~ B
29 * fidda-service LOGIN_CMD = "User::LoginCmd™ =
3@ */
319 public ContextDte login(LoginDto loginDte) throws Businessk
32 {
33 assert loginDto != null;
34 loginDto.validate(UserControllerServiceIf.class, UserCe
35
36 User user = User.findUserBylame(loginDto.getUserName()’

if (user == null)

throw new BusinessException(“user

String test =

System.out.println("test:
assert user != null;
user.legin(leginDto.getEncryptedPwd());

+ test);

Role[] roles = user.getRoles();
ContextDto contextVo =
for (int i = @; i <« roles.length; i++)
50 {

Role nextRole = roles[i];
ObjectIdIf roleReference =

<

+ loginDto.gel

DistributionPartnerController.FIELD TO DA

new ContextDto(user.getObjectId

nextRole.getObjectId();

>

';5_‘ Problems &3 lé Tasks| =g Progress|

v § =0

Figure 20.10. Fixing a Detected I ssuein the IDE

212

IDE Integration

Selecting Elements for Inspection in Sonargraph

& workspace - Eclipse Platform - O it
File Edit Source Refactgg DNavigate Search Project Sonargraph Window Help

M- s P ARE TN eD OO Q 85

Ea Project Explorer 22 l E|| Send Selection Request to Sonargraph h.java | @ DateUtil.java Im UserControll... &2 | 5 = 8
v 2 crm-domain-example ~ /** ~ B
5 [src/config/ear * [dda-service LOGIN_CMD = "User::LoginCmd"
i =y
> B srcilconﬂgftest public ContextDto login(LoginDto loginDto) throws Busine
vﬁ src/fjava 1

v i com.hello2morrow
v [dda
> i business.common
» 4 foundation.common
> 4 integration.common.esi
v [ddaexample
v i business
» 4 common.startup
> i contact
» B customer
» i distributionpartner
» rH request
> i user
> f# integration.contact.esi
> 1% srefjava-test
> B JRE System Library [1.8.0_192]

assert loginDto != null;
loginDto.validate(UserControllerServiceIf.class, Use

User user = User.fipddserBylame(loginDto.getUserNames
if (user == null)

throw new BusinessException(“user + loginDto.

g test = DistributionPartnerController.FIELD TC
system.out.println("test: " + test);
assert user != null;
user.login{loginDto.getEncryptedPwd()});

Role[] roles = user.getRoles();
ContextDto contextVo = new ContextDto(user.getObject
for (int 1 = @; 1 < roles.length; i++)

Role nextRole = roles[i];

A Sonargraph [Architect] - stepd_crm-domain-example - Model loaded - O hod
File Edit Systemn Window Help

IR R EIE S, ||<‘.:~c:>|<5Jt'>|ﬁ_=:> ; '.Modiﬁablevm v &

=h Nawgatlonl % Namespaces| = F||es|

= § ~
&1 Installation lssues (= Open 0 Refresh @ Clear *® Clc

v =i, module
v @ Jerm-domain-example/src/java
v 1 com.helloZmorrow

> H dda » Info
v ddasxample
v 7 business Name: stepd_crm-domain-example
> H+ common.startun Lanquage(s): Java
> B3 contact 3 Mew Delete Refactoring... 'ed
> 8 C%JSt?me.r ‘:‘ﬁ New Move Refactoring... (execution level 'Full’)
> B3 distributio —
& MNew Todo...
> £ request
> £F user %% Manage Java Root Directories/Archives...
> B integration.cc - - -
> & External [Javal {33 Show in Exploration View » © NoAdditional
=" Show in Graph View > 3 InAnd Out
rurRpoL e In
Threshold violations:
ofjg Out
Cycle groups:
Duplicate code blocks: 3 Advanced...

Script definition:

Figure 20.11. Selecting Elementsfor Inspection in Sonar graph

213

Chapter 21. Metric Definitions

This chapter contains definitions for the built-in metrics provided by Sonargraph.

21.1. Language Independent Metrics

Architecture Violation Density

Description: Number of architecture violations per 1000 lines of code. This metric is calculated for code that is fully
analyzed plus code that is excluded by the 'Issue Filter'.

Categories: Architecture

Architecture Violation Density (Sour ce Elements)

Description: Number of architecture violations per 1000 source elements. Thismetric is calculated for code that isfully
analyzed plus code that is excluded by the 'Issue Filter'.

Categories: Architecture

Code Contained in Files Uncovered by Architecture (%)

Description: Percentage of lines of code contained in files not assigned to any architecture artifact. This metric is
calculated for code that is fully analyzed plus code that is excluded by the 'Issue Filter'.

Categories: Architecture

Code Contained in Fileswith Violations (%)

Description: Percentage of lines of code contained in files with at least one violation. This metric is calculated for code
that is fully analyzed plus code that is excluded by the 'Issue Filter'.

Categories. Architecture

Code Contained in Fileswith Violations or Deprecations (%)

Description: Percentage of lines of code contained in files with at least one violation or deprecation.This metric is
calculated for code that is fully analyzed plus code that is excluded by the 'I'ssue Filter'.

Categories. Architecture

Deprecated parser dependencies

Description: Number of deprecated parser dependencies

Categories: Architecture

I gnored Deprecated Parser Dependencies

Description: Number of parser dependenciesin ignored architecture deprecations

Categories: Architecture

214

Metric Definitions

Linesof Codein Fileswith Violations

Description: Lines of code contained in files with at least one violation. This metric is calculated for code that is fully
analyzed plus code that is excluded by the 'Issue Filter'.

Categories: Architecture

Linesof Codein Fileswith Violations or Deprecations (%)

Description: Lines of code contained in fileswith at least one violation or deprecation.This metric is calculated for code
that is fully analyzed plus code that is excluded by the 'l ssue Filter'.

Categories: Architecture

Number of Artifacts

Description: Number of architecture artifacts in checked files

Categories: Architecture

Number of Componentsin Deprecated Artifacts

Description: Number of components that are assigned to deprecated artifact

Categories: Architecture

Number of Componentswith Violations

Description: Number of components that contain architecture violations

Categories: Architecture

Number of Empty Artifacts

Description: Number of architecture artifacts that are empty in checked files

Categories: Architecture

Number of Ignored Violations (Parser Dependencies)

Description: Number of parser dependenciesin ignored architecture violations

Categories: Architecture

Number of Logical Elementsin Deprecated Artifacts

Description: Number of logical programming elements that are assigned to deprecated artifact

Categories: Architecture

Number of Unassigned L ogical Elements

215

Metric Definitions

Description: Number of internal logical elements that are not assigned to any artifact

Categories. Architecture

Number of Unassigned Physical Components
Description: Number of internal physical components that are not assigned to any artifact

Categories. Architecture

Number of Violations (Component Dependencies)

Description: Number of architecture-violating component dependencies

Categories. Architecture

Number of Violations (Parser Dependencies)
Description: Number of architecture-violating parser dependencies

Categories: Architecture

Average Block Nesting Depth
Description: Weighted average of nesting depth.

Categories. Code Analysis

Component Dependenciesto Remove (Components)
Description: Number of component dependencies to remove to break up all component cycles.

Categories. Code Analysis, Cycle

Component Rank (Module)

Description: Component Rank isbased on Google's page rank algorithm. Thetotal component rank over all components
in the selected group adds up to 100. The higher the rank, the more 'important' a component isin asystem. Having many
incoming dependencies or being referenced by other important components increases rank.

Categories. Code Analysis

Component Rank (System)
Description: Component Rank isbased on Google's page rank algorithm. Thetotal component rank over all components

in the selected group adds up to 100. The higher the rank, the more 'important' a component isin asystem. Having many
incoming dependencies or being referenced by other important components increases rank.

Categories: Code Analysis

| ssue Density

Description: Calculated as the number of unresolved issues (errors, warnings) * 1000, divided by source element count

216

Metric Definitions

Categories. Code Analysis

Max Block Nesting Depth

Description: Nesting depth is a good complexity indicator. Minimum value is zero, each nesting level adds 1.

Categories; Code Analysis

Number of Code Duplicates

Description: Number of duplicated code blocks.

Categories. Code Analysis

Number of Code Duplicatesto be Fixed
Description: Number of duplicated code blocks with applied Fix task.

Categories: Code Analysis

Number of Duplicated CodeLines

Description: Number of duplicated linesin duplicated code blocks. Theduplicated lines of each code block are cal culated
as the sum of involved occurrences excluding the largest, which is treated as the reference.

Categories. Code Analysis

Number of Ignored Code Duplicates
Description: Number of ignored duplicated code blocks.

Categories. Code Analysis

Parser Dependenciesto Remove (Components)

Description: Number of code lines to change to break up al component cycles.

Categories: Code Analysis, Cycle

Redundant Code (%)

Description: Percentage of redundant code. This also represents the probability that any lineis contained in a duplicate.
Thismetric is calculated for fully analyzed code.

Categories. Code Analysis

Redundant Code [Ignored] (%)

Description: Percentage of ignored redundant code. This also represents the probability that any lineis contained in an
ignored duplicate. Thismetric is calculated for fully analyzed code.

Categories. Code Analysis

217

Metric Definitions

Redundant Code [To Be Fixed] (%)

Description: Percentage of redundant code with an assigned "Fix" task. This also represents the probability that any line
is contained in ato-be-fixed duplicate. This metric is calculated for fully analyzed code.

Categories. Code Analysis

Structural Debt Index (Components)
Description: Cumulative structural debt index of component cycles.

Categories. Code Analysis

Biggest Component Cycle Group
Description: Number of componentsin biggest cycle.

Categories. Cycle

Critically Entangled Lines of Code
Description: Lines of code of source filesinvolved any type of critical cycle (marked as error).

Categories. Cycle

Critically Entangled Lines of Code (%)

Description: Percentage of fully analyzed code contained in source files involved any type of critical cycle (marked as
error). This aso represents the probability that any lineisinvolved in critically entangled code.

Categories. Cycle

Critically Entangled Lines of Code[lgnored]
Description: Lines of code of sourcefilesinvolved in any type of ignored critical cycle (marked as error).

Categories. Cycle

Critically Entangled Lines of Code[lgnored] (%)

Description: Percentage of fully analyzed code contained in source files involved in any type of ignored critical cycle
(marked as error). This also represents the probability that any lineisinvolved in ignored critically entangled code.

Categories. Cycle

Critically Entangled Lines of Code [T o Be Fixed]

Description: Lines of code of source filesinvolved any type of to be fixed critical cycle (marked as error).

Categories. Cycle

Critically Entangled Lines of Code[To Be Fixed] (%)

218

Metric Definitions

Description: Percentage of fully analyzed code contained in source files involved any type of to be fixed critical cycle
(marked as error). This also represents the probability that any lineisinvolved in to be fixed critically entangled code.

Categories: Cycle

Cyclicity (Components)
Description: Cumulated cyclicity of component cycles.

Categories. Cycle

Entangled Lines of Code
Description: Lines of code of source filesinvolved any type of cycle.

Categories. Cycle

Entangled Lines of Code (%)

Description: Percentage of fully analyzed code contained in source files involved in any type of cycle. This aso
represents the probability that any lineisinvolved in entangled code.

Categories: Cycle

Entangled Lines of Code [Ignored]

Description: Lines of code of source filesinvolved in any type of ignored cycle.

Categories: Cycle

Entangled Lines of Code [Ignored] (%)

Description: Percentage of fully analyzed code contained in sourcefilesinvolved in any type of ignored cycle. Thisalso
represents the probability that any lineisinvolved in ignored entangled code.

Categories. Cycle

Entangled Lines of Code [To Be Fixed]

Description: Lines of code of source filesinvolved any type of to be fixed cycle.

Categories. Cycle

Entangled Lines of Code [To Be Fixed] (%)

Description: Percentage of fully analyzed code contained in source files involved any type of to be fixed cycle. This
also represents the probability that any lineisinvolved in to be fixed entangled code.

Categories: Cycle

Maximum Lines of Code Involved in a Cycle

Description: Biggest cycle group with respect to the lines of code of involved source files.

219

Metric Definitions

Categories. Cycle

Number of Component Cycle Groups
Description: Number of all component cycle groups, warnings and errors.

Categories: Cycle

Number of Critical Component Cycle Groups
Description: Number of component cycle groups marked as errors.

Categories: Cycle

Number of Cyclic Components

Description: Number of cyclic components.

Categories. Cycle

Number of Cyclic Modules
Description: Number of cyclic modules.

Categories. Cycle

Number of Ignored Cyclic Components
Description: Number of ignored cyclic components.

Categories: Cycle

Relative Cyclicity (Components)
Description: Relative component cyclicity in percent.

Categories: Cycle

Relative Entanglement (%)

Description: Computed as the sum of relative cyclicities on component and namespace/directory levels, with each level
contributing 50%. If the system contains several languages, the namespace/directory values per language are weighted
against the lines of code contributed by the language. High values are an indicator for very large cycle groups.

Categories. Cycle

ACD

Description: Average component dependency according to John Lakos. Average number of components a component
depends on directly and indirectly. This metric can be used to characterize the overall average coupling of internal

components.

Categories. Cohesion/Coupling, John Lakos

220

Metric Definitions

CCD

Description: Cumulative component dependency according to John Lakos. Cumulated depends upon values.

Categories. Cohesion/Coupling, John Lakos

Depends Upon (M odule)

Description: Depends upon module level according to DependsOn by John Lakos. Total humber of components that a
component directly and indirectly depends upon in containing module.

Categories. Cohesion/Coupling, John Lakos

Depends Upon (System)

Description: Depends upon system level according to DependsOn by John Lakos. Total number of components that a
component directly and indirectly depends upon in system.

Categories. Cohesion/Coupling, John Lakos

Fan In Maintainability Level (Module)

Description: Percentage of higher-level components in the same module that depend directly or indirectly on this
component.

Categories. Cohesion/Coupling

Fan In Visbility (Module)

Description: Percentage of components in the same module that depend directly or indirectly on this component.

Categories. Cohesion/Coupling, MacCormack, Rusnak, Baldwin

Fan In Visbility (System)
Description: Percentage of internal components in the system that depend directly or indirectly on this component.

Categories. Cohesion/Coupling, MacCormack, Rusnak, Baldwin

Fan Out Visibility (Module)

Description: Percentage of components in the same modul e that this component depends upon.

Categories. Cohesion/Coupling, MacCormack, Rusnak, Baldwin

Fan Out Visibility (System)

Description: Percentage of internal components in the system that this component depends upon.

Categories. Cohesion/Coupling, MacCormack, Rusnak, Baldwin

Highest ACD

221

Metric Definitions

Description: Highest module ACD.

Categories. Cohesion/Coupling, John Lakos

LCOM4

Description: Determines the number of components in a class. A component is composed of fields, methods and
types defined top level including all their nested programming el ements. Constructors, destructors, empty, abstract and
overridden methods of classes are not included in the calculation. The metric represents the unrelated portions of code
inaclass. A value of 1 indicatesthe highest cohesion possible - which isnormally desirable. High values might indicate
that aclassis a candidate for arefactoring. Consider that utility classes by nature have high LCOM4 values.

Categories: Cohesion/Coupling

L ogical Cohesion (Module)

Description: Number of dependencies 'to' and 'from' other top-level logical programming elements in the same
namespace on module level.

Categories; Cohesion/Coupling

L ogical Cohesion (System)

Description: Number of dependencies 'to' and ‘from' other top-level logical programming elements in the same
namespace on system level.

Categories. Cohesion/Coupling

L ogical Coupling (Module)

Description: Number of dependencies'to’ and 'from' other top-level logical programming elementsin other namespaces
on module level.

Categories: Cohesion/Coupling

L ogical Coupling (System)

Description: Number of dependencies'to’ and 'from' other top-level logical programming elementsin other namespaces
on system level.

Categories; Cohesion/Coupling

Maintainability L evel

Description: This metric estimates maintainability as a percentage. 100% is the best possible value. To do that it looks
at the dependency structure between components (source files in most languages). Cyclic dependencies and low level
classes with alot of incoming dependencies have a negative influence on the metric. Keeping good vertical boundaries
and not having too many layers will have a positive influence. It is also recommended to have as many components as
possible that are independent, i.e. have no incoming dependencies and therefore can be changed without influencing
the rest of the system. In Java and C# the metric also considers the value of the relative cyclicity metric for packages/
namespaces. If you have large cycle groups they will have a negative influence on the metric value.

Categories. Cohesion/Coupling

222

Metric Definitions

NCCD

Description: Normalized cumul ative component dependency according to John Lakos. Theratio between the cumulative
component dependency and the cumulative component dependency of abalanced binary tree of the same size. A value
greater than 1 indicates a more vertical design. A value less than 1 indicates a more horizontal design.

Categories. Cohesion/Coupling, John Lakos

Physical Cohesion
Description: Number of dependencies'to’ and 'from' other components in the same module.

Categories: Cohesion/Coupling

Physical Coupling
Description: Number of dependencies'to’ and 'from' other components in other modules.

Categories. Cohesion/Coupling

Propagation Cost

Description: Propagation cost metric according to MacCormack, Rusnak and Baldwin. It describes the proportion of
software files that are directly or indirectly linked to each other.

Categories: Cohesion/Coupling, MacCormack, Rusnak, Baldwin

Used From (Module)

Description: Number of all depending elements (direct and indirect) + 1 (including self) in containing module.

Categories. Cohesion/Coupling, John Lakos

Used From (System)

Description: Number of all depending elements (direct and indirect) + 1 (including self) in system.

Categories. Cohesion/Coupling, John Lakos

Code Comment Lines

Description: Counts all comment lines excluding header comments and blank comment lines. This includes code of
fully analyzed and issue ignoring code.

Categories. Size

Comment Lines

Description: Counts all comment lines excluding blank comment lines. Thisincludes fully analyzed and issue ignoring
code.

Categories: Size

223

Metric Definitions

Linesof Code
Description: Lines of code excluding blank and comment lines. This includes fully analyzed and issue ignoring code.

Categories: Size

Linesof Fully Analyzed Code
Description: Lines of fully analyzed code excluding blank and comment lines.

Categories. Size

Linesof Fully Analyzed Codein Large Files

Description: Lines of fully analyzed code excluding blank and comment lines in files violating the threshold (default
1000).

Categories: Size

Linesof Fully Analyzed Codein LargeFiles (%)

Description: Percent of lines of fully analyzed code excluding blank and comment linesin files violating the threshold
(default 1000).

Categories: Size

Linesof Fully Analyzed Codein Large Files[Ignored]

Description: Lines of fully analyzed code excluding blank and comment lines in ignored files violating the threshold
(default 1000).

Categories. Size

Linesof Fully Analyzed Codein Large Files[Ignored] (%)

Description: Percent of lines of fully analyzed code excluding blank and comment lines in ignored files violating the
threshold (default 1000).

Categories: Size

Linesof Fully Analyzed Codein Large Files[To Be Fixed]

Description: Linesof fully analyzed code excluding blank and comment linesin to be fixed files violating the threshold
(default 1000).

Categories. Size

Linesof Fully Analyzed Codein Large Files[To Be Fixed] (%)

Description: Percent of lines of fully analyzed code excluding blank and comment lines in to be fixed files violating
the threshold (default 1000).

Categories. Size

224

Metric Definitions

Linesof Issue-Ignoring Code

Description: Lines of code excluding blank and comment lines for which only architecture violations and parsing
problems are reported.

Categories: Size

Number of Components (Full Analysis)

Description: Number of fully analyzed components.

Categories: Size

Number of Components (Ignoring | ssues)
Description: Number of components ignoring issues.

Categories: Size

Number of Components/Sour ces
Description: Number of components or source files

Categories: Size

Number of Excluded Source Files

Description: Number of source files excluded via 'File Filter'. These files are completely excluded from the analysis
and do not contribute to any metric.

Categories: Size

Number of Logical Types (Module)
Description: Number of logical types (classes, enums or similar) in container on module level.

Categories: Size

Number of Logical Types (System)
Description: Number of logical types (classes, enums or similar) in container on system level.

Categories: Size

Number of Methods

Description: Number of member functions.

Categories: Size

Number of Modules

225

Metric Definitions

Description: Number of modules.

Categories: Size

Number of Parameters
Description: Number of parameters.

Categories. Size

Number of Source Files
Description: Number of source filesin fully analyzed and issue ignoring code.

Categories. Size

Number of Source Files (Excluded)

Description: Number of source filesin test code (excluded via 'Production Code Filter").

Categories. Size

Number of Source Files (Full Analysis)
Description: Number of source filesthat are fully analyzed, i.e. not excluded by any workspace filter.

Categories: Size

Number of Source Files (Ignoring I ssue)

Description: Number of source files excluded via 'lssue Filter' that no issues (except parser issues and architecture
violations) are generated for.

Categories. Size

Number of Statements
Description: Counts all statements. This includes statements of fully analyzed and issue ignoring code.

Categories: Size

Number of Statementsin Fully Analyzed Code
Description: Counts all statementsin fully analyzed code.

Categories: Size

Number of Types
Description: Number of types (classes, enums or similar) in container.

Categories. Size

226

Metric Definitions

Sour ce Element Count

Description: Number of programming elements (i.e. types, fields, methods, functions, ...) plus number of statements.
Thisincludes elements of fully analyzed and issue ignoring code.

Categories. Size

Total Lines

Description: Counts all lines including empty and comment lines of source files. This includes files of fully analyzed
and issue ignoring code.

Categories. Size

Relational Cohesion (Module)

Description: Relation cohesion according to Craig Larman (adapted). Number of internal namespace dependencies
divided by the number of top-level logical programming elements in the same namespace on module level. Higher
numbers suggest more cohesion.

Categories. Craig Larman, Cohesion/Coupling

Relational Cohesion (System)

Description: Relation cohesion according to Craig Larman (adapted). Number of internal namespace dependencies
divided by the number of top-level logical programming elements in the same namespace on system level. Higher
numbers suggest more cohesion.

Categories: Craig Larman, Cohesion/Coupling

Abstractness (M odule)

Description: Abstractness according to Robert C. Martin based on module level dependencies. Total number of abstract
types divided by the total number of concrete types. The metric has arange of [0,1]. 0 means that the container contains
no abstract types. 1 means that the container contains nothing but abstract types.

Categories: Robert C. Martin

Abstractness (System)

Description: Abstractness according to Robert C. Martin based on system level dependencies. Total number of abstract
types divided by the total number of concrete types. The metric has arange of [0,1]. 0 means that the container contains
no abstract types. 1 means that the container contains nothing but abstract types.

Categories. Robert C. Martin

Distance (Module)

Description: Distance according to Raobert C. Martin based on module level dependencies. Abstractness + Instability -
1. The metric has arange of [-1,1]. Thisis avariation of the original metric definition. A negative sign means 'in the
zone of pain' and a positive sign means 'in the zone of uselessness. A 'good' value should be around 0.

Categories. Robert C. Martin

227

Metric Definitions

Distance (System)
Description: Distance according to Robert C. Martin based on system level dependencies. Abstractness + Instability -
1. The metric has arange of [-1,1]. Thisis avariation of the original metric definition. A negative sign means 'in the

zone of pain' and a positive sign means 'in the zone of uselessness. A 'good' value should be around 0.

Categories. Robert C. Martin

| nstability (Module)

Description: Instability according to Robert C. Martin based on module level dependencies. The metric has a range of
[0,1]. If there are no outgoing dependencies, then the Instability will be 0 and the measured element is stable. If there
are no incoming dependencies, then the Instability will be 1 and the measured element isinstable. Stable meansthat the
element is not so easy to be changed. Instable meansthat it is easier to be changed.

Categories. Robert C. Martin

| nstability (System)
Description: Instability according to Robert C. Martin based on system level dependencies. The metric has a range of
[0,1]. If there are no outgoing dependencies, then | will be 0 and the measured element is stable. If there are noincoming

dependencies, then | will be 1 and the measured element is instable. Stable means that the element is not so easy to be
changed. Instable means that it is easier to be changed.

Categories. Robert C. Martin

Number of Incoming Dependencies (M odule)

Description: Number of incoming dependencies on module level.

Categories: Robert C. Martin

Number of Incoming Dependencies (System)
Description: Number of incoming dependencies on system level.

Categories. Robert C. Martin

Number of Outgoing Dependencies (M odule)
Description: Number of outgoing dependencies on module level.

Categories. Robert C. Martin

Number of Outgoing Dependencies (System)
Description: Number of outgoing dependencies on system level.

Categories. Robert C. Martin

Average Complexity

Description: Weighted average modified extended cyclomatic complexity for fully analyzed code

228

Metric Definitions

Categories. Thomas J. McCabe

Average Complexity (M odule)

Description: Weighted average modified extended cyclomatic complexity for fully analyzed code on module level

Categories. Thomas J. McCabe

Aver age Complexity (System)
Description: Weighted average modified extended cyclomatic complexity for fully analyzed code on system level

Categories. Thomas J. McCabe

Cyclomatic Complexity

Description: Cyclomatic complexity according to Thomas J. McCabe. Number of decision pointsin a method plus one
for the method entry.

Categories: Thomas J. McCabe

Extended Cyclomatic Complexity
Description: As cyclomatic complexity adding the number of logical '& &' and '||' operations.

Categories. Thomas J. McCabe

M odified Cyclomatic Complexity

Description: As cyclomatic complexity but switch statements only add 1 independent from the number of cases.

Categories: Thomas J. McCabe

Modified Extended Cyclomatic Complexity

Description: As cyclomatic complexity but switch statements only add 1 independent from the number of cases and
adding the number of logical '& &' and '||' operations.

Categories. Thomas J. McCabe

Code Churn (2y)

Description: Number of lines added or removed in the last 2 years

Categories. Change History

Code Churn (30d)

Description: Number of lines added or removed in the last 30 days

Categories. Change History

229

Metric Definitions

Code Churn (365d)

Description: Number of lines added or removed in the last 365 days

Categories. Change History

Code Churn (5y)

Description: Number of lines added or removed in the last 5 years

Categories: Change History

Code Churn (90d)

Description: Number of lines added or removed in the last 90 days

Categories. Change History

Code Churn Rate (2y)

Description: Percentage of lines added or removed in the last 2 years based on total lines

Categories: Change History

Code Churn Rate (30d)

Description: Percentage of lines added or removed in the last 30 days based on total lines

Categories: Change History

Code Churn Rate (365d)

Description: Percentage of lines added or removed in the last 365 days based on total lines

Categories. Change History

Code Churn Rate (5y)

Description: Percentage of lines added or removed in the last 5 years based on total lines

Categories. Change History

Code Churn Rate (90d)

Description: Percentage of lines added or removed in the last 90 days based on total lines

Categories. Change History

Days since last commit

Description: Days since thisfile was last changed (9999 means no changes in the last 5 years)

Categories. Change History

230

Metric Definitions

File Changes (2y)

Description: Number of committed file changesin the last 2 years

Categories. Change History

File Changes (30d)

Description: Number of committed file changes in the last 30 days

Categories. Change History

File Changes (365d)

Description: Number of committed file changesin the last 365 days

Categories. Change History

File Changes (5y)
Description: Number of committed file changesin the last 5 years

Categories. Change History

File Changes (90d)

Description: Number of committed file changes in the last 90 days

Categories. Change History

Number of Authors (30d)

Description: Number of developers who have worked on thisitem in the last 30 days

Categories. Change History

Number of authors (2y)

Description: Number of developers who have worked on thisitem in the last 2 years

Categories. Change History

Number of authors (365d)

Description: Number of developers who have worked on thisitem in the last year

Categories. Change History

Number of authors (5y)

Description: Number of developers who have worked on thisitem in the last 5 years

231

Metric Definitions

Categories. Change History

Number of authors (90d)

Description: Number of developers who have worked on thisitem in the last 90 days

Categories. Change History

Number of Statementsin Complex Methods

Description: Counts all statementsin fully analyzed code of too complex methods, i.e. that violate the thresholds for
max nesting depth (default 4) or for extended modified cyclomatic complexity (default 15).

Categories: Complexity

Number of Statementsin Complex Methods (%)

Description: Percentage of statementsin fully analyzed code in too complex methods, i.e. that violate the thresholds for
max nesting depth (default 4) or for extended modified cyclomatic complexity (default 15).

Categories. Complexity

Number of Statementsin Complex Methods [l gnored]

Description: Countsall statementsin fully analyzed code of ignored too complex methods, i.e. that violate the thresholds
for max nesting depth (default 4) or for extended modified cyclomatic complexity (default 15).

Categories. Complexity

Number of Statementsin Complex Methods[lgnored] (%)

Description: Percentage of statements in fully analyzed code in ignored too complex methods, i.e. that violate the
thresholds for max nesting depth (default 4) or for extended modified cyclomatic complexity (default 15).

Categories: Complexity

Number of Statementsin Complex Methods [To Be Fixed]

Description: Counts all statements in fully analyzed code of to be fixed too complex methods, i.e. that violate the
thresholds for max nesting depth (default 4) or for extended modified cyclomatic complexity (default 15).

Categories. Complexity

Number of Statementsin Complex Methods[To Be Fixed] (%)

Description: Percentage of statements in fully analyzed code in to be fixed too complex methods, i.e. that violate the
thresholds for max nesting depth (default 4) or for extended modified cyclomatic complexity (default 15).

Categories. Complexity

232

Metric Definitions

21.2. Java Metrics

Average Java Class Member Visbility (%) (Module)
Description: Average of Java class member visibility in a Java package

Categories. Code Analysis

Average Java Public Visibility (%)

Description: Average of Java public visibility for all Java packages in a Java module

Categories: Code Analysis

Component Dependenciesto Remove (Java Packages)
Description: Number of component dependencies to remove to break up all Java package cycle groups.

Categories. Code Analysis, Dependency

Java Member Visibility (%)

Description: Percentage of non-private Java membersin aclass

Categories; Code Analysis

Java Public Visibility (%) (Module)

Description: Percentage of public Javatypesin a Java package

Categories. Code Analysis

Parser Dependenciesto Remove (Java Packages)
Description: Number of code lines to change to break up all Java package cycle groups).

Categories. Code Analysis, Dependency

Structural Debt Index (Java Packages)

Description: Cumulative structural debt index of all Java package cycle groups.

Categories: Code Analysis

Biggest Java Package Cycle Group
Description: Biggest Java package cycle group.

Categories: Cycle

Cyclicity (Java Packages)

233

Metric Definitions

Description: Cumulated cyclicity of Java package cycle groups.

Categories: Cycle

Number of Critical Java Package Cycle Groups
Description: Number of Java package cycle groups marked as errors.

Categories: Cycle

Number of Cyclic Java Packages
Description: Number of cyclic Java packages.

Categories. Cycle

Number of Ignored Cyclic Java Packages
Description: Number of ignored cyclic Java packages.

Categories: Cycle

Number of all Java Package Cycle Groups
Description: Number of all Java package cycle groups, errors and warnings

Categories. Cycle

Relative Cyclicity (Java Packages)
Description: Relative Java package cyclicity in percent.

Categories. Cycle

Byte Code I nstructions
Description: Number of Java byte code instructions.

Categories. Size

Number of Java Packages
Description: Number of Java packages containing typesin fully analyzed and issue ignoring code.

Categories: Size

Number of Java Packages (Full Analysis)
Description: Number of Java packages containing fully analyzed types.

Categories: Size

234

Metric Definitions

21.3. C# Metrics

Component Dependenciesto Remove (C# Directories)
Description: Number of component dependencies to remove to break up all C# directory cycle groups.

Categories. Code Analysis, Cycle

Component Dependenciesto Remove (C# Namespaces)

Description: Number of component dependencies to remove to break up all C# namespace cycle groups.

Categories: Code Analysis, Dependency

Parser Dependenciesto Remove (C# Directories)
Description: Number of code lines to change to break up all C# directory cycle groups.

Categories. Code Analysis, Cycle

Par ser Dependenciesto Remove (C# Namespaces)
Description: Number of code lines to change to break up all C# namespace cycle groups.

Categories. Code Analysis, Dependency

Structural Debt Index (C# Directories)

Description: Cumulative structural debt index of all C# directory cycle groups.

Categories. Code Analysis

Structural Debt Index (C# Namespaces)

Description: Cumulative structural debt index of all C# namespace cycle groups.

Categories. Code Analysis

Biggest C# Directory Cycle Group
Description: Biggest C# directory cycle group.

Categories: Cycle

Biggest C# Namespace Cycle Group
Description: Biggest C# namespace cycle group.

Categories: Cycle

Cyclicity (C# Directories)

235

Metric Definitions

Description: Cumulated cyclicity of C# directory cycle groups.

Categories: Cycle

Cyclicity (C# Namespaces)
Description: Cumulated cyclicity of C# namespace cycle groups.

Categories. Cycle

Number of Critical C# Directory Cycle Groups
Description: Number of C# directory cycle groups marked as errors.

Categories: Cycle

Number of Critical C# Namespace Cycle Groups

Description: Number of C# namespace cycle groups marked as errors.

Categories: Cycle

Number of Cyclic C# Directories
Description: Number of cyclic C# directories.

Categories. Cycle

Number of Cyclic C# Namespaces
Description: Number of cyclic C# namespaces.

Categories: Cycle

Number of Ignored Cyclic C# Directories

Description: Number of ignored cyclic C# directories.

Categories: Cycle

Number of Ignored Cyclic C# Namespaces
Description: Number of ignored cyclic C# namespaces.

Categories. Cycle

Number of all C# Directory Cycle Groups
Description: Number of all C# directory cycle groups, errors and warnings.

Categories: Cycle

236

Metric Definitions

Number of all C# Namespace Cycle Groups
Description: Number of C# namespace cycle groups, errors and warnings.

Categories: Cycle

Relative Cyclicity (C# Directories)
Description: Relative C# directory cyclicity in percent.

Categories. Cycle

Relative Cyclicity (C# Namespaces)
Description: Relative C# namespace cyclicity in percent.

Categories: Cycle

Number of C# Directories
Description: Number of C# directories containing components in fully analyzed and issue ignoring code.

Categories: Size

Number of C# Directories (Full Analysis)

Description: Number of C# directories containing fully analyzed components.

Categories: Size

Number of C# Namespaces
Description: Number of C# namespaces containing typesin fully analyzed and issue ignoring code.

Categories. Size

Number of C# Namespaces (Full Analysis)
Description: Number of C# namespaces containing fully analyzed types.

Categories: Size

237

Metric Definitions

21.4. C,C++ Metrics

Component Dependenciesto Remove (C++ Namespaces)
Description: Number of component dependencies to remove to break up all C++ namespace cycle groups.

Categories. Code Analysis, Cycle

Component Dependenciesto Remove (C,C++ Directories)
Description: Number of component dependencies to remove to break up all C,C++ directory cycle groups.

Categories: Code Analysis, Cycle

Parser Dependenciesto Remove (C++ Namespaces)
Description: Number of code lines to change to break up al C++ namespace cycle groups.

Categories. Code Analysis, Cycle

Parser Dependenciesto Remove (C,C++ Directories)
Description: Number of code lines to change to break up all C,C++ directory cycle groups.

Categories. Code Analysis, Cycle

Structural Debt Index (C++ Namespaces)

Description: Cumulative structural debt index of all C++ namespace cycle groups.

Categories. Code Analysis

Structural Debt Index (C,C++ Directories)

Description: Cumulative structural debt index of all C,C++ directory cycle groups.

Categories. Code Analysis

Biggest C++ Namespace Cycle Group
Description: Biggest C++ namespace cycle group

Categories: Cycle

Biggest C,C++ Directory Cycle Group
Description: Biggest C,C++ directory cycle group.

Categories: Cycle

Cyclicity (C++ Namespaces)

238

Metric Definitions

Description: Cumulated cyclicity of C++ namespace cycle groups.

Categories: Cycle

Cyclicity (C,C++ Directories)
Description: Cumulated cyclicity of C,C++ directory cycle groups.

Categories. Cycle

Number of Critical C++ Namespace Cycle Groups
Description: Number of C++ namespace cycle groups marked as errors.

Categories: Cycle

Number of Critical C,C++ Directory Cycle Groups
Description: Number of C,C++ directory cycle groups marked as errors.

Categories: Cycle

Number of Cyclic C++ Namespaces
Description: Number of cyclic C++ namespaces.

Categories. Cycle

Number of Cyclic C,C++ Directories
Description: Number of cyclic C,C++ directories.

Categories: Cycle

Number of Ignored Cyclic C++ Namespaces
Description: Number of ignored cyclic C++ namespaces.

Categories: Cycle

Number of Ignored Cyclic C,C++ Directories
Description: Number of ignored cyclic C,C++ directories.

Categories. Cycle

Number of all C++ Namespace Cycle Groups
Description: Number of all C++ namespace cycle groups, errors and warnings.

Categories: Cycle

239

Metric Definitions

Number of all C,C++ Directory Cycle Groups
Description: Number of all C,C++ directory cycle groups, errors and warnings.

Categories: Cycle

Relative Cyclicity (C++ Namespaces)
Description: Relative C++ namespace cyclicity in percent.

Categories. Cycle

Relative Cyclicity (C,C++ Directories)
Description: Relative C,C++ directory cyclicity in percent.

Categories: Cycle

Number of C++ Namespaces
Description: Number of C++ namespaces containing typesin fully analyzed and issue ignoring code.

Categories: Size

Number of C++ Namespaces (Full Analysis)
Description: Number of C++ namespaces containing fully analyzed types.

Categories: Size

Number of C,C++ Directories

Description: Number of C,C++ directories containing components in fully analyzed and issue ignoring code.

Categories. Size

Number of C,C++ Directories (Full Analysis)
Description: Number of C,C++ directories containing fully analyzed components.

Categories: Size

240

Metric Definitions

21.5. Python Metrics

Component Dependenciesto Remove (Python Packages)
Description: Number of component dependencies to remove to break up all Python package cycle groups.

Categories. Code Analysis, Dependency

Parser Dependenciesto Remove (Python Packages)

Description: Number of code lines to change to break up all Python package cycle groups.

Categories: Code Analysis, Dependency

Structural Debt Index (Python Packages)

Description: Cumulative structural debt index of all Python package cycle groups.

Categories. Code Analysis

Biggest Python Package Cycle Group
Description: Biggest Python package cycle group.

Categories; Cycle

Cyclicity (Python Packages)
Description: Cumulated cyclicity of Python package cycle groups.

Categories. Cycle

Number of Critical Python Package Cycle Groups
Description: Number of Python package cycle groups marked as errors.

Categories: Cycle

Number of Cyclic Python Packages

Description: Number of cyclic Python packages.

Categories: Cycle

Number of Ignored Cyclic Python Packages
Description: Number of ignored cyclic Python packages.

Categories: Cycle

Number of all Python Package Cycle Groups

241

Metric Definitions

Description: Number of all Python package cycle groups, errors and warnmings.

Categories: Cycle

Relative Cyclicity (Python Packages)
Description: Relative Python package cyclicity in percent.

Categories: Cycle

Number of Python Packages
Description: Number of Python packages containing types in fully analyzed and issue ignoring code.

Categories. Size

Number of Python Packages (Full Analysis)
Description: Number of Python packages containing fully analyzed types.

Categories. Size

242

Chapter 22. How to Resolve Issues

This section summarizes issues and how they can be resolved.

22.1. Language Independent Issues

Root path does not exist

Indicates that the path supplied for a Root Directory Path cannot be found on disk. A valid path on disk must be supplied.

Duplicate Code

See Section 8.13, “Detecting Duplicate Code” for more information about how to investigate code duplicates and the
configuration of the analyzer.

22.2. Java Specific Issues

Class file is out-of-date

Indicates that the classfile is older than the corresponding source file. Source needs to be re-compiled.

22.3. C# Specific Issues
C# Parsing Errors

Parsing errors in the C# parser log are usually caused by referenced assemblies that cannot be found locally. Try to build the
solution in your favored | DE before analyzing it with Sonargraph.

Project File (.csproj) Processing Failed

Indicates afatal error during the processing of a C# project file. Depending on the configuration, Sonargraph can use MSBuild
to extract information about macro definitions, target frameworks, project references, assembly references, source files, etc.
to enable a precise analysis. As Visua Studio and MSBUild are constantly evolving, our integration with MSBuild might be

incomplete. Y ou can help usimprove the integration by sending usthelog filevia"Help" - "Send Feedback..." (don't forget to
tick "Attach log file") or by sending an email to <support @el | o2norr ow. conp.

22.4. C/C++ Specific Issues

C/C++ Parsing Errors

Indicates that the EDG parser failed to process a source file. Check that the code compilesin your standard IDE or in your build
environment.

Check that the compiler definitions are correct. See Section 4.7, “ C/C++ Compiler Definitions’ for details.

Report C/C++ Parsing Problems

If you need further support, report the parsing problem to usviathe menu "Help" — "Report C/C++ Parsing Problem..." . All files
relevant for the problem analysiswill be zipped and sent to us for further inspection. Please consider adding some context info.

243

How to Resolve Issues

NOTE

The diagnostic files contain expanded source code. If your company guidelines do not allow to share this information
with us, deselect the corresponding checkboxes.

244

Chapter 23. FAQ

This section summarizes common problems and their solutions.

23.1. Out Of Memory Exceptions

In case of OutOfMemoryExceptions increase the memory made available to Sonargraph by opening the file Sonargraph.ini and
increase the value for the -Xmx parameter.

23.2. Groovy Template

The configuration of Sonargraph is very flexible due to usage of Groovy Templates. Per default, all environment variables are
available. The following script illustrates the usage of the variable INCLUDE:

<%
def elements = INCLUDE.split(";");
for (element in elements)
{
printin "--sys include=" + element;

}

%>

23.3. MSBuild Error (MSB4019) during Analysis of
Visual Studio C# Project

Sonargraph uses MSBuild to retrieve configuration info for C# projects. This specific error can be resolved by removing the
following lines from the .csproj file as described on stackoverflow:

<PropertyGroup>
<Visua StudioVersion Condition=""$(Visual StudioVersion)' == "'>10.0</Visual StudioV ersion>
<V SToolsPath Condition=""$(V SToolsPath)' == "">
$(M SBuildExtensionsPath32)\Microsoft\Visual Studio\v$(Visual StudioV ersion)</V ST ool sPath>
</PropertyGroup>

245

http://stackoverflow.com/questions/19718281/external-vs2013-build-error-error-msb4019-the-imported-project-path-was-not

Chapter 24. References

Articles about various software quality topics can be found at http://blog.hello2morrow.com/

Our whitepapers and presentations are available at https://www.hello2morrow.com/products/whitepapers
The following list contains books that influenced us alot prior and during the development of Sonargraph.
[ACM] McCabe, T. J. "A Complexity Measure." |EEE Trans. Software Eng. SE-2, 4, 308-320, Dec. 1976
[ASD] Agile Software Development, Robert C. Martin, Prentice Hall 2003

[AUP] Applying UML And Patterns, Craig Larman, Prentice Hall 2002

[EOT] Erfolgsschltissel Objekttechnologie, Betrand Meyer, Hanser 1995

[JLS] James Godling, Bill Joy, Guy Steele, Gilad Bracha, "The Java Language Specification”, Addison-Wesley 2005
[LSD] Large-Scale C++ Software Design, John Lakos, Addison-Wesley 1996

[PAP] Robert C. Martin, "Design Principles and Patterns’, Objectmentor 2000

[PPR] Jones T.C., "Programming Productivity", New Y ork, McGraw-Hill 1986

[SEE] Boehm, B. W., " Software Engineering Economics', Englewood Cliffs, N. J.: Prentice-Hall 1981
[SOM] Everad E. Mills, " Software Metrics", SEI Curriculum Module SEI-CM-12-1.1 1988

[TOS] Testing Object-Oriented Systems, Beizer, Addison-Wesley 2000

246

http://blog.hello2morrow.com/
https://www.hello2morrow.com/products/whitepapers

Chapter 25. Trademark Attributions,
Library License Texts, and Source Code

Eclipseis atrademark of Eclipse Foundation, Inc.

IntelliJis atrademark of JetBrainss.r.o.

Javaand all Java-based trademarks are trademarks of Oracle Corporation in the United States and other countries.
Linux® isthe registered trademark of Linus Torvaldsin the U.S. and other countries.

Microsoft, and Windows are trademarks of Microsoft Corporation in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

247

Chapter 26. Legal Notice

All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

 Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer.

* Redistributionsin binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

 Neither the name of hello2morrow GmbH nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORSBE LIABLE FORANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;, OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

248

Glossary

A

Architecture Aspect

Architecture Model

C

Component

L

Logical Namespace

M

Module

P

Programming Element

S

(Software) System

W

Workspace Profile

V

Virtua Model

Describes a part of the architecture. Via the "apply" directive an aspect defined in its own
architecture file can be reused.

Consists of atop-level checked architecturefile and all recursively applied architecturefiles.

We follow the definition of John Lakos in "Large Scale C++ Software Design™: “A
component is the smallest unit of physical design.” Thisis a source filein Java and C# and
a source file plus included header files in C/C++. For more details, see Chapter 5, Getting
Familiar with the Sonargraph System Model .

Unifies physical namespaces contained in different root directories. More details are given
in Section 5.4, “Logical Models” .

Representsusually adeployableunit (e.g. an OSGi bundle, JAR file, C# assembly) containing
components.

The abstract term that represents atype, method, routine, etc. within the different languages.
More details are given in Chapter 5, Getting Familiar with the Sonargraph System Model

Represents the scope of analysis and contains all required resources, i.e. the workspace
definition, virtual models, analyzer configurations and Groovy scripts and the analyzed
source code.

Transforms the existing root directories. Thisis useful for the integration of Sonargraph in
the build server. More details are given in Section 8.8.3, “Creating Workspace Profiles for
Build Environments’.

Represents a sandbox where virtual sets of resolutions (Fix, Ignore, TODO, Delete
refactoring, Move/Rename refactoring) can be applied to the system.

249

Appendix A. Walk Through Tutorial (Java)

Thistutorial provides avery concise introduction about the functionality of Sonargraph-Architect. At least an evaluation license
isrequired that can be requested via our web site http://mww.hello2morrow.com to complete the tutorial.

A little example project isused for illustration - the codeitself is by no means meant to be an example for good quality or design.
The example project is available via our website https://www.hello2morrow.conVproducts/downloads .

You will learn how to create a system in Sonargraph, define a workspace, examine a system, customize the analysis via scripts,
define an architecture and check for compliance in the user interface of the rich client application, use the build integration using
Ant and Maven and the Eclipse IDE integration. At the end of a section (except the basic first setup) the current stage of the
analysisisreferenced, that allows to verify that you reached similar results.

Thistutorial isintentionally kept as short as possible. For more detail ed information about certain functionality, linksare provided
that will steer you to the corresponding chapters of the user manual.

A.l. Workspace Definition

The following steps describe the basic setup:

1. Install Sonargraph-Architect.

2. On startup, specify alicensefile.

3. Create a new System using the menu "File" -> "New" -> "System" -> "New System...". Specify a name and location.
4. Create anew Javamodule using the menu: "File" -> "New" ->"Module" -> "New JavaModule...". Specify aname.
5. Right-click on the created module in the Workspace view and select "Manage Java Root Directories...".

6. Specify the root folder of the crm-domain-example project.

7. Detect the root directories and drag& drop them to the module from right to left.

8. Parse/ refresh the software system.

9. Check that there are no issues related to the workspace of the system in the I ssues view.

10.If Maven isinstalled on your machine, build the crm-domain-example project via'mvn clean compile' and refresh the system
in Sonargraph. Do you understand, why now workspace i ssues appear? Open the project in Eclipse, build it there and refresh
the system in Sonargraph to remove those issues.

11.Close and re-open the system using the menu "Fil€" -> "Open Recently Used" -> "[System Name]" to see how fast the snapshot
loading works.

Related topics:

 Chapter 4, Initial Configuration
» Chapter 3, Licensing

» Chapter 6, Creating a System

» Section 7.1.6, “Creating a Java Module Manually”

A.2. Basic Analysis

The following steps describe the first analysis of a code base based on the existing dependencies, detected cyclic dependencies,
detected duplicate blocks and further metrics:

250

http://www.hello2morrow.com
https://www.hello2morrow.com/products/downloads

Walk Through Tutorial (Java)

1. Select packagesin the Navigation View and open them via the context menu in the Graph view and Exploration view to see/
examine their existing dependencies. Experiment with the different options for creating the representations. Experiment also
with the options provided on the opened views to focus on different dependency types, etc.

2. Examine the detected issues on the | ssues view.

3. Customize the duplicate code analyzer via the menu "System™" -> "Configure..." -> "Duplicate Code" and specify a smaller
minimum block length (e.g. 20 lines), so that duplicates are detected. Use the Duplicate Blocks view to open a side-by-side
diff for closer inspection.

4. Check the detected package cyclesin the Cycle Groups view, open one of them in the Cycle view for closer inspection.

5. Right-click anywhere on the white area in the Cycle view to show the cyclic elements in the Exploration view for further
investigation.

6. Right-click anywhere on the white area in the Cycle view to open the Cycle Breakup view. Compute a break-up set for the
cycle.

7. Right-click on the proposed dependency to remove and create a new "Delete Refactoring” viathe context menu. The created
task is now visible in the Tasks and Refactorings views.

8. Create aresolution for another issue in the Issues view. Check the filter options of the view in the top right corner to show
only issues of a certain category.

9. Switchthe Virtual Model on the application'stool bar (top right of the application) and select the "Parser” model in the combo
box. Since the resolutions are specific to the Virtual Model, the issues re-appear in the I ssues view.

10.Select the Metrics view and examine the valuesfor the system. Use the combo box at the top-Ieft of the view to examine metric
values on other levels (Java Package, Source File, Routine, etc.). Multi-select metrics and see if you can detect a correlation.
Define athreshold and check the value distribution on the histogram and pie charts.

11.Check where JUnit is used: Open the Exploration view for the JUnit package that is contained in the "External [Java]" node
in the Navigation view.

12.Specify an excludefilter on the Workspace view by right-clicking on one of the"Filter" nodes shown abovetheroot directories.
Check the context help (F1) and the related chapter in the user manual to get more information about the different filter types.
Experiment with the wildcards and filter types to exclude test related classes. Check that the number of issues in the Issues
view changes. Use the filter that keeps the test related classes in the Sonargraph model but marks them as "excluded”.

13.Irrelevant issues can be either ignored or filtered. Click on the little downwards-pointing white triangle in the top-right corner
of the Issues view and open thefilter dialog. Deselect the issue type "Dependency To Excluded Internal Component”.

14.Ctrl+H opensthe search dialog. Enter **test* to identify test classes (they should all be marked as excluded).

Note: If all internal types are filtered out with references to JUnit, there will be no more dependencies being shown in the
representation views (Exploration view, Graph view) to these external types.

15.Create a new script by selecting the " Scripts' folder on the Files view and opening the context menu.
16.Modify the default content to check for all types being excluded.

End of Step 1 (stepl_crm-domain-example.sonar graph).

Related topics:

 Section 8.5, “Navigating through the System Components’

» Section 8.11, “Exploring the System”

» Chapter 9, Handling Detected Issues

e Section 8.10, “Analyzing Cycles’

251

Walk Through Tutorial (Java)

e Section 9.1, “Using Virtual Models for Resolutions’

 Section 8.13, “ Detecting Duplicate Code”

 Section 8.15, “Examining Metrics Results”

+ Section 8.8.1, “Definition of Filters, Modules and Root Directories’

» Section 8.12, “ Searching Elements’

A.3. Advanced Analysis

The following steps describe how the scripting functionality can be used for advanced analysis of a code base:

1. Select menu"File" ->"Import Quality Model" and choose some scriptsfrom the Javaquality model, e.g. " Java/DesignPatterns/
Singleton.xml" and "Java/BadSmells/FindDeadCode.xml".

2. Open the Files view and open the scriptsin the Script view. Run them and examine the results.
3. Check the script content and examine the usage of the visitor pattern.

4. Click F1 to open the context help. Select the JavaDaoc for the Script API. Detach the Help view for better usability and
examine the available functionality.

5. Write a script that finds all "deprecated” methods and classes. Check "JavalBadSmells/FindDeadCode.xml” for the logic to
examine dependencies to annotations.

6. Createissuesfor the found elements.

7. Use the Exploration view to verify your result.

8. Make the annotation class a script parameter.

9. Add the script to the automatically executed scripts via " System” -> "Configure..." -> " Script Runner”.
10.Check that the created issues show up in the Issues view.

11.Modify theissuetext in the script. Note that the button "Update Automated Script" is now enabled in the Script view. Transfer
the modified content to the automated script and check in the Issues view that the description is changed.

12.Check the CoreAccess.find* () methods in the JavaDoc. Maodify the script to search for the @Deprecated annotation and find
all incoming dependencies. Y ou can copy from the script UsageOf SystemOutPrintln, contained in the Java quality model.

13.Compare the execution times of the two different approaches (visitor vs. search). Think about the pros and cons of each.

140pen the Sonargraph system "step2 crm-domain-example.sonargraph” and examine the script
"FindM ethodWithAnnotationValue". Think about annotation valuesin your own projects that you want to check.

End of Step 2 (step2_crm-domain-example.sonar graph).
Related topics:

» Chapter 16, Extending the Satic Analysis

A.4. Architecture: Artifacts, Aspects Files and
Standard Connections

The following steps describe how a basic architecture check can be implemented using the Domain Specific Language (DSL):

1. Createanew architecturefile"layers" by right-clicking on thefolder "Architecture" in the Files view. Keep the default options
and make this architecture file "checked".

252

Walk Through Tutorial (Java)

8.

9.

Create artifacts "Business', "Integration”, "Foundation" with the standard include patterns. Check the context help (F1)
for more information.

Right-click on the file in the Architecture Files view and open the Exploration view for the architecture model. Y ou should
see red arcs representing violations.

Connect artifact "Business" with "Integration".
Make "Foundation" public, so that it isimplicitly accessible by the other artifacts.

Save the changes and check in the Architecture view that the correct components are matched for the artifacts. Verify that the
architecture-based Exploration view does not show any violations.

Create new checked architecturefile "application”. Create artifacts " Startup”, "Application” (**/ddaexample/**), Framework
(**/dda/**) with the standard include patterns. Connect the artifacts as indicated by the existing dependencies (use the
Exploration view).

Usethe "apply" statement for "Application" and "Framework" to create the layering defined previously in "layers.arc".

Add the "optiona" keyword to the "Foundation” artifact in layers.arc to get rid of the "Empty artifact" warning.

10.Create the checked architecture file "component”. Create artifacts "Controller", "Data’, "Domain", etc that correspond with

the packagesin the code.

11.Create the connections as the dependencies in the code indicate. Again, use the Exploration view to check for the existing

dependencies.

12.Check for architecture violations in the Issues view. Drill-down to the code and examine the root cause for the violations.

13.Remove "layers.arc" from the list of checked architecture files. It is now implicitly used, since the layering is checked and

applied in the file "application.arc".

14.An architecture can a so be interactively modeled using the Architectural view. Create anew "Architectural View" and create

the layering with it.

15.Export the information to an Architecture DSL file and observe the differences to the manually written architecturefile.

End of Step 3 (step3_crm-domain-example.sonar graph).

Related topics:

» Chapter 11, Defining an Architecture

e Section 11.1, “Models, Components and Artifacts’

e Section 11.3, “Reusing Architecture Aspects”

» Chapter 13, Interactive Restructuring and Code Organization

A.5. Architecture: Explicit Interfaces and
Connectors

The following steps describe how the access between artifacts can be more sophisticated and restrictive:

1.

2.

3.

Create checked architecture file "business".

Create artifacts for all domain aspects ("User", "Contact”, etc), check the package structure and create the correct number
of artifacts.

Create adummy artifact that contains all code that is not matched by the other artifacts.

253

Walk Through Tutorial (Java)

8.
9.

Connect the artifacts with ssimple "connect" statements.

Create default interface for the artifact "Service" in "components.arc" to restrict what is accessible from the outside. Include
all, except "**/*DtoVa" types.

In "application.arc”", create a default connector for " Startup™ to restrict access to the outside. Only SetupFactories should be
allowed to access types outside of its artifact.

Check for found architecture violations.
Introduce some dummy references in the code (use the Eclipse project) to produce more architecture violations.

"Refresh” in Sonargraph-Architect and check that the new violations appear.

End of Step 4 (stepd_crm-domain-example.sonar graph).

Related topics:

» Chapter 11, Defining an Architecture

» Section 11.2, “Interfaces and Connectors’

A.6. Architecture: Advanced Connections

The following steps describe how the access between nested artifacts can be more sophisticated and how duplication can be
avoided with connection schemes:

1.

2.

6.

7

Apply the component structure of "component.arc” to all artifacts contained in "business.arc".

Create more detailed connections between the different components using the nested artifacts explicitly. Check those
dependencies in the Exploration view. Note that the artifacts in "component.arc” must be "exposed"”, so that their default
interfaces are visible.

. Note that the components are always connected in the same way. Create a connection schemein "component.arc”. Check via

the context help for more information about connection schemes.

. Remove "component.arc” from the checked architecture files.

. Use the new connection scheme and remove all duplication in "business.arc".

Remove the obsolete dummy element in "component.arc'.

Check that you still see the same architecture violations.

End of Step 5 (step5_crm-domain-example.sonar graph).

Related topics:

« Chapter 11, Defining an Architecture

 Section 11.8, “Connecting Complex Artifacts’

* Section 11.9, “Introducing Connection Schemes”

A.7. Architecture: Advanced Aspect Files

The following steps describe how the information of aspect files can be changed, so that it fits the context where the aspects
are applied:

1. We want to create the structure defined in "business.arc”" for the "Business' artifact in application.arc. This can be achieved

by "extending" the Business artifact and applying "business.arc":

254

Walk Through Tutorial (Java)

5.

6.

ext end Busi ness

{
}

apply "./business.arc"

Check the context help and modify the architecture.

Use the same mechanism in the "Framework™ artifact and simply apply the "component.arc" to generate the same structure
there.

Remove "business.arc" from the checked architecture files. Only "application.arc" should be left as checked architecturefile.
Verify in the Architecture View that all artifacts are there and the correct components are matched.

Experiment with the workspace filters or include / exclude patterns to adjust the matching.

End of Step 6 (step6_crm-domain-example.sonar graph).

Related topics:

» Chapter 11, Defining an Architecture

e Section 11.4, “Extending Aspect Based Artifacts’

A.8. Architecture: Referencing external Artifacts in
Aspect Files

Aspect files are a good way to apply the same structure to different parts of the architecture. This section demonstrates how to
deal with connections from aspects to artifacts that are outside of the scope of the aspect itself. Let's say, we want to control the
access to javalang.reflect and only allow access to it from the artifact "DataServicel nterface” defined in "component.arc”. It is
shown why afirst naive approach is not working, and how the goal can be achieved using the "require" feature.

1.

Add the following artifact to thisfile:

artifact Reflection

{
}

strong include "External [Java]/[Unknown]/javal/lang/reflect/**"

. Save the changes and check the assigned elements to the generated instances of the artifact "Reflection”. Since thereisonly a

single java.lang.reflect package, the contained types are matched once for the first instance of a"component”, and then there
are none left to be matched for further "Reflection” instances in other components. This is clearly not what is needed. We
want only asingle instance of the "Reflection™ artifact.

"strong include" matchers are disabled in aspects, to avoid accidental misuse and the above mentioned strange matching
results. Thisis the reason why no matches are shown for any or the created "Reflection” artifacts.

. We need only asingle instance of the "Reflection” artifact in the application architecture. The above approach is not working,

and it is now demonstrated how it can be achieved with the "require" feature. Y ou need to define the "Reflection” artifact in
itsown file, let's say "reflectionAccess.arc”. Y ou can remove "strong" from the include matcher.

. Open the architecture file "application.arc" and add the following statement at the bottom:

apply "./reflectionAccess. arc"

This creates asingle "Reflection” artifact at the top-level of the architecture check.

. Go back to "component.arc” and add the following statement at the top of thefile:

255

Walk Through Tutorial (Java)

require "./reflectionAccess. arc"

This now allows using artifacts contained in that file, but does not instantiate them again. Do not forget to define the allowed
connection between "DataServicelnterface" and "Reflection".

6. Savethe changesand check again for the generated " Reflection™ instancesin the Architecture view. Thereisnow only asingle
instance and when you open the Exploration view for "application.arc" you can check which dependencies to "Reflection”
are alowed and which represent violations.

This concludes the architecture modeling. It is recommended to read the remaining chapters describing the architecture model,
e.g. Section 11.10, “Artifact Classes’, for even faster architecture modeling.

End of Step 7 (step7_crm-domain-example.sonar graph).
Related topics:
» Chapter 11, Defining an Architecture

» Section 11.11, “How to Organize your Code”

A.9. Headless Check with Sonargraph-Build

The following steps describe how Sonargraph-Build can be used on the build server to generate a report and let the build fail
on specific issue types:

1. Download and extract Sonargraph-Build from the web site https://www.hello2morrow.convproducts/downloads .

2. If you are interested in Ant: Examine the Ant file "crm-domain-example/build/build.xml" and adjust the properties. Run the
target "dist".

If you are interested in Maven: Examine the Maven file "crm-domain-example/pom.xml" and adjust the properties. Run the
goal "package" to create the JAR.

3. Create aworkspace profile that uses the created JAR as atarget directory.

4. Open the Sonargraph-Build user manual and check how the workspace profile can be specified as a parameter (only available
for command-line and Ant integration).

5. Run the build and adjust the failset: Check for specific issue types only, specific severities, etc.
6. Let the build fail on architecture violations.
7. Check the details of those architecture violations in the generated HTML report.

End of Step 8 (step8_crm-domain-example.sonar graph). The provided example uses the Maven plugin. Note: Workspace
profiles can be used with the command-line and Ant integrations. Maven and Gradl e provide the option to override the Sonargraph
workspace and use the source and class roots as present in the Maven and Gradle build.

Related topics:
» Section 8.8.3, “ Creating Workspace Profiles for Build Environments”

» Chapter 19, Build Server Integration

A.10. Check at Development Time with Sonargraph
Eclipse Integration

The following steps describe how to use the Sonargraph Eclipse plugin to execute the quality checks at devel opment time. Start
the Eclipse IDE and import the example project.

256

https://www.hello2morrow.com/products/downloads

Walk Through Tutorial (Java)

1. Install the plugin. Section 20.1, “Eclipse Plugin” provides details about the plugin's update site.
2. Usethe"Sonargraph" menu to activate the plugin by assigning alicense file or activation code.
3. Assign the Sonargraph system file. Check that the Sonargraph markers appear on the project and root directories.

4. Check that the Sonargraph issues are listed in the problems view. Update the code by introducing / removing violations and
check that the markers get updated after saving the changes. ("Build Automatically" must be enabled in Eclipse.)

5. Create a custom "Problems" view and configure it to only show the Sonargraph issues.

6. Switch back to the Sonargraph-Architect application. Open the package cycle from the Cycle Groups view and open then the
CycleBreakup view. The dependency to breakup isnow much easier to identify, because of the existing architecture definition.

7. Create a delete refactoring for the proposed breakup and save the changes.
8. Create a move/rename refactoring for a compilation unit or package of your choice and save the changes.

9. Refresh the system files in Eclipse using the corresponding Sonargraph menu entry. A new task marker should be visiblein
the Tasks view and also at the position within the file. Move the violating line up and down and save frequently. The task
marker moves accordingly. Comment out the offending lines and see the marker disappear.

10.0Open the Sonargraph Refactorings view in Eclipse and execute the refactoring via the context menu.

11 Refresh the system in Sonargraph-Architect and notice that the status of the refactoring changed to "Potentially Done". The
architect can now review the changes and delete the task.

Related topics:

e Section 20.1, “Eclipse Plugin”

» Section 20.1.1, “Assigning a System”

» Section 20.1.2, “Displaying Issues and Tasks’
¢ Chapter 10, Smulating Refactorings

* Section 10.4, “Best Practices’

» Section 20.1.7, “ Execute Refactorings in Eclipse’

257

Appendix B. Tutorial - Java

Thisis a step-by-step tutorial illustrating the analysis of the Open Source project Apache Cassandra. It will be demonstrated
how to setup the workspace and quickly get an overview of the state of software quality. Someissues are reported by Sonargraph
right away without further configuration and it will be shown how to analyze cyclic dependencies and duplicate code blocks.
Sonargraph also alows to easily analyze the dependency structure in more detail. Next it is illustrated how the GroovyScript
API can be used to monitor virtually anything that can be detected via static code analysis. The last chapter shows how you can
share the results of the analysis.

Thistutorial isintentionally kept as short as possible. For more detail ed information about certain functionality, links are provided
that will steer you to the corresponding chapters of the user manual.

B.1. Setup the Software System

Apache Cassandra isbuilt using Apache Ant thereforethe Sonargraph Workspace needsto be set up manualy, i.e. the definition
of modules and the location of source and classfiles. For systems built with Maven or that are represented by an Eclipse or IntelliJ
Workspace, the Sonargraph Workspace can be set up automatically. For more information, see Chapter 6, Creating a Systemand
Section 8.8, “Managing the Workspace” .

B.1.1. Create a new Software System

The initial system is created using "File" — "New" . Select the entry "Manual System" and continue. In the following wizard
page, provide the name of the software system and specify where the system's files will be stored. For more information about
the file structure, see Chapter 5, Getting Familiar with the Sonargraph System Model .

A Sonargraph - New System | (5] |

Specify the name, description and location of the new system

Marme: ApacheCassandra
Description:
Directory: Dehtutorial Ca

Use quality model

'i?:' < Back Mext > [Einish l | Cancel

Figure B.1. New Manual System Wizard

Using a Quality Model is explained in Section B.6, “ Share Results’ , leave this option unchecked for now.

B.1.2. Define the Workspace

Asanext step, we need to create one or several modules. A moduleisthe container for sourceand classroot directoriesand usually
represents aMaven module or an Eclipse/ IntelliJ project. Wewill start creating a single module, and refine the workspace later.

A module is created by selecting "File" — "New" and selecting the wizard entry "Manual Java Module". Define the module's
name and optionally provide a description.

As anext step, we let Sonargraph search for directories containing source and class files. Right-click on the created modulein
the Navigation view. Select the context menu entry "Manage Java Source/Class Root Directories/Archives..." and specify the
root directory of the Apache Cassandra project on your disk.

258

http://cassandra.apache.org/
http://cassandra.apache.org/
http://ant.apache.org/

Tutoria - Java

Start the detection and wait until it completes. Now you can move the found directories via drag& drop from the right to the | eft.
We omit directories containing examples or test code.

Sonargraph - Manage source/class roat path: EE .I

[Tlinclude paths starting with *."
[JInclude ZIP format archives (*zip, *jar, *.war, *.ear)

Include nested ZIP format archives (i.e. archives contained in others)

ChlUsers\Ingmar\Dropbox\hello2morrow Development\Sonargraph8_Tuterial\apache-cassandra-1.2.6

Use drag and drop to assign detected root directories/archives to existing modules,

4 = default
../apache-cassandra-1.2.6/tools/stress/src

../apache-cassandra-1.2.6/build/test/classes

../apache-cassandra-1.2.6/examples/client_only/src
./apache-cassandra-1.2.6/src/java /apache-cassandra-1.2.6/examples/hadoop_cql3_word_count/sn
./apache-cassandra-1.2.6/src/gen-java ./apache-cassandra-1.2.6/examples/hadoop_word_count/src

./apache-cassandra-1.2.6/build/classes/main ./apache-cassandra-1.2.6/test/long

halababa b

../apache-cassandra-1.2.6/interface/thrift/gen-java ../apache-cassandra-1.2.6/test/unit

../apache-cassandra-1.2.6/build/classes/thrift

DR DEEE

./apache-cassandra-1.2.6/build/clas:
[|

fapache=t stress

[l m | »

Ready (found 5 assignable root directories/archives)

@ [ok || Cancel

Figure B.2. Root Directories Dialog

The workspace configuration can be examined on the Workspace view. We can see that it is probably best to create additional
modules "thrift" and "stress’ using the same approach as previously. Now you can use drag&drop in the Workspace view to
move directories from the "default” module and rename "default” to "main” using either the context menu or the F2 shortcut.

@Eﬂl Metrics | 1 Warkspace | =, Workspace Dependencies| |, Issues (1) | | Resolutions w2 Cycle Groups | Bl Duplicate Blocks E Maodel

Element Description Information
}:D Filter 0 component(s) excluded
4 =, main 0 component(s) found
[Z1 ./apache-cassandra-1.2.6/build/classes/main 0 java class file(s) found
[_B ./apache-cassandra-1.2.6/src/gen-java 0 java source file(s) found
[_2 ./apache-cassandra-1.2.6/src/java 0 java source file(s) found
4 B thnft 0 component(s) found
[C1 ../apache-cassandra-1.2.6/build/classes/thrift 0 java class file(s) found
[C2 ./apache-cassandra-1.2.6/interface/thrift/gen-java 0 java source file(s) found
4 =, stress 0 component(s) found
[_3 ./apache-cassandra-1.2.6/tools/stress/src 0 java source file(s) found
[Z1 ./apache-cassandra-1.2.6/build/classes/stress 0 java class file(s) found
:e External [Java] Contains external elements 0 external component(s) found

Figure B.3. Workspace View

259

Tutorid - Java

NOTE

Theorder of theroot directories matters: In casethere are classes with the samefully qualified names, thefirst onefound
wins. Y ou can change the order of root directories of manual Javamoduleswithin the Workspace view using drag& drop.

B.1.3. Define Module Dependencies

M anaging modul e dependenciesisespecially important when using frameworkslike OSGi where you could haveamodule X and
amoduleY each one of them containing atype with thefully qualified namea.b.c. Type. Such conflicts are resolvable by defining
manual module dependencies. These module dependencies control the type resolution when creating parser dependencies trying
to locate the 'to’ (Java) type.

If the modules do not define any dependencies all types are visible in all modules. Once there are type resolution conflicts which
would show up as 'Ambiguous Target Type' issues manual module dependencies can be used to decide which type(s) should
be accessed from which module. If module Z accesses the type a.b.c.Type defined in module X and module Y the conflict is
resolved by simply defining a manual module dependency between module Z and the correct target module.

NOTE

If you know how modules are supposed to use each other, define the workspace dependencies explicitly.

B.1.4. Parse the Workspace

To parse the workspace, either chose the menu item "System" — "Refresh” or use the shortcut F5 . After the parsing has
completed, the detected classes are displayed with their package structure in the Navigation view and the Workspace view shows
how many items are found in a directory.

File Edit Workspace Metrics Issues Window Help
& 0 | (=] Mavigation Limit: 50 Current Model: @ Modifiablevm |V| | a7 |
=, Mavigation - Files E &%~ - 0 & Metrics 1 Worksp... | ofh Worksp... | ' Issues... | &l Resolu... E_Z}C)rcle... Ef Duplic... ‘ng Model| = O
4 m=| main * || Element Description Information
4] ./apache-cassandra-1.2.6/build/cla: .
1 /ap ! ! o Filter 0 component(s) excluded
4 Horg 4 B main 755 component(s) found
4 3 apache 1 ../apache-cassandra-1.2.6/build/classes/mair 1592 java class file(s) found
4 H cassandra O3 ../apache-cassandra-1.2.6/src/gen-java 38 java source file(s) found
- auth _._', ../apache-cassandra-1.2.6/src/java 1472 java source file(s) found
- B ca.che 4 =i thrift 41 component(s) found
- @ d! (1 ../apache-cassandra-1.2 6/build/classes/thrift 334 java class file(s) found
4 d'em_: = 3 ../apache-cassandra-1.2.6/interface/thrift/ger 82 java source file(s) found
 [4] RingCache 4 B stress 22 component(s) found
- conc.urrent R ../apache-cassandra-1.2.6/tools/stress/src 44 java source file(s) found
- H config 1 ../apache-cassandra-1.2 6/build/classes/stres 30 java class file(s) found
g g eql e Bxternal [Java] Contains exte.. 549 external component(s) found
3 cql3

Figure B.4. Workspace View After Parsing

B.2. Initial Analysis

After having parsed the workspace as described in the previous section, basic information about the number of processed source
and class files is provided on the workspace view. This section explains how the results of the metric calculation can point out
problematic areas.

B.2.1. Detect Problems Using Standard Metrics

The Metrics view is separated into two general areas. The "System Level" and the "Element Level". The "Element Level" tab
allows to focus on different levels, e.g. modules, root directories, packages, types, routines, etc. as shown in the following
screenshot.

260

Tutorid - Java

& System Level | @ Element Level

Package ,,\I\;- MNumber of types (classes, enums or similar, excluding anenymous types)
Metric Name [10 elements] Min Max || Element Name [56 elements] Value =
Ahstractness E}org.apache.cassandra.db 119 |
Distance (Module) 8 org.apache.cassandra.utils 9 |~
Distance (System) 4 org.apache.cassandra.cli a5
Instability (Module) E}0rg.apache.cassandra.ch 93
Instability (System) 3 org.apache.cassandra.service 78
MNumber of Incoming Depend... 1 org.apache.cassandra.cql3.statements 54
Mumber of Incoming Depend... £ org.apache.cassandra.transport 51
Number of Outgoing Depend... 5 org.apache.cassandra.db.compaction 46
Mumber of Qutgeing Depend... EEOrg.apache.cassandra.io.sstable 42

£ org.apache.cassandra.db.marshal 40

1 org.apache.cassandra.cq 35

3 org.apache.cassandra.io.util 35

1 org.apache.cassandra.gms 3 -

FigureB.5. Metrics View

B.2.2. Adjust Metric Thresholds

The Metrics view allows defining lower and upper-level thresholds for metrics. Issues are created for those elements violating
these thresholds and they are clearly marked in the table. If metric thresholds are specified, those values will be saved into afile
located at: <Sonar gr aph System di rectory>/ Anal yzers/ Metri cThreshol ds. xm . Thresholds are defined

either via the context menu of ametric or the menu entry "Metrics' — "New Threshold..." .

l.t}lMetriG i 15 Worksp... g%‘gWDrksp... 4 Issues . %Resolut... %CycleG... @ Duplica... D CBCodec D cfoef| — O
i System Level | @ Element Level

Package | Number of types (classes, enums or similar, excluding anonymous types)
Metric Name [10 elernents] Min Max || Element Name [56 elements] Value *
Abstractness 3 org.apache.c dra.exceptions 18
Distance (Module) £ org.apache.cassandra.metrics 18
Distance (System) #® org.apache.cassandra.db.filter 18
Instability (Medule) 1 org.apache.cassandra.cache 18
Instability (System) 5 org.apache.cassandra.io.compress 16
Mumber of Incoming Dependencie... # org.apache.cassandra.db.commitieg 16
Number of Incoming Dependencie... E}org.apache.cassandra.stress.operations 15
MNumber of Outgoing Dependencie... 5 org.apache.cassandra.db.columniterator 14
Number of Outgoing Dependencie... E}org.apache.cassandra.concurrent 14
5 15 EEorg.apache.cassandra.db.migration.a\rro 11
1 org.apache.cassandra.db.index 9
£ org.apache.cassandra.cql3.functions 9
1 org.apache.cassandra.hadoop.cql3 8
£ org.apache.cassandra.io 8
1 org.apache.cassandra.stress 8
5 org.apache.cassandra.scheduler 6
£ org.apache.cassandra.streaming.compress 5|2
1 org.apache.cassandra.db.context 5|7
£ org.apache.cassandra.notifications 4
£ org.apache.cassandra.utils.obs 4
5 org.apache.cassandra.clitransport 3
1 org.apache.cassandra.tracing 3

FigureB.6. Metrics View Highlighting Thresholds Violations

B.3. Problem Analysis

Sonargraph listsall problemsfound inthe Issue view. At this stage the view listsissues of type Cycle Group, Duplicate Block and
Threshold Violation. If someissuestypes should befiltered this can be achieved using thefilter option as shown in the screenshot.

261

Tutorid - Java

.&1 Metrics | %% Workspace | o5 Workspace D.. |, Issues () & Resolutions % Cycle Groups Ef Duplicate Bl... lﬁE Model | 3 Exploration | %% Package eyc..| — O

=
Issue [205 elements] Description Severity Category Element To Element I::D[})Filtar‘..
: @ Cycle Group Software System 'ApacheCassandra’ contains 48 cyclic packages % Warning Workspace %! Package cycle group 1 n/a *S Clear Filter
& Cycle Group Java Medule 'stress’ centains 19 cyclic compenents Ay Warning Workspace %% Component cycle group 31 n/a

& Cycle Group Java Medule 'main’ contains 2 cyclic compeonents Ay Warning Workspace %% Component cycle group13 n/a

@ Cycle Group Java Medule 'main’ contains 3 cyclic compeonents Ay Warning Workspace %% Component cycle group 17 n/a

@ Cycle Group Java Medule 'main’ contains 2 cyclic components Ay Warning Workspace %% Component cycle group 15 n/a

@ Cycle Group Java Medule 'main’ contains 2 cyclic components Ay Warning Workspace %% Component cycle group 16 n/a

@ Cycle Group Java Medule 'main’ contains 2 cyclic components Ay Warning Workspace %% Component cycle group11 n/a

@ Cycle Group Java Medule 'main’ contains 2 cyclic components Ay Warning Workspace %% Component cycle group 19 n/a

& Cycle Group Java Medule 'main’ contains 2 cyclic compeonents &5 Warning Workspace Compenent cycle group 1.8 n/a

& Cycle Group Java Medule 'main’ contains 477 cyclic cemponents &5 Warning Workspace +% Component cycle group 1.2 n/a

& Cycle Group Java Medule 'stress' contains 4 cyclic packages &5 Warning Workspace Package cycle group 31 n/a

& Cycle Group Java Medule 'main’ contains 2 cyclic components &5 Warning Workspace Compenent cycle group 1.4 n/a

® Cycle Group Java Moedule 'thrift’ contains 34 cyclic components & Warning Workspace +& Component cycle group 21 n/a

® Cycle Group Java Medule 'main’ contains 48 cyclic packages & Warning Workspace +& Package cycle group1l n/a

Duplicate Block 2 pccurrences & Warning Workspace E¥ Duplicate code block 99 n/a

Duplicate Block 2 pccurrences & Warning Workspace E¥ Duplicate code block 111 n/a

® Duplicate Block 14 occurrences A Warning Workspace E¥ Duplicate code block 10 n/a

® Duplicate Block 4 occurrences A Warning Workspace [E¥ Duplicate code block 59 n/a

@ Duplicate Block 2 pccurrences A Warning Workspace B Duplicate code block 96 nfa

@ Duplicate Block 2 pccurrences 4 Warning Workspace B Duplicate code block 132 nfa

@ Duplicate Block 8 occurrences 4 Warning Workspace B Duplicate code block 32 nfa

@ Duplicate Block 4 occurrences £ Warning Workspace B Duplicate code block 63 nfa

@ Duplicate Block 8 occurrences 4 Warning Workspace B Duplicate code block 30 nfa

® Duplicate Block 4 occurrences A Warning Workspace B Duplicate code block 70 nfa

@ Duplicate Block 2 occurrences A Warning Workspace E¥ Duplicate code block 91 n/a

@ Duplicate Block 3 occurrences A Warning Workspace E¥ Duplicate code block 79 n/a

FigureB.7. Filter Issues

Check Section 9.2, “Examining Issues’ for more details about filtering.

B.3.1. Examine Cycles

Cycles between any elements should be avoided as they have a negative impact on various properties of the software system,
e.g. testability, maintainability, understandability, to name a few. Cycles can be examined in more detail by opening the Cycle
Groups view. This view additionally shows the involved source files for component cycle groups.

Cycle [13 elements] Count Scope Resolution
v @ Component Cycles (Module) 10 Cycle Groups
%% Component cycle group 1.5 477 Cyclic Elements =i main = None
% Component cycle group 3.1 19 Cyclic Elements B stress = None
~ ¥ Component grla menin 13 2 Curlic Elements i main = Mone

Exceptiont 1| Fix lssue...
Transportt & Ignore Issue...
ProtocolE:

1 Component ¢ £7 haw in Cycle View Elements =i main = None

4% Component c @} Show in Exploration View Elements =k main = None

% Componentc =7 Show in Graph View Elements =i main = None

% Component cycregroup o yene Elements =i main = None

%% Component cycle group 1.4 2 Cyclic Elements. =i main = None

Component cycle group 1.3 2 Cyclic Elements = main = MNone

£ Component cycle group 1.1 2 Cyclic Elements =i main = None
Q- Package Cycles (Madule) 2 Cycle Groups
3= Package Cycles (System) 1 Cycle Groups

FigureB.8. Cycle Groups View

To analyze individual cycle groups, open the Cycle Group view via the context menu. This view shows the involved elements
and when selecting an element or a dependency, details to the dependency are shown in the Parser Dependencies views. Drill-
down to the source code is supported via double-click on a dependency.

262

Tutorid - Java

[J] ExceptionCode.java

| [4] ProtocolException java

[J] TransportException.java

No Additional ~ Transitive Internal

B Properties G:(; Parser Dependencies (Out) <}:pPav'sar Dependencies (In) &2 [Z_ Markers

From File [12] Line From Dependency To To File
[1] TransportException java 75 "a code(] : ExceptionCode = Retumns @ “ExceptionCode [J]” ExceptionCode,java
[4] ProtocolException java 33 & code(): ExceptionCode = Retums @ ExceptionCede [J] ExceptionCedejava
mProtocu\Excaptlon.Java 35 & code(): ExceptionCode = Read Field @ PROTOCOL_ERROR] ExceptionCode.java
[J] ExceptionCode.java 52 © valueToCode = TypeArgument [OnField] @ ExceptionCode [J] ExceptionCode,java
[4] ExceptienCode java 55 & static = Local Variable @ ExceptionCede [1] ExceptionCedejava
[J] ExceptionCode,java 56 a static = Read Field @ valueToCode [1] ExceptionCodejava

FigureB.9. Cycle View

B.3.2. Examine Duplicate Code

Duplicate code is another type of issue shown in the Issues view. Details of duplicates are shown in the Duplicate Code Blocks
view that can be opened via the context menu. This view shows more details about individual duplicates, i.e. the block length,
tolerance, and involved files.

i Metrics 15 Workspace | -5, Workspace De... | | Issues (1) | | Resolutions R?C}rcle Groups | Bl Duplicate Blo.. &3 | %% Component ... @Dm

File Line range Block length (lines) Tolerance (lines)
. BY Duplicate code block 14 43
. B¥ Duplicate code block 84 42
. B Duplicate code block 72 42
- B Duplicate code block 11 39
- B Duplicate code block 134 39
. B¥ Duplicate code block 133 38
- B¥ Duplicate code block 135 38
. B Duplicate code block 136 38
- B Duplicate code block 137 38
. B¥ Duplicate code block 40 37
- B¥ Duplicate code block 140 37
4 B Duplicate code block 139 37 —
[J] Deletion 396-432 37 3 | IR B
[¥] ColumnPath 419-455 37 3 |+ Fixlssue
. B Duplicate code block 24 37 &) Ignorelssue
. B Duplicate code block 13 37
- B Duplicate code block 73 6 iﬂ Show In Duplicates Source View
. F¥ Nunlicate code blnck 41 36

Figure B.10. Duplicate Code Blocks View

The Duplicate Source view highlights the duplicate block and marks the lines within a block that are different.

263

Tutorid - Java

4 Metrics 1% Workspace | 13, Workspace De... | ', Issues (1) | & Resolutions %Cycle(}roups Ef Duplicate Blo... | £% Component ... Q]—-lDupIicateco... g = 8

ColumnPath.java [419-455]

~ | [Deletion,java [396-432) -

lastComparison = org.apache.thrift. TBaseHelper.compareTo(this.colurr »
if (lastComparison != 0] {
return lastComparison;
1
1
lastComparison = Boolean.valueOf(isSetSuper_column()).compareTo(tyg
if (lastComparison != 0) {
return lastComparison;
1
if (isSetSuper_column()) {
lastComparison = org.apache.thrift. TBaseHelper.compareTo(this.super.
if (lastComparison != 0) {
return lastComparison;
1
1
lastComparison = BooleanvalueOf(isSetColumn()).compareTo(typed Otk
if (lastComparison != 0) {
return lastComparison;

1
if (isSetColumn()) {
lastComparison = org.apache.thrift. TBaseHelper.compareTo(this.colurr
if (lastComparison != 0] {
return lastComparison;
1
1
return 0;
1

m

lastComparison = org.apachethrift. TBaseHelper.compareTo(this.timest »
if (lastComparison != 0) {
return lastComparison;
1
1
lastComparison = Boolean.valueOf(isSetSuper_column()).compareTol(tyg
if (lastComparison != 0) {
return lastComparison;
1
if (isSetSuper_column()) {
lastComparison = org.apache.thrift. TBaseHelper.compareTo(this.super_
if (lastComparison != 0] {
return lastComparison;
1
1
lastComparison = Boolean.valueOf(isSetPredicate()).compareTo(typed Ot
if (lastComparison != 0) { %
return lastComparison;

1
if (isSetPredicate()) {
lastComparison = org.apache.thrift. TBaseHelper.compareTo(this.predic
if (lastComparison != 0) {
return lastComparison;
1
1
return 0;
1

m

FigureB.11. Duplicate Source View

For more details about configuring the duplicate code analysis, check out Section 8.13.1, “Configuration of Duplicate Code

Blocks Computation”.

B.3.3. Handle Issues

Sonargraph allows to handle issues in two different ways via the context menu of the Issue view:

« Ignore: Signifiesthat the issue will be dealt with later.

 Fix: Signifies that the issue needs to be fixed. An assignee can be specified.

Additionally a TODO-resolution can be defined for any element.

‘-}« Metrics | 1% Workspace g%;WDrkspaceDependencies o Issues () E'—EJ Resolutions (1) E

Issue [202 elements]

& Cycle Group

@ Cycle Grol = Export To Excel File...
@& Cycle Grol 43 Fix Issue

s

@ Cycle Groy Ignore [ssue
® Cycle Groy Save System...
& Cycle Grol

@ Cycle Grol 2 Show In Cycle Groups View

Description

Java Module 'main’ contains 2 cyclic components

ntains 2 cyclic components
ntains 477 cyclic component
ntains 2 cyclic components
Ctrl+S nta.ms 19 cy_chc compeonent:
ntains 2 cyclic components

ntains 48 cyclic packages

@ Cvcle Grouo

Java Module"main” contains 3 cvclic components

FigureB.12. Add TODO Issue

The details about created resolutions are shown in the Resolutions view, including how many elements are matched. The lower
section displays the matched elements and allows the drill-down into a detailed view via the context menu.

264

Tutorid - Java

i Metrics 15 Workspace | -5, Workspace Dependencies | | Issues (1) | | Resolutions (1) 3 732 Cycle Groups | Bl Duplicate Blocks | £% Component cycle group 1.3

Resolution Type [2 elements] Issue Type Comment Date Matched Priority Assignee
+3) Fix Issue Duplicate Block Please remove this duplication 07.07.2014 13:32:22 1 l:::' Medium Mr Developer X
®Ignore Issue Cycle Group Tolerated cycle group 07.07.2014 13:43:30 1
Matching Element Type [1 elements] Elerment Elernent To Issue Description
| @ Element £¥ Component cycle group 13 n/a Java Module 'main’ contains 2 cyclic components
= Export To Excel File...
a Save System... Ctrl+5
L

S &ow In Cycle Groups View

"

Figure B.13. Resolutions View

More information about issues, resolutions and quality models can be found in Chapter 9, Handling Detected | ssues.

B.4. Detailed Dependency Analysis

Sonargraph provides different views to analyze dependencies between elements. The most important are the Exploration, Graph
and Dependencies views.

B.4.1. Explore Dependencies

The Exploration view can be opened for an arbitrary selection of elementsin the Navigation view or viathe context menu within
other views.

~ B com.helloZmorrow.sonargraph.core
v E@,..,fcum.halIu2morrﬂw.sonargraph.ccra,fsrc,rmain,fgrouw
> 2 com.hello2morrow.sq
> [.fcom.hellozmorrowsor %k MNew Delete Refactoring. ..
> (2 feom.hello2morrow.sor & New Move/Rename Refactoring...
> @,..rcom.hallﬂmorruw.sol % New Todo...

> @& com.hello2morrow.sonargr
> = hello2 . - a a

i com.helloZmorrow.sonargti o, 1anage Java Root DirectoriesfArchives...
» @8 com.helloZmorrow.sonargr
> o . -

acnm.halloZmDerw_sonargn _: Show in Graph View »
» B8 com.helloZmorrow.sonargri
> =&\ com.hello2morrow.sonargr ﬁ ke B‘“ Select and Reveal
> @) com.hello2morrow.sonargry 2 Show in Dependencies View .

5 o itiona
» B com.hellodmorrow.sonargr L Show in Element Metrics View
> @ com.hello2Zmorrow.sonargra,______ x In and Out
» m, com.helloZmorrow.sonargraph.plugin.api.csharp 3.. In
> @4 com.hello2morrow.sonargraph.plugin.api.java .[:: out
» @ com.helloZmeorrow.sonargraph.plugin.api.python
> =, com.hello2morrow.sonargraph.plugin.manager Ad
vanced...

. =

=i, com. helloZmorrow.sonargraph.plugin.pmd

Figure B.14. Open in Exploration View

The Exploration view orders the displayed elements, with elements on top having more outgoing dependencies and elements
on the bottom having more incoming dependencies. Clicking on the plus-sign of an element opens nested elements, alowing
to drill down to fields. Arcs represent detected dependencies, which can be analyzed in more detail in the Parser Dependencies
views and also in the Source view.

265

Tutorid - Java

Bl /tools/stress/src
=)+ org.apache.cassandra.stress.operations

[9] cglCounteradder.java

[H (= cqlcounterAdder {5 CqlCounterAdder
4 run(Operation$CQLQueryExecutor) : void (.. run(Operation$CQLQueryExecutor) : void
< cglQuery 5 Export Exploration To Image...
Enid 3 New Delete Refactoring...
_ . # New Todo...
& session
o €% Showin Exploration View
4 CglCounterAdder(Session,int) -
= Showin Graph View
& error(String) : void [Show in Source View
& From 'run(OperationSCOLQueryExecutor) : void' >
No Additional Transitive ~ Internal © To'cqiuery y
= Properties | °S. Parser Dependencies (Out) 22 | “5. Parser Dependencies i) | [2 Markers w =
From File [2] Line From Dependency To To File
[J] CqiCounterAdder.java 48 & run(OperstionSCQL.. = Read Field O cqlQuery [l CqiCounterAdderjava
[3] CqiCounterAdder,java 43 & run(OperationSCQL.. = Write Field o cqlQuery [I] cqiCounterAdderjava

Figure B.15. Exploration View Drilldown

Thisview offersinteractions such as focus and unfocus which can be used to explore the dependencies of an arbitrary selection of
elementsinside the Exploration view and also provides highlighting, marking and zooming which can be helpful in the analysis

of the content that is being displayed. Further details are explained in Section 8.11.2.1, “Focus Modes” and Section 8.11.2.1,
“Applying Focus’.

{EC2./tools/stress/src

E| + org.apache.cassandra.stress

m StressServerjava p m StressServerjava

(0O

1 server _——-fif server
m StressAction.java / 1] StressAction.java
ﬂ] operations operations

1 util
] Sessionjava
4] Stressjava

ession.java
Stress.java
[= main X = main

[H =4 thrift \ =) thrift

[H g External [Java)) | External [Java)

Figure B.16. Exploration View I nteractions

B.4.2. Check how Elements are Connected via Graph View

The Graph view can also be opened for an arbitrary selection of elements from the context menu. It shows the sel ected elements
in alevelized graph. For more details about the advantages see Section 8.11.2.2, “Levels’. Again, existing parser dependencies
can be analyzed using the Parser Dependencies Views.

=i Navigation | % Namespaces | 55 Files S E T = 0 ||=%Graph 32

v Ei main 3
(21 /build/classes/main
(2 Jsrefjava
v E stress
~ [Jtools/stress/src
v {8 org.apache.cassandra.stress

1 operations

i operations

1 server & New Todo...
util &5 Show in Exploration View 4
[J] Session.java = o Graph Vi > © No Additional
) Sreeeimm = Show in Graph View o Additiona 2 util
[J] StressActionjava 13 Manage Java Root Directories/Archives.. &3 Ao
[3] StressServerjava e In
=, thrift ol Out
g Bdemal [Java] . Advanced...

I fsrefjava

FigureB.17. Graph View

266

Tutorid - Java

Like the Exploration view, the Graph view aso offers focus and unfocus interactions to check the dependencies of an arbitrary
selection of elements inside the view. It also offers highlighting and zooming to help in the analysis of the currently displayed
content. Additionally, it will automatically group elements that form cycles to make the graphs more comprehensible. By right-
clicking on a Cycle Group, it is possible to open the Cycle view to observe the detail of the elements that make part of it. Further

details are explained in Section 8.10.2, “Inspecting Cyclic Elements’.

[J] RingCache java [J) AbstractColumnFamilylnputFormat java

1 Export Graph To Image...

|
| %% Show in Cycle View
------------ 77" 43 Show in Exploration View

L\

&f| Maps &J] I0Exception
FigureB.18. Graph View Interactions

B.4.3. Check how Elements are Connected via the
Dependencies View

If you rather like tabular representations, existing dependencies of elements can be examined in the Dependencies view which
is again available via the context menu, but only for a single selection. The Dependencies view is separated into three parts,
each alowing to drill down and analyze a specific dependency in more detail. More features of this view are explained in

Section 8.11.4, “Tabular System Exploration”.

267

Tutorid - Java

4 Metrics | 15 Worksp... |5 Worksp... | Issues (1) | | Resolut... | i’ Cycle G... | B} Duplica... | T Model | =5 Graph |® auth 2 | = B

Incoming - To [10 élements] From From scope MNumber of dependencies e
> HF auth 4 Aggregated £ net B main 1
£ auth 4= Aggregated £ hadoop B main 6
{1 auth 4+ Aggregated £ tools B main 2 A
: H auth 4+ Aggregated £H cql3 Eh main 26 I
> Hf auth 4 Aggregated £ cql B main 1
» 3 auth 4 Aggregated EH utils B main 4
> {1 auth 4+ Aggregated £ config =) main 16
> HF auth 4 Aggregated B3 cli B main 4
. B3 auth 4 Aggregated £} thrift =i main 19 ¥
Internal - From [55 element;] To MNumber of dependencies ~
4 [J] DataResource = Aggregated [J] IResource 6
4 (9 DataResource = Implements &3 IResource 6
& hasParent() = Overrides & hasParent() 1 E
& getName() = Owerrides & getMName(1
& exists() I} = Owerrides & exists() 1
4 (3 Level = Type argument... (3 Level 13
© KEYSPACE =+ Field i <Level> 1
© ROOT = Field L <Level» 1
. & static =+ New S «Level» 2
@ COLUMMN_FAMILY =+ Field i <Level» 1 il
PRSET Y , TRy N = RECIS [b
Outgeing - From [18 elements] To To scope MNumber #
 H auth = Aggregated 1 locator Eh main 2
4 {7 auth = Aggregated Hg lang =g External [Java] 6
+ |J] CassandraAuthorizer = Aggregated [5 StringUtils se External [Java] 3
» [J] PasswordAuthenticator =+ Aggregated [StringUtils = External [Java] 1
- [1] Auth = Aggregated [StringUtils = External [Javal 1
» [J] DataResource = Aggregated [5 StringUtils sp External [Java] 1 i
— . . e = cee - .
<‘===;; Parser Dependencies (Out) &2 q:;; Parser Dependencies (In) ["‘_ Markers | El Console = O
From File [6 elements] Line From Dependency To To File *
DataResource 33 (3 DataResource = Implements (1) org.apache.cassandra.auth.JResour... m IRe =
DataResource 124 & getName(=+ COwerrides & org.apachecassandra.auth.Resour... m IRe
DataResource 141 & getParent() = Owverrides & org.apache.cassandra.authResour.. [J] IRe
DataResource 141 & getParent() = Returns & org.apache.cassandra.auth IResour... m IRe -
1 1 r

Figure B.19. Dependencies View

B.4.4. Search for Elements

In case you are interested in seeing the dependencies of a particular type, but want to spare the effort of navigating to it viathe
Navigation view, the Search dialog provides this shortcut. See (Section 8.12, “ Searching Elements’)

B.5. Advanced Analysis With Scripts

Sonargraph provides an API to access its internal model by Scripts written in Groovy. Sonargraph scripts can introduce and
calculate new metrics, add issues to the model, and build alist or tree of model elements or dependencies.

B.5.1. Create a New Script

Y ou can create a new script either by menu "File" - "New" - "Other" - "Script" , or by selecting an existing script directory
and selecting "Create Script..." from the context menu. The"New Script Wizard" will start, and at least aname for the new script
must be given. After pressing "OK" the new script shows up in a Script view, where you can edit, compile and execute it.

268

Tutoria - Java

Specify name and description and manage parameter definitions

Marne: MyMewScript

Description: | This is a new script to detect cool stuff] |

Languages: || Core E‘f}# [Nlava [JC/C++

Parameter [2 elements] Type Description Default V... Possible Values &
7 timeout Integer When scripts are scheduled for automated execution they .. 10
P output String When a path is specified the output of the script is written...

Figure B.20. Create a New Script

More details are provided in: Section 16.3, “Creating a new Groovy Script”

B.5.2. Execute Existing Script

To execute an existing script, go to "Files' tab and open directory "Scripts'. Double click on a script and a Script view will
open. The Script view consists of three parts: On the top the source of the script, in the middle the "Compile"/"Run" and "Update
automated Script” buttons, and on the bottom five tabs for the result of the script. Press " Execute" and the script will run. Every
tab in the bottom of the Script view that contains some data will show an exclamation mark in itstitle.

1 E,F'.'Create visitor. For language specific visitor use <language>Access.createVisitor()

Z ICoreVisitor v = coreAccess.createVisitor()
3

4 ffExample stub-method to process types.

3 wv.onType
&1
7 TypeAccess type ->
8 if{type.isExternal() || type.isExcluded(})
9 {
10 return
11
12 fradd elements so they show up in the elements tab, so we know what has been processed.
13 result.addElement({type)

15 [[Traverse the model
16 corefAccess.visitMode l(v)

Lf

b' Execute || _"5:' Update automated Script

@ Elements 3 Dependencies} E Tree} o Issues Prwiew} M Metrics Preﬁew}

Name

Figure B.21. Execute a Script

More details about how find specific elements or dependencies, create metrics and issuesis provided in: Section 16.5, “Producing
Results with Groovy Scripts’

269

Tutorid - Java

B.6. Share Results

Once a system has been analyzed it is important to share the findings with others. This section explains the different types of
export offered by Sonargraph .

B.6.1. Work with Snapshots

Sonargraph offers the capability to create snapshots to preserve the state of a system at any given time. It is available via"File"

- "Save Snapshot..." and creates an archive file containing all the generated information in compact binary format together with
or without the source files. This snapshot can be archived or passed on to co-workers for further evaluation. No data contained
in a snapshot can be modified.

NOTE: A snapshot can also be created with Sonargraph-Build.

Snapshots can be opened via"File" — "Open From Snapshot..." .

An opened system can also be "attached/detached' to/from an existing snapshot. This can be helpful in case you have a system
which takes along time to parse. Create a snapshot (ideally with sources) in your automated build with Sonargraph-Build, attach
to it from Sonargraph using the corresponding system and continue to work on architecture aspects, scripts and others.

NOTE: When attached to a snapshot workspace modifying commands are disabled (e.g. create module, ...).

B.6.2. Define Quality Standards using Quality Models

A Quality Model allows defining a standard configuration that needs to be applied to severa systems. It contains analyzer

configuration (e.g. for metric thresholds) and scripts. Menu entries "File" — "Export Quality Model..." and "File" - "Import
Quality Model..." can be used to export and import a Quality Model. Additionally, a Quality Model can be specified during
creation of a system. See Section 6.4, “Quality Model” .

B.6.3. Export to Excel

Many Sonargraph views offer the export of the displayed data to Microsoft Excel . In case you are working on a non-Windows
platform, the exported files can a so be opened using Open Office Calc . For example the Metrics view letsyou export all Metrics
data (system level and al element levels) into asingle Excel file.

—L-' Metrics 3 | 1 Workspace | -5 Workspace Dependencies | ', Issues (!) | (= Resolutions ;:‘}Cycle Groups Iﬂ Duplicate Blocks

X System Level | @ Element Level

| Module + | | Cumulative component dependency - John Lakos

Name [30 elements] Provider Min Max Element Name [12 elements]

ACD Core 0,0 45,0 :‘,Core
Biggest Component Cycle G... Core = Language Provider C# = EXPort Metrics to Excel...
Biggest Package Cycle Group Java =), Standalone & New Threshold...

Ccb . Core =), Language Provider C++

Code Comment Lines Core =i Language Provider Java 3 Show In Dependencies View
Comment Lines Core

Component Dependencies t... Core &)\ Common 1= Show In Workspace View
Component Dependencies t... Java B\ Standalone G 5 Show In Workspace Dependenc
Cyclicity (Components) Core =) Standalone C++ R X

Cyclicity (Packages) Java =), Standalone Java & Show In Exploration View

Lines of Code Core =) License = Show In Graph View

NCCD Core =i, Language Provider Java Maven 3

Number of Component Cycl... Core =i Language Provider Java Maven 2

FigureB.22. Export Metricsto Excel Context Menu

270

Appendix C. Tutorial - C#

Thisis a step-by-step tutorial illustrating the analysis of the Open Source project NHibernate. It will be demonstrated how to
setup the workspace and quickly get an overview of the state of software quality. Some issues are reported by Sonargraph right
away without further configuration. Sonargraph also alows to easily analyze the dependency structure in more detail. As this
functionality is mostly language-independent, we refer you to the appropriate sections within the Java Tutorial.

Thistutorial isintentionally kept as short as possible. For more detail ed information about certain functionality, linksare provided
that will steer you to the corresponding chapters of the user manual.

C.1. Setup the Software System

This section describes how the Sonargrah system is setup for the NHibernate project. As aprecondition, ensure that NHibernate
builds successfully in Visual Studio (or whatever you use for C# development). The tutorial is based on NHibernate master
branch, checked out on 2019-02-11.

Sonargraph offers to import Microsoft Visual Studio C# Solution files. Select menu "File" — "New" and select the wizard
"System based on C# Visual Studio Solutionfile". Specify the name of the directory of the Sonargraph system and whereitsfiles
will be stored. It is a best practice to store the system close to the actual source code and place it under version control. Using a
Quality Model is explained in Section B.6, “ Share Results” ; you can leave this option unchecked for now.

A Sonargraph - New System based on C# Visual Studic Solution File O X

Specify the name, description and location of the new system

Name: | NHibernate |
Description: | |
Directory: | DADD_repohothersinhibernate-core-master |

[Use predefined quality model

Lf?j' < Back Mext = Finizh Cancel

Figure C.1. System based on C# Visual Studio Solution File

The next wizard page allows to specify the Microsoft Visual Studio Solution file and then lets you pick the modules you want
to analyze. If there are different 'flavors' (like 'net6.0) for a module they will al be displayed. If you select am module with a
flavor the other choices must be of the same flavor or without a flavor. Before importing the system please make sure that you
are ableto build the solution on the computer where Sonargraph isrunning. By the way, you can change the selection of analyzed

modules at any time by selecting "File" - "New" - "Module" - "Update C# module selection”.

271

https://github.com/nhibernate/nhibernate-core

Tutoria - C#

Sonargraph - New System based on C# Visual Studio Solution File

e location of the C# Visual Studio Solution file

2 sure that you have built the solution successfully on your machine before creating the Sonargraph system. Also you must have .Met version 7.0 or high

. . Jsrc/MHibernate.sin

Import [16] Mame File
dl B\ NHibernate netstandard2.1) .Jsre/MHibernate
1 = MHibernate.DomainModel Mame dard2.1) JsrcfMHibernate.DomainModel
[] B MHibernate (netstandard2.0) Jerc/NHibernate
B MHibernate.DomainModel{netstandard2.0) JsrcfMHibernate.DomainModel
B MHibernate(netcoreapp2.0) Jerc/NHibernate
B MHibernate.DomainModel{netcoreapp2.0) JsrcfMHibernate.DomainModel
B MHibernate(netd 8) Jerc/NHibernate
B MHibernate.DomainModel{netd 8) JsrcfMHibernate.DomainModel
B MHibernate. Test(net43) JercfMHibernate. Test
B MHibernate.TestDatabaseSetup(netd 8) JercfMHibernate. TestDatabaseSetup
B MHibernate(net.0] Jerc/NHibernate
B MHibernate.DomainhModel{nets.0) JsrcfMHibernate.DomainModel
B MHibernate.Test(nett.0) JercfMHibernate. Test
B MHibernate. TestDatabaseSetup(nets.0) JercfMHibernate. TestDatabaseSetup
Select All De

< Back Cancel -

Figure C.2. Select C# Solution File, Configuration and Platform

After the system creation was successful, it's now time to execute "refresh” via the second icon in the toolbar or via F5 to start
the parsing. After the parser finished it isagood ideato check the "C# Parser Log" via"Windows/ Show View / C# Parser Log".
It contains the error messages of the Roslyn parser that is used for the analysis. If you see alot of errorsthere it probably means
that not all references could be resolved successfully. Even if there are many errors you can still work with Sonargraph. It just
means that a couple dependencies were not resolved properly.

The next step is to open the Issues view and examine the detected cycle groups and duplicate code block issues.

272

Tutoria - C#

A Sonargraph [Architect] - NHibernate -] x
File Edit System Window Help
& 0 ‘ & | @ *m Modifiable.vm ¥ q
=i Navigation | % Namespaces| . Files = B |8 system | 4 Metrics | 1% Workspace | | (1) Issues| & Ignore| (3 Tasks| 4] Refactorings| €% (1) Cycle Groups | B (1) Duplicate Code Blocks| %% Debug ¥ =
El B || Issue[1.589] Description Severity Category Element
=i NHibernate @ Critical Namespace C... €2 Module 'NHibernate' contains 87 cyclic namespaces & Error Cycle Group %5 [Critical] C# Namespace cycle group 1.2
B\ NHibernate.DomainModel @ Critical Component C... C# Module 'NHibernate' contains 10 cyclic compenents @ Eror Cycle Group [Critical] Component cycle group 1.17
> @il NHibernate Test & Critical Component C... C# Module 'NHibernate' contains 35 cyclic components @ Emor Cycle Group [Critical] Component cycle group 1.18
Eil NHibernate TestDatabaseSetup @ Critical Component C... C# Module 'NHibernate' contains 6 cyclic components @ Eror Cycle Group & [Critical] Component cycle group 1.19
= External [C¥] @ Critical Component C... C# Module 'NHibernate' contains 1253 cyclic companents @ Ermor Cycle Group [Critical] Component cycle group 1.20
@ Critical Component C... C# Module 'NHibernate' contains 12 cyclic components @ Eror Cycle Group [Critical] Component cycle group 1.4
& Critical Component C... C# Module 'NHibernate' contains 6 cyclic components @ Emor Cycle Group & [Critical] Cemponent cycle group 1.5
& Critical Compeonent C... C# Module 'NHibernate' contains 9 cyclic components @ Emor Cycle Group [Critical] Component cycle group 1.8
@ Critical Component C... C# Module 'NHibernate.DomainModel' contains 10 cyclic com.. @ Error Cycle Group [Critical] Component cycle group 2.10
@ Critical Compenent C... C# Module 'NHibernate.DomainModel' contains 13 cyclic com... @ Enor Cycle Group [Critical] Coemponent cycle group 2,12
@ Critical Component C... C# Module 'NHibernate. Test' contains 7 cyclic components @ Eror Cycle Group [Critical] Component cycle group 3.1
& Critical Component C... C# Module 'NHibernate. Test' contains 6 cyclic components @ Emor Cycle Group [Critical] Component cycle group 3.26
& Critical Component C... C# Module 'NHibernate. Test' contains 6 cyclic components @ Emor Cycle Group [Critical] Component cycle group 3.91
@ Mamespace Cycle Gro... C# Module 'NHibernate' contains 3 cyclic namespaces & Wa... Cycle Group C# Namespace cycle group 1.1
& Mamespace Cycle Gro... C# Module 'NHibernate. Test' contains 3 cyclic namespaces & Wa.. Cycle Group C# Namespace cycle group 3.1
@ Component Cycle Gr... C# Module 'NHibernate' contains 2 cyclic components & Wa... CycleGroup Compenent cycle group 1.1
& Component Cycle Gr... C# Module 'NHibernate' contains 4 cyclic components & Wa.. Cycle Group Component cycle group 1.10
@ Component Cycle Gr... C# Module 'NHibernate' contains 4 cyclic components & Wa... Cycle Group Compenent cycle group 1.11
& Component Cycle Gr... C# Module 'NHibernate' contains 3 cyclic components & Wa... Cycle Group Component cycle group 1.12
& Component Cycle Gr.. C# Module 'NHibernate' contains 2 cyclic components & Wa.. Cycle Group Compenent cycle group 1.13
@ Component Cycle Gr... C# Module 'NHibernate' contains 5 cyclic components & Wa... Cycle Group Compenent cycle group 1.14
@ Component Cycle Gr.. C# Module 'NHibernate' contains 2 cyclic companents & Wa.. CycleGroup Component cycle group 1.15
@ Component Cycle Gr... C# Module 'NHibernate' contains 2 cyclic components & Wa... CycleGroup Compenent cycle group 1.16
& Component Cycle Gr... C# Module 'NHibernate' contains 2 cyclic components & Wa... Cycle Group Component cycle group 1.2

Figure C.3. Select C# Solution File, Configuration and Platform

Related topics:

e Chapter 3, Licensing
» Chapter 6, Creating a System
» Section 7.3, “Creating or Importing a C# Module’

Chapter 9, Handling Detected Issues

C.2. Further Steps

After the workspace for a C# system has been defined, the further steps to analyze are the same as for a Java system. Please

check the following sections of the Javatutorial:

» Section B.2, “Initial Analysis’

* Section B.3, “Problem Analysis’

» Section B.4,
» Section B.5,

» Section B.6,

“Detailed Dependency Analysis’
“Advanced Analysis With Scripts’

“Share Results’

273

Appendix D. Tutorial - C++

Thisis a step-by-step tutorial illustrating the analysis of the Open Source project POCO. It will be demonstrated how to setup
the workspace using different importers and quickly get an overview of the state of software quality. Some issues are reported by
Sonargraph right away without further configuration. Sonargraph also allowsto easily analyze the dependency structurein more
detail. Asthis functionality is mostly language-independent, we refer you to the appropriate sections within the Java Tutorial.

Thistutoria isintentionally kept as short as possible. For more detail ed information about certain functionality, linksare provided
that will steer you to the corresponding chapters of the user manual.

D.1. Setup the Software System - Compiler
Definitions

Sonargraph internally uses the C/C++ parser of EDG (Edison Design Group, www.edg.com). To successfully parse your code
the parser must be able to emulate your real compiler. To do that we use the concept of compiler definitions. Such a definition
containsinformation like whereto find the implicit system include directories and alist of predefined macros. Sonargraph comes
with a couple of ready to use compiler definitions for the GNU compiler family, CLang and a few others. For Visual C++ you
have to tell Sonargraph where Visual Studio isinstalled on your computer. You can add Visua Studio installations via the C+
+ preference pages under the Windows/Preferences menu.

Thereis always one compiler definition that is considered to be active. Thisisthe one that is used for parsing your code. After a
successful parser run Sonargraph will remember the compiler definition used and automatically activateit the next time you open
the same project. When you parse a project for the first time we will use the compiler definition that is currently activated. To
check your available compiler definition and to make sure the right one is activated you can go to the C/C++ preference pages.
From there you can manage the available compiler definitions, modify existing ones or even create new ones.

If there is no compiler definition for your compiler we recommend to use our compiler definition wizard to create one. Y ou start

thewizard by selecting "New..." - "Configuration/ New Compiler Definition”. If you have used our other tool Sotograph before
you can import Sotograph compiler definitions directly in the first step of the wizard. Otherwise just follow the instructions of
the wizard.

If the C/C++ parser finds issues, they will be recorded in the C/C++ parser log window. Y ou can open the parser log by selecting

"Windows' - "Show View - C/C++ Parser Log". Errors recorded there are usually not a problem for the quality of the analysis.
In the worst case a dependency might be missing if the parser cannot properly resolve a symbol. If there are many problemsin
thisview this could indicate a problem with your compiler definition. An parser run will only fail if there are too more than 1000
errorsin acompilation unit or if referenced include files cannot be found.

D.2. Setup the Software System - Capture Compile
Commands with ccspy

This section describes how to create a new C++ system using ccspy. Select "New" - "System based on ccspy capturing
directory" . Specify the name of the directory of the Sonargraph software system and where its files will be stored. It is a best
practice to store the software system close to the actual source code and place it under version control. Using a Quality Model is
explained in Section B.6, “ Share Results’ ; you can leave this option unchecked for now.

You will have to do a complete rebuild of your system where you replace your compiler with ccspy in your make or cmake
configuration. ccspy will then record al compile commands in a designated directory and then call your real compiler. This
means you can keep ccspy in your make or cmake configuration. It should only minimally increase the time needed for a build,
but will ensure that Sonargraph will always know the latest compile commands.

ccspy is delivered with Sonargraph in the bin directory of the Sonargraph installation. The documentation for properly running
and configuring ccspy can be found on Github.

274

http://pocoproject.org/
https://github.com/sonargraph/ccspy

Tutorial - C++

Once your build isfinished your ccspy directory should contain one text file for each compilation unit. The ccspy import wizard
will guide you through the neccessary steps to complete the Sonargraph system setup and works basically in the same way as
the cmake import wizard.

The next step to get started with your analysis is perform a refresh so the required information is picked up from the set-up
modules.

D.3. Setup the Software System - Visual Studio
Import

This section describes how to create a new C++ system by importing a Visua Studio Solution file. Select "New" - "System
based on C/C++ Visual Studio 2010 Solution file" . Specify the name of the directory of the Sonargraph system and where its
files will be stored. It is a best practice to store the system close to the actual source code and place it under version control.
Using a Quality Model is explained in Section B.6, “Share Results’ ; you can leave this option unchecked for now.

On the next wizard page, select the solution file to import and the configuration and platform combination.

A Sonargraph - Mew System based on C++ Visual Studic Solution File | [=] 25 |

Location of the C++ Visual Studio Solution File

Solution File (sln): /poco-1.4.6pd/Net/Net 04 _vs100.5In
Projects: Mame [2 elements] File

B Met Jpoco-1.4.6pd/Met/MNet b4 vs100.vexproj

=, TestSuite Jpoco-14.6pd/Met/testsuite/Test5uite_xb4_vel00.vex...
Configuration: debug_shared v| |xﬁ4 -

'@:‘ < Back Next > [Einish] | Cancel

Figure D.1. Specify Visual Studio Solution File

If the system isrefreshed and the active compiler definition does not match theimported solution, you might runinto thefollowing
two problems which can both usually be fixed by selecting the correct compiler definition on the preference page as described
in Section 4.7, “C/C++ Compiler Definitions’ . In this case, the correct compiler definitionis"VisuaCpp_11.0 x86".

1. MSBuild Exception: Sonargraph uses internally MSBuild to determine the source files to compile and the compiler options
to be used. Usually, if MSBuild fails some built-in variable is not resolved correctly.

275

Tutorial - C++

A Sonargraph | = [[E] 2 |

IQI Refresh

3 Msbuild exception

Msbuild exception. Problem executing msbuild: Der Buildvorgang wurde am 27102 -
Projelt "D:\tutoriah CPlusPlus\poco-1.4 6pd\Net\h2m.vexproj” auf Knoten "1", ham
D:\tutorial\CPlusPlus\poco-1.4.6p4\Net\Net_xb4_vs110.vcxproj(35,3): error MSB401E |5
Die Erstellung des Projekts "Dihtutorial\ CPlusPlus\poco-1.4 6p4\Net\h2m.vexproj” is

Fehler beim Buildvergang.

< F\ b

Figure D.2. M SBuild Exception

2. Parse Error: The parsing is aborted if a header file cannot be found. Check the folder where the header file can be found on
disk and select a compiler definition that contains this folder as part of its--sys_include options.

A Sonargraph [E=iEn R

Refresh

l'\

£ Parser error

Parser error. D:\tutorialCPlusPlustpoce-1.4.6pd\CppUnit\WinTestRunnerincludeil -

4 1 2

FigureD.3. Parse Error (Missing Header File)

D.4. Further Steps

After the workspace for a C/C++ system has been defined, the further stepsto analyzeit are the same asfor a Java system. Please
check the following sections of the Javatutorial:

» Section B.2, “Initial Analysis’

» Section B.3, “Problem Analysis’

 Section B.4, “Detailed Dependency Analysis”

» Section B.5, “Advanced Analysis With Scripts’

» Section B.6, “ Share Results’

276

Appendix E. Sonargraph Script API
Documentation

Script APl is documented via JavaDoc that is available within the help system of the application and can be accessed using a
standard browser. Different packages exist for the language-independent core functionality and language specific parts.

Link to JavaDoc of Sonargraph Script API.

277

./html/scriptApi/index.html

Index

A

Activation Code, 13, 13
Analyzer Execution Level
Analyzers View,
Analyzing Cycles,
Ant
Build Server Integration, 198
Architecture, 168
Architecture DSL,
Aspect,
Aspect Extension,
Best Practices,

Investigate Violations, 159
Connection of Complex Artifacts,
Connection Scheme,
Connector Extension,
Dependency Type Restriction,
Interface Extension,
Interfaces and Connectors,
Models, Components and Artifacts,
Templates,

UML Component Diagram,
Architecture DSL

Grammar,
Artifact

Transitive Connection,
Artifact Classes,
Auxiliary Views,

Source View,

B

Build Server Integration
Ant, 198
Gradle, 198
Jenkins, 198
Maven, 198
Shell Script, 198
SonarQube, 198
Workspace Profiles,
Build Units, 42

C

C# Configuration, 21
C# Issues
Parsing Error, 243
Project File (.csproj) Processing Failed, 243
C# Model, 29
C++ Include Dependency, 106
C++ Model, 27
C++ Module Configuration, 46
C/C++ Compiler Definitions, 18
C/C++ Issues
Parsing Error, 243
C/C++ Parser Daemon Configuration, 20

278

Index

Change Tracking, 172
Code Organization
require,
Collaboration between Sonargraph and IDE, 211
Common Interaction Patterns,
Compiler Definition
C++ Tutoridl, 274
Configuration of Duplicate Code Blocks Computation, 100
Configuring Metrics Thresholds,
Context Menu Interactions, ,
Core Issues
Duplicate Block, 243
Root path does not exist, 243
Create C/C++ System from Visual Studio 2010 Solution File
C++ Tutoridl, 275
Create C/C++ System from Visual Studio Solution File, 45
Creating a Java Module Manually, 44
Creating a System, 33
C# System, 33
C/C++ System, 33
Java System, 33
Creating C++ Modules Manually, 45
Creating or Importing a C# Module, 47
Creating or Importing a C++ Module, 45
Creating/Importing Java Modules, 37
Cycle Breakup,
Cycle Group Analysis
Tutoria, 262

D

Delete Refactoring,
Dependencies View
Tutoria, 267
Dependency Analysis
Tutorial, 265
Deprecated Connection,
Drilldown,
Duplicate Code,
Duplicate Code Block Analysis
Tutorial, 263

E
Eclipse Plugin
Collaboration with Sonargraph, 211
Examining Changes,
IDE Integration, 199
Issues and Tasks,
Manua Refresh,
Refactoring Execution,
Setting Analyzer Execution Level,
Suspend / Resume Monitoring,
System Assignment,
Edit Resolution,
Editor Preferences, 16
Examining Changes
Exportto HTML, 174
Examining Metrics Results

279

Index

Element Metrics View,
Metrics View,
Exploration View,
Tutorial, 265
Export to Excel
Tutorial, 270
Exporting a Quality Model, 36

F
FAQ, 245
Files View,
Filter
Issue Filter,
Production Code Filter,
Workspace Filter,
Focus,
Home Button, 79
Input Highlighting, 79
Modes, 78
Transitive Dependencies, 79

G
Getting Started, 8
Gradle, 38
Build Server Integration, 198
Graph View,
Groovy Template, 245

H
Help, 15

IDE Integration, 199
Import C# Modules Using a Visual Studio Solution File, 47
Import C++ Module Based on Visua Studio Project File, 45
Import C++ Modules Via CMake or CCSpy, 45
Import Java Modules Using a Bazel Workspace, 40
Import Java Modules Using an Eclipse Workspace, 37
Importing a Quality Model, 36
Inspecting Cyclic Elements,
Installation, 15
Intellid Plugin

Examining Changes,

IDE Integration, 206

Refactoring Execution,
Intellij Plugin

Issues and Tasks,

Manua Refresh,

System Assignment,

Toolbar,
Interacting with a System,
Interaction with Auxiliary Views, ,
I ssues,

Hotspot,

Ignore,

Ranking,

Treemap,

280

Index

Issues Importer Plugin, 195
Issues View,

J

Java lssues

Classfileis out-of-date, 243
Java Model

Kotlin Model, 25

L

Language Independent Model, 24
Language Specific Models,
Levels,

License, 13

License Server Preferences, 17
License Server Settings, 14
Logical Models, 30

M

Manage Refactorings,
Maven, 39
Build Server Integration, 198
Metric Definitions, 214
C# Metrics, 235
Biggest C# Directory Cycle Group , 235
Biggest C# Namespace Cycle Group , 235
Component Dependencies to Remove (C# Directories) , 235
Component Dependencies to Remove (C# Namespaces) , 235
Cyclicity (C# Directories) , 235
Cyclicity (C# Namespaces) , 236
Number of all C# Directory Cycle Groups, 236
Number of al C# Namespace Cycle Groups, 237
Number of C# Directories, 237
Number of C# Directories (Full Analysis) , 237
Number of C# Namespaces, 237
Number of C# Namespaces (Full Analysis) , 237
Number of Critical C# Directory Cycle Groups, 236
Number of Critical C# Namespace Cycle Groups, 236
Number of Cyclic C# Directories, 236
Number of Cyclic C# Namespaces , 236
Number of Ignored Cyclic C# Directories, 236
Number of Ignored Cyclic C# Namespaces, 236
Parser Dependencies to Remove (C# Directories) , 235
Parser Dependencies to Remove (C# Namespaces) , 235
Relative Cyclicity (C# Directories) , 237
Relative Cyclicity (C# Namespaces) , 237
Structural Debt Index (C# Directories) , 235
Structural Debt Index (C# Namespaces) , 235
C,C++ Metrics, 238
Biggest C++ Namespace Cycle Group , 238
Biggest C,C++ Directory Cycle Group , 238
Component Dependencies to Remove (C++ Namespaces) , 238
Component Dependencies to Remove (C,C++ Directories) , 238
Cyclicity (C++ Namespaces) , 238
Cyclicity (C,C++ Directories) , 239
Number of al C++ Namespace Cycle Groups, 239
Number of al C,C++ Directory Cycle Groups, 240

281

Index

Number of C++ Namespaces , 240
Number of C++ Namespaces (Full Analysis) , 240
Number of C,C++ Directories, 240
Number of C,C++ Directories (Full Analysis) , 240
Number of Critical C++ Namespace Cycle Groups, 239
Number of Critical C,C++ Directory Cycle Groups, 239
Number of Cyclic C++ Namespaces, 239
Number of Cyclic C,C++ Directories, 239
Number of Ignored Cyclic C++ Namespaces, 239
Number of Ignored Cyclic C,C++ Directories, 239
Parser Dependencies to Remove (C++ Namespaces) , 238
Parser Dependencies to Remove (C,C++ Directories) , 238
Relative Cyclicity (C++ Namespaces) , 240
Relative Cyclicity (C,C++ Directories) , 240
Structural Debt Index (C++ Namespaces) , 238
Structural Debt Index (C,C++ Directories) , 238
Java Metrics, 233
Average Java Class Member Visihility (%) (Module) , 233
Average Java Public Visibility (%) , 233
Biggest Java Package Cycle Group , 233
Byte Code Instructions , 234
Component Dependencies to Remove (Java Packages) , 233
Cyclicity (Java Packages) , 233
Java Member Visihility (%) , 233
Java Public Visihility (%) (Module) , 233
Number of all Java Package Cycle Groups, 234
Number of Critical Java Package Cycle Groups, 234
Number of Cyclic Java Packages, 234
Number of Ignored Cyclic Java Packages, 234
Number of Java Packages, 234
Number of Java Packages (Full Analysis) , 234
Parser Dependencies to Remove (Java Packages) , 233
Relative Cyclicity (Java Packages) , 234
Structural Debt Index (Java Packages) , 233
Language Independent Metrics, 214
Abstractness (Module) , 227
Abstractness (System) , 227
ACD, 220
Architecture Violation Density , 214
Architecture Violation Density (Source Elements) , 214
Average Block Nesting Depth , 216
Average Complexity , 228
Average Complexity (Module) , 229
Average Complexity (System) , 229
Biggest Component Cycle Group , 218
CCD, 221
Code Churn (2y) , 229
Code Churn (30d) , 229
Code Churn (365d) , 230
Code Churn (5y) , 230
Code Churn (90d) , 230
Code Churn Rate (2y) , 230
Code Churn Rate (30d) , 230
Code Churn Rate (365d) , 230
Code Churn Rate (5y) , 230
Code Churn Rate (90d) , 230
Code Comment Lines, 223
Code Contained in Files Uncovered by Architecture (%) , 214

282

Index

Code Contained in Fileswith Violations (%) , 214

Code Contained in Files with Violations or Deprecations (%) , 214
Comment Lines, 223

Component Dependencies to Remove (Components) , 216
Component Rank (Module) , 216

Component Rank (System) , 216

Critically Entangled Lines of Code, 218

Critically Entangled Lines of Code (%) , 218

Critically Entangled Lines of Code [Ignored] , 218
Critically Entangled Lines of Code [Ignored] (%) , 218
Critically Entangled Lines of Code [To Be Fixed] , 218
Critically Entangled Lines of Code [To Be Fixed] (%) , 218
Cyclicity (Components) , 219

Cyclomatic Complexity , 229

Days since last commit , 230

Depends Upon (Module) , 221

Depends Upon (System) , 221

Deprecated parser dependencies, 214

Distance (Module) , 227

Distance (System) , 228

Entangled Lines of Code, 219

Entangled Lines of Code (%) , 219

Entangled Lines of Code [Ignored] , 219

Entangled Lines of Code [Ignored] (%) , 219

Entangled Lines of Code[To Be Fixed] , 219

Entangled Lines of Code [To Be Fixed] (%) , 219

Extended Cyclomatic Complexity , 229

Fan In Maintainability Level (Module) , 221

Fan In Visibility (Module) , 221

Fan In Visibility (System) , 221

Fan Out Visibility (Module) , 221

Fan Out Visibility (System) , 221

File Changes (2y) , 231

File Changes (30d) , 231

File Changes (365d) , 231

File Changes (5y) , 231

File Changes (90d) , 231

Highest ACD , 221

Ignored Deprecated Parser Dependencies, 214

Instability (Module) , 228

Instability (System) , 228

Issue Density , 216

LCOM4 , 222

Lines of Code, 224

Lines of Codein Fileswith Violations, 215

Lines of Codein Fileswith Violations or Deprecations (%) , 215
Lines of Fully Analyzed Code, 224

Linesof Fully Analyzed Codein Large Files, 224

Lines of Fully Analyzed Code in Large Files (%) , 224
Lines of Fully Analyzed Code in Large Files[Ignored] , 224
Lines of Fully Analyzed Codein Large Files[Ignored] (%) , 224
Lines of Fully Analyzed Codein Large Files[To Be Fixed] , 224
Lines of Fully Analyzed Codein Large Files[To Be Fixed] (%) , 224
Lines of Issue-Ignoring Code , 225

Logical Cohesion (Module) , 222

Logica Cohesion (System) , 222

Logica Coupling (Module) , 222

Logical Coupling (System) , 222

283

Index

Maintainability Level , 222

Max Block Nesting Depth , 217

Maximum Lines of Code Involved in aCycle, 219
Modified Cyclomatic Complexity , 229

Modified Extended Cyclomatic Complexity , 229

NCCD, 223

Number of Artifacts, 215

Number of authors (2y) , 231

Number of Authors (30d) , 231

Number of authors (365d) , 231

Number of authors (5y) , 231

Number of authors (90d) , 232

Number of Code Duplicates, 217

Number of Code Duplicatesto be Fixed , 217

Number of Component Cycle Groups, 220

Number of Components (Full Analysis) , 225

Number of Components (Ignoring Issues) , 225

Number of Componentsin Deprecated Artifacts, 215
Number of Components with Violations, 215

Number of Components/Sources, 225

Number of Critical Component Cycle Groups, 220
Number of Cyclic Components, 220

Number of Cyclic Modules, 220

Number of Duplicated Code Lines, 217

Number of Empty Artifacts, 215

Number of Excluded Source Files, 225

Number of Ignored Code Duplicates, 217

Number of Ignored Cyclic Components, 220

Number of Ignored Violations (Parser Dependencies) , 215
Number of Incoming Dependencies (Module) , 228
Number of Incoming Dependencies (System) , 228
Number of Logical Elementsin Deprecated Artifacts, 215
Number of Logical Types(Module) , 225

Number of Logical Types (System) , 225

Number of Methods, 225

Number of Modules, 225

Number of Outgoing Dependencies (Module) , 228
Number of Outgoing Dependencies (System) , 228
Number of Parameters, 226

Number of Source Files, 226

Number of Source Files (Excluded) , 226

Number of Source Files (Full Analysis) , 226

Number of Source Files (Ignoring Issue) , 226

Number of Statements, 226

Number of Statementsin Complex Methods, 232

Number of Statementsin Complex Methods (%) , 232
Number of Statementsin Complex Methods [Ignored] , 232
Number of Statementsin Complex Methods [Ignored] (%) , 232
Number of Statementsin Complex Methods [To Be Fixed] , 232
Number of Statementsin Complex Methods [To Be Fixed] (%) , 232
Number of Statementsin Fully Analyzed Code, 226
Number of Types, 226

Number of Unassigned Logical Elements, 215

Number of Unassigned Physical Components, 216
Number of Violations (Component Dependencies) , 216
Number of Violations (Parser Dependencies) , 216

Parser Dependencies to Remove (Components) , 217
Physical Cohesion, 223

284

Index

Physical Coupling , 223
Propagation Cost , 223
Redundant Code (%) , 217
Redundant Code [Ignored] (%) , 217
Redundant Code [To Be Fixed] (%) , 218
Relational Cohesion (Module) , 227
Relational Cohesion (System) , 227
Relative Cyclicity (Components) , 220
Relative Entanglement (%) , 220
Source Element Count , 227
Structural Debt Index (Components) , 218
Tota Lines, 227
Used From (Module) , 223
Used From (System) , 223
Python Metrics, 241

Biggest Python Package Cycle Group , 241
Component Dependencies to Remove (Python Packages) , 241
Cyclicity (Python Packages) , 241
Number of all Python Package Cycle Groups, 241
Number of Critical Python Package Cycle Groups, 241
Number of Cyclic Python Packages, 241
Number of Ignored Cyclic Python Packages, 241
Number of Python Packages , 242
Number of Python Packages (Full Analysis) , 242
Parser Dependencies to Remove (Python Packages) , 241
Relative Cyclicity (Python Packages) , 242
Structural Debt Index (Python Packages) , 241

Metrics

Tutorial, 260

Microservice Dependencies, 196

Module-Based Logical Model, 31

Motivation,

Move/Rename Refactoring,

MSBuild Error, 245

N

Namespaces View,

Navigation View,

New JavaModule
JavaTutorial, 258

O

On Demand Cycle Groups,
Out Of Memory Exception, 245

P

Pattern Language,

Physical File Structure, 23

Plugin Configuration, 193

PMD Plugin, 195

Problem Analysis
Tutoria, 261

Proxy Preferences, 17

Proxy Settings, 14

Python Configuration, 22

Python Model, 29

285

Index

Q

Quality Gate
Build Integration,
Creation,

Quality Gates, 176

Quality Model, 35
C# Tutorial, 271
Tutorial, 270

R

Refactorings,
Best Practices,
Delete Refactoring, ,
Move/Rename Refactoring,
Report,
Resolutions,
Fix,
Ignore,
Matching, 116
Revising Cycle Groups,

S
Script
Adding parameters,
API Documentation, 277
Auto Completion,
Best Practices,
Limit Visiting,
Text Search,
Compiling,
Creation,
Default parameter,
Editing,
Extend Static Analysis,
Management,
Producing Results,
Quality Model,
Run Configurations,
Running Automatically,
Script View,
Tutorial, 268
Search Diaog,
Tutorial, 268
Search Path (Installation), 20
Shell Script
Build Integration, 198
Snapshot
Tutorial, 270
Sonargraph System Model,
Source code,
Source View,
SpotBugs Plugin, 195
Spring Microservices Plugin, 193
Swagger Plugin, 195
System Diff, 172
System Exploration,
Levelization,

286

Index

Presentation Mode,
System Setup
C# Tutorid, 271
C++ Tutorid, 274, 274, 275
JavaTutorial, 258
System View,
System-Based Logical Model, 31

T
Tabular System Exploration,
Task
Fix,
TODO,
Text Search, 101
Views,
Thresholds
Tutorial, 260
Transitive Connection,
Treemap,
Configuration, 91
Context Menu Interactions, 92
Interaction with Auxiliary Views, 92
Mouse Interactions, 92
Toolbar Interaction, 92
Treemap Info View,
Treemap Info View,
Treemap-Based System Exploration,
Tutorial
C#, 271
C++, 274
Java, 258
Walk Through (Java), 250,
Type Based Graph,

U

UML Component Diagram,
Update Site Preferences, 18
Updates, 15

User Interface Components,

\Y

View Options,

Virtual Model
Resolutions,

wW

Workspace,

C# Tutorid, 271

C++ Tutorid, 274, 275

Java Tutorial, 258
Workspace Dependencies View,
Workspace Profiles

Build Server Integration, 198

Definition,
Workspace View

File Filter,

I ssue Filter,

287

Index

Production Code Filter,

288

	Sonargraph User Manual
	Table of Contents
	Chapter 1. Motivation for Code Quality
	Chapter 2. Getting Started
	Chapter 3. Licensing
	3.1. Getting an Activation Code or a License
	3.2. Activation Code Based Licensing
	3.3. Proxy Settings
	3.4. License Server Settings

	Chapter 4. Initial Configuration
	4.1. Installation and Updates
	4.2. Help
	4.3. Editor Preferences
	4.4. License Server Preferences
	4.5. Proxy Preferences
	4.6. Update Site Preferences
	4.7. C/C++ Compiler Definitions
	4.8. Search Path Configuration
	4.9. C/C++ Parser Daemon Configurations
	4.10. C# Configuration
	4.11. Python Configuration

	Chapter 5. Getting Familiar with the Sonargraph System Model
	5.1. Physical File Structure
	5.2. Language Independent Model
	5.3. Language Specific Models
	5.3.1. Java/Kotlin Model
	5.3.2. Kotlin Specific Issues
	5.3.3. C++ Model
	5.3.4. C# Model
	5.3.5. Python Model

	5.4. Logical Models
	5.4.1. System-Based Logical Model
	5.4.2. Module-Based Logical Model

	Chapter 6. Creating a System
	6.1. Creating a Java System
	6.2. Creating a C# System
	6.3. Creating C/C++ Systems
	6.4. Quality Model
	6.4.1. Importing a Quality Model
	6.4.2. Exporting a Quality Model

	Chapter 7. Adding Content to a System
	7.1. Creating or Importing a Java Module
	7.1.1. Importing Java Modules Using an Eclipse Workspace
	7.1.2. Import Modules using the Sonargraph Gradle Plugin
	7.1.3. Import Modules using the Sonargraph Maven Plugin
	7.1.4. Importing Java Modules Using a Bazel Workspace
	7.1.5. Import Modules Using the Build Unit(s) Importer
	7.1.6. Creating a Java Module Manually

	7.2. Creating or Importing a C++ Module
	7.2.1. Importing C++ Modules from Visual Studio Files
	7.2.2. Importing C++ Modules Via CMake or CCSpy
	7.2.3. Creating a C++ Module Manually
	7.2.4. C/C++ Module Configuration

	7.3. Creating or Importing a C# Module
	7.3.1. Importing C# Modules Using a Visual Studio Solution File

	Chapter 8. Interacting with a System
	8.1. User Interface Components
	8.1.1. Menu Bar
	8.1.2. Tool Bar
	8.1.3. Notifications Bar
	8.1.4. Tables

	8.2. Common Interaction Patterns
	8.2.1. Special Graphic Elements Decorations

	8.3. Sonargraph Workbench
	8.3.1. Auxiliary Views

	8.4. Getting a Quick Impression
	8.5. Navigating through the System Components
	8.6. Exploring the System Namespaces
	8.7. Managing the System Files
	8.8. Managing the Workspace
	8.8.1. Definition of Filters, Modules and Root Directories
	8.8.2. Managing Module Dependencies
	8.8.3. Creating Workspace Profiles for Build Environments

	8.9. Analyzer Execution Level
	8.10. Analyzing Cycles
	8.10.1. Revising Cycle Groups
	8.10.2. Inspecting Cyclic Elements
	8.10.3. Breaking Up Cycles

	8.11. Exploring the System
	8.11.1. Exploration View
	8.11.1.1. Presentation Modes, Levelization, Semantics of Icons and Decorators
	8.11.1.2. Focus
	8.11.1.3. Interaction with Auxiliary Views

	8.11.2. Graph View
	8.11.2.1. Focus
	8.11.2.2. Levels
	8.11.2.3. On Demand Cycle Groups
	8.11.2.4. Interaction with Auxiliary Views
	8.11.2.5. Context Menu Interactions
	8.11.2.6. Type Based Graph
	8.11.2.7. View Options

	8.11.3. Treemap-Based System Exploration
	8.11.3.1. Tabular Representation of Treemap Data

	8.11.4. Tabular System Exploration
	8.11.4.1. Drilldown
	8.11.4.2. Interaction with Auxiliary Views
	8.11.4.3. Context Menu Interactions

	8.12. Searching Elements
	8.12.1. Searching Elements in Views

	8.13. Detecting Duplicate Code
	8.13.1. Configuration of Duplicate Code Blocks Computation

	8.14. Examining the Source Code
	8.14.1. Interaction with Auxiliary Views

	8.15. Examining Metrics Results
	8.16. Analyzing C++ Include Dependencies
	8.17. Creating a Report

	Chapter 9. Handling Detected Issues
	9.1. Using Virtual Models for Resolutions
	9.2. Examining Issues
	9.2.1. Identifying the Most Relevant Issues to Fix
	9.2.2. Identifying Issue Hotspots

	9.3. Ignoring Issues
	9.4. Defining Fix and TODO Tasks
	9.5. Editing Resolutions
	9.6. Details about Sonargraph's Resolution Matching

	Chapter 10. Simulating Refactorings
	10.1. Creating Delete Refactorings
	10.2. Creating Move/Rename Refactorings
	10.3. Managing Refactorings
	10.4. Best Practices

	Chapter 11. Defining an Architecture
	11.1. Models, Components and Artifacts
	11.1.1. Using other criteria to assign components to artifacts
	11.1.2. List of predefined attribute retrievers

	11.2. Interfaces and Connectors
	11.3. Reusing Architecture Aspects
	11.4. Extending Aspect Based Artifacts
	11.5. Extending Interfaces or Connectors
	11.6. Adding Transitive or Deprecated Connections
	11.7. Restricting Dependency Types
	11.8. Connecting Complex Artifacts
	11.9. Introducing Connection Schemes
	11.10. Artifact Classes
	11.11. How to Organize your Code
	11.12. Designing Generic Architectures Using Templates
	11.12.1. Using unrestricted generated artifacts
	11.12.2. Using connection schemes to regulate accessibility

	11.13. Best Practices
	11.14. Architecture DSL Language Specification

	Chapter 12. Visualizing Architecture Aspects
	Chapter 13. Interactive Restructuring and Code Organization
	13.1. Assigning Elements to Artifacts

	Chapter 14. Examining Changes
	Chapter 15. Defining Quality Gates
	15.1. Creating Quality Gates
	15.2. Using Quality Gates in the Continuous Integration (CI) Build
	15.3. Current Quality Gate Limitations

	Chapter 16. Extending the Static Analysis
	16.1. Interaction with Auxiliary Views
	16.2. Groovy Scripts from Quality Model
	16.3. Creating a new Groovy Script
	16.3.1. Default Parameters in a Script
	16.3.2. Adding Parameters
	16.3.3. Creating Run Configurations

	16.4. Editing a Groovy Script
	16.4.1. Auto Completion
	16.4.2. Compiling a Groovy Script

	16.5. Producing Results with Groovy Scripts
	16.6. Running a Groovy Script Automatically
	16.7. Managing Groovy Scripts
	16.8. Groovy Script Best Practices
	16.8.1. Only Visit What is Needed
	16.8.2. Find Text in Code

	Chapter 17. Using Additional Plugins
	17.1. Plugin Configuration
	17.2. Spring Microservices Plugin
	17.3. Swagger Plugin
	17.4. SpotBugs Plugin
	17.5. PMD Plugin
	17.6. Issues Importer Plugin

	Chapter 18. Investigating Microservice Dependencies
	Chapter 19. Build Server Integration
	Chapter 20. IDE Integration
	20.1. Eclipse Plugin
	20.1.1. Assigning a System
	20.1.2. Displaying Issues and Tasks
	20.1.3. Suspending / Resuming Quality Monitoring
	20.1.4. Setting Analyzer Execution Level
	20.1.5. Getting Back In Sync with Manual Refresh
	20.1.6. Examining Changes
	20.1.7. Execute Refactorings in Eclipse

	20.2. IntelliJ Plugin
	20.2.1. Assigning a System
	20.2.2. Displaying Issues and Tasks
	20.2.3. Toolbar
	20.2.4. Getting Back In Sync with Manual Refresh
	20.2.5. Examining Changes
	20.2.6. Execute Refactorings in IntelliJ

	20.3. Collaboration between Sonargraph and IDE

	Chapter 21. Metric Definitions
	21.1. Language Independent Metrics
	21.2. Java Metrics
	21.3. C# Metrics
	21.4. C,C++ Metrics
	21.5. Python Metrics

	Chapter 22. How to Resolve Issues
	22.1. Language Independent Issues
	22.2. Java Specific Issues
	22.3. C# Specific Issues
	22.4. C/C++ Specific Issues

	Chapter 23. FAQ
	23.1. Out Of Memory Exceptions
	23.2. Groovy Template
	23.3. MSBuild Error (MSB4019) during Analysis of Visual Studio C# Project

	Chapter 24. References
	Chapter 25. Trademark Attributions, Library License Texts, and Source Code
	Chapter 26. Legal Notice
	Glossary
	Appendix A. Walk Through Tutorial (Java)
	A.1. Workspace Definition
	A.2. Basic Analysis
	A.3. Advanced Analysis
	A.4. Architecture: Artifacts, Aspects Files and Standard Connections
	A.5. Architecture: Explicit Interfaces and Connectors
	A.6. Architecture: Advanced Connections
	A.7. Architecture: Advanced Aspect Files
	A.8. Architecture: Referencing external Artifacts in Aspect Files
	A.9. Headless Check with Sonargraph-Build
	A.10. Check at Development Time with Sonargraph Eclipse Integration

	Appendix B. Tutorial - Java
	B.1. Setup the Software System
	B.1.1. Create a new Software System
	B.1.2. Define the Workspace
	B.1.3. Define Module Dependencies
	B.1.4. Parse the Workspace

	B.2. Initial Analysis
	B.2.1. Detect Problems Using Standard Metrics
	B.2.2. Adjust Metric Thresholds

	B.3. Problem Analysis
	B.3.1. Examine Cycles
	B.3.2. Examine Duplicate Code
	B.3.3. Handle Issues

	B.4. Detailed Dependency Analysis
	B.4.1. Explore Dependencies
	B.4.2. Check how Elements are Connected via Graph View
	B.4.3. Check how Elements are Connected via the Dependencies View
	B.4.4. Search for Elements

	B.5. Advanced Analysis With Scripts
	B.5.1. Create a New Script
	B.5.2. Execute Existing Script

	B.6. Share Results
	B.6.1. Work with Snapshots
	B.6.2. Define Quality Standards using Quality Models
	B.6.3. Export to Excel

	Appendix C. Tutorial - C#
	C.1. Setup the Software System
	C.2. Further Steps

	Appendix D. Tutorial - C++
	D.1. Setup the Software System - Compiler Definitions
	D.2. Setup the Software System - Capture Compile Commands with ccspy
	D.3. Setup the Software System - Visual Studio Import
	D.4. Further Steps

	Appendix E. Sonargraph Script API Documentation
	Index

