
Sonargraph User Manual

Version 11.6.1

Sonargraph User Manual: Version 11.6.1
Copyright © 2021 hello2morrow GmbH

iii

Table of Contents
1. Motivation for Code Quality ... 1
2. Getting Started ... 7
3. Licensing ... 12

3.1. Getting an Activation Code or a License ... 12
3.2. Activation Code Based Licensing .. 12
3.3. Proxy Settings .. 13
3.4. License Server Settings .. 13

4. Initial Configuration .. 14
4.1. Installation and Updates ... 14
4.2. Help ... 14
4.3. Editor Preferences ... 15
4.4. License Server Preferences ... 16
4.5. Proxy Preferences ... 16
4.6. Update Site Preferences ... 17
4.7. C/C++ Compiler Definitions ... 17
4.8. C# Configuration .. 20

4.8.1. C# Build Executor Configuration .. 21
4.9. Search Path Configuration .. 22
4.10. Python Configuration ... 23

5. Getting Familiar with the Sonargraph System Model ... 24
5.1. Physical File Structure ... 24
5.2. Language Independent Model ... 24
5.3. Language Specific Models ... 25

5.3.1. Java/Kotlin Model .. 25
5.3.2. Kotlin Specific Issues ... 26
5.3.3. C++ Model ... 26
5.3.4. C# Model ... 28
5.3.5. Python Model .. 29

5.4. Logical Models .. 29
5.4.1. System-Based Logical Model ... 30
5.4.2. Module-Based Logical Model ... 31

6. Creating a System ... 33
6.1. Creating a Java System .. 33
6.2. Creating a C# System .. 33
6.3. Creating C/C++ Systems .. 33
6.4. Quality Model .. 35

6.4.1. Importing a Quality Model .. 36
6.4.2. Exporting a Quality Model .. 36

7. Adding Content to a System ... 37
7.1. Creating or Importing a Java Module ... 37

7.1.1. Importing Java Modules Using an Eclipse Workspace ... 37
7.1.2. Importing Java Modules from IntelliJ ... 37
7.1.3. Importing Java Modules from Maven POM File .. 39
7.1.4. Importing Java Modules Using a Bazel Workspace ... 40
7.1.5. Creating a Java Module Manually ... 42

7.2. Creating or Importing a C++ Module ... 43
7.2.1. Importing C++ Modules from Visual Studio Files .. 43
7.2.2. Importing C++ Modules Using Make Command Capturing Files ... 43
7.2.3. Creating a C++ Module Manually ... 44
7.2.4. C/C++ Module Configuration ... 44

7.3. Creating or Importing a C# Module ... 46
7.3.1. Importing C# Modules Using a Visual Studio Project File ... 46
7.3.2. Importing C# Modules Using a Visual Studio Solution File .. 46
7.3.3. Creating a C# Module Manually ... 46
7.3.4. C# Module Configuration .. 46

Sonargraph User Manual

iv

7.3.5. C# MSBuild Configuration .. 49
8. Interacting with a System ... 52

8.1. User Interface Components ... 52
8.1.1. Menu Bar ... 52
8.1.2. Tool Bar ... 52
8.1.3. Notifications Bar .. 53
8.1.4. Tables .. 53

8.2. Common Interaction Patterns .. 54
8.2.1. Special Graphic Elements Decorations ... 54

8.3. Sonargraph Workbench .. 54
8.4. Navigating through the System Components .. 56
8.5. Exploring the System Namespaces ... 57
8.6. Managing the System Files ... 58
8.7. Managing the Workspace ... 59

8.7.1. Definition of Filters, Modules and Root Directories .. 59
8.7.2. Managing Module Dependencies ... 60
8.7.3. Creating Workspace Profiles for Build Environments .. 61

8.8. Analyzer Execution Level .. 63
8.9. Analyzing Cycles .. 64

8.9.1. Revising Cycle Groups .. 64
8.9.2. Inspecting Cyclic Elements .. 65
8.9.3. Breaking Up Cycles .. 67

8.10. Exploring the System ... 70
8.10.1. Concepts for System Exploration ... 70
8.10.2. Tree Based System Exploration ... 74
8.10.3. Graph-Based System Exploration .. 80
8.10.4. Treemap-Based System Exploration ... 85
8.10.5. Tabular System Exploration .. 88

8.11. Searching Elements ... 90
8.11.1. Searching Elements in Views .. 91

8.12. Detecting Duplicate Code ... 92
8.12.1. Configuration of Duplicate Code Blocks Computation ... 93

8.13. Examining the Source Code .. 94
8.13.1. Interaction with Auxiliary Views ... 95

8.14. Examining Metrics Results ... 96
8.15. Analyzing C++ Include Dependencies .. 99
8.16. Creating a Report .. 100

9. Handling Detected Issues .. 101
9.1. Using Virtual Models for Resolutions ... 101
9.2. Examining Issues .. 102

9.2.1. Identifying the Most Relevant Issues to Fix ... 104
9.2.2. Identifying Issue Hotspots .. 106

9.3. Ignoring Issues ... 108
9.4. Defining Fix and TODO Tasks .. 108
9.5. Editing Resolutions ... 108
9.6. Details about Sonargraph's Resolution Matching ... 109

10. Simulating Refactorings .. 111
10.1. Creating Delete Refactorings ... 111
10.2. Creating Move/Rename Refactorings .. 111
10.3. Managing Refactorings ... 112
10.4. Best Practices ... 112

11. Defining an Architecture ... 114
11.1. Models, Components and Artifacts ... 115

11.1.1. Using other criteria to assign components to artifacts ... 117
11.1.2. List of predefined attribute retrievers .. 118

11.2. Interfaces and Connectors ... 120
11.3. Reusing Architecture Aspects .. 126
11.4. Extending Aspect Based Artifacts ... 129

Sonargraph User Manual

v

11.5. Extending Interfaces or Connectors ... 130
11.6. Adding Transitive Connections .. 131
11.7. Restricting Dependency Types ... 133
11.8. Connecting Complex Artifacts ... 134
11.9. Introducing Connection Schemes .. 136
11.10. Artifact Classes ... 138
11.11. How to Organize your Code .. 142
11.12. Designing Generic Architectures Using Templates ... 145

11.12.1. Using unrestricted generated artifacts .. 147
11.12.2. Using connection schemes to regulate accessibility .. 147

11.13. Best Practices .. 149
11.14. Architecture DSL Language Specification .. 150

12. Visualizing Architecture Aspects .. 153
13. Interactive Restructuring and Code Organization ... 158

13.1. Architectural View .. 160
13.2. Assigning Elements to Artifacts ... 161

14. Examining Changes .. 163
15. Defining Quality Gates ... 167

15.1. Creating Quality Gates ... 168
15.2. Using Quality Gates in the Continuous Integration (CI) Build .. 172
15.3. Current Quality Gate Limitations ... 173

16. Extending the Static Analysis ... 174
16.1. Interaction with Auxiliary Views .. 174
16.2. Groovy Scripts from Quality Model .. 175
16.3. Creating a new Groovy Script ... 175

16.3.1. Default Parameters in a Script ... 176
16.3.2. Adding Parameters .. 176
16.3.3. Creating Run Configurations ... 178

16.4. Editing a Groovy Script .. 178
16.4.1. Auto Completion .. 178
16.4.2. Compiling a Groovy Script ... 179

16.5. Producing Results with Groovy Scripts ... 179
16.6. Running a Groovy Script Automatically .. 181
16.7. Managing Groovy Scripts ... 181
16.8. Groovy Script Best Practices ... 181

16.8.1. Only Visit What is Needed ... 181
16.8.2. Find Text in Code ... 183

17. Using Additional Plugins .. 184
17.1. Plugin Configuration .. 185
17.2. Spring Microservices Plugin .. 185
17.3. Swagger Plugin ... 187
17.4. SpotBugs Plugin .. 187
17.5. PMD Plugin ... 187

18. Investigating Microservice Dependencies ... 188
19. Build Server Integration .. 190
20. IDE Integration .. 191

20.1. Eclipse Plugin ... 191
20.1.1. Assigning a System ... 192
20.1.2. Displaying Issues and Tasks ... 192
20.1.3. Suspending / Resuming Quality Monitoring ... 195
20.1.4. Setting Analyzer Execution Level .. 195
20.1.5. Getting Back In Sync with Manual Refresh ... 195
20.1.6. Examining Changes ... 196
20.1.7. Execute Refactorings in Eclipse ... 197

20.2. IntelliJ Plugin ... 198
20.2.1. Assigning a System ... 198
20.2.2. Displaying Issues and Tasks ... 199
20.2.3. Toolbar ... 200

Sonargraph User Manual

vi

20.2.4. Getting Back In Sync with Manual Refresh ... 200
20.2.5. Examining Changes ... 201
20.2.6. Execute Refactorings in IntelliJ ... 201

20.3. Collaboration between Sonargraph and IDE ... 203
21. Metric Definitions .. 206

21.1. Language Independent Metrics ... 206
21.2. Java Metrics ... 218
21.3. C# Metrics ... 220
21.4. C/C++ Metrics .. 223
21.5. Python Metrics .. 226

22. How to Resolve Issues .. 228
22.1. Language Independent Issues ... 228
22.2. Java Specific Issues ... 228
22.3. C# Specific Issues ... 228
22.4. C/C++ Specific Issues .. 228

23. FAQ .. 230
23.1. Out Of Memory Exceptions .. 230
23.2. Groovy Template .. 230
23.3. MSBuild Error (MSB4019) during Analysis of Visual Studio C# Project ... 230

24. References .. 231
25. Trademark Attributions, Library License Texts, and Source Code ... 232
26. Legal Notice ... 233
Glossary .. 234
A. Walk Through Tutorial (Java) ... 235

A.1. Workspace Definition .. 235
A.2. Basic Analysis ... 235
A.3. Advanced Analysis ... 237
A.4. Architecture: Artifacts, Aspects Files and Standard Connections ... 237
A.5. Architecture: Explicit Interfaces and Connectors .. 238
A.6. Architecture: Advanced Connections .. 239
A.7. Architecture: Advanced Aspect Files ... 239
A.8. Architecture: Referencing external Artifacts in Aspect Files ... 240
A.9. Headless Check with Sonargraph-Build .. 241
A.10. Check at Development Time with Sonargraph Eclipse Integration .. 241

B. Tutorial - Java .. 243
B.1. Setup the Software System ... 243

B.1.1. Create a new Software System ... 243
B.1.2. Define the Workspace ... 243
B.1.3. Define Module Dependencies ... 245
B.1.4. Parse the Workspace ... 245

B.2. Initial Analysis ... 245
B.2.1. Detect Problems Using Standard Metrics .. 245
B.2.2. Adjust Metric Thresholds .. 246

B.3. Problem Analysis ... 246
B.3.1. Examine Cycles ... 247
B.3.2. Examine Duplicate Code ... 248
B.3.3. Handle Issues .. 249

B.4. Detailed Dependency Analysis .. 250
B.4.1. Explore Dependencies ... 250
B.4.2. Check how Elements are Connected via Graph View .. 251
B.4.3. Check how Elements are Connected via the Dependencies View ... 252
B.4.4. Search for Elements ... 253

B.5. Advanced Analysis With Scripts ... 253
B.5.1. Create a New Script ... 253
B.5.2. Execute Existing Script ... 254

B.6. Share Results ... 255
B.6.1. Work with Snapshots .. 255
B.6.2. Define Quality Standards using Quality Models ... 255

Sonargraph User Manual

vii

B.6.3. Export to Excel ... 255
C. Tutorial - C# .. 256

C.1. Setup the Software System ... 256
C.2. Further Steps ... 258

D. Tutorial - C++ .. 259
D.1. Setup the Software System - Compiler Definitions ... 259
D.2. Setup the Software System - Makefile Capturing ... 259
D.3. Setup the Software System - Visual Studio Import ... 260
D.4. Further Steps ... 262

E. Sonargraph Script API Documentation .. 263
Index ... 264

1

Chapter 1. Motivation for Code Quality
The main idea behind Sonargraph has always been to provide a tool that eases the creation and maintenance of high-quality
software. Creating high-quality software is difficult: You need to know where the pain-points are and how to solve them.

For any serious project that must live longer than a couple of months, it is actually cheaper to spend part of your resources to keep
your software constantly at a good level of quality than using all your time to create new features. Martin Fowler explains this
very well in his article "Is High Quality Worth the Cost?"1. The bottom line is, that apart from the very early development stages,
high-quality software is actually cheaper to develop, because it allows adding new features at almost constant speed, whereas it
becomes more and more time consuming to add new features into a code base with low quality.

We at hello2morrow believe that a consistent architecture is a fundamental part of software quality. When we use the term
"architecture", we think of it in terms of the IEEE 1471 standard:

"The fundamental organization of a system embodied in its components, their relationships to each other, and
to the environment, and the principles guiding its design and evolution."

This chapter describes why architectural design as an activity is needed, why conformance checks need to be done automatically
by a tool and how Sonargraph supports you as a developer and architect during these activities.

The Need for Architecture
Martin Fowler wrote an excellent article "Is Design Dead?"2 back in 2004. He argues that for anything serious, you cannot just
code along and hope for the best, but need “planned design”:

"If you want to build a doghouse, you can just get some wood together and get a rough shape. However if you
want to build a skyscraper, you can't work that way - it'll just collapse before you even get half way up."

- Martin Fowler

He is not arguing to design everything up front, but rather making the design activity part of the agile development process. As
a consequence, the architecture evolves together with the code base and the knowledge of the team.

If you take the definition for architecture mentioned at the start of the chapter, then the top-level architecture should contain
the main components and their dependencies. As with construction architectures for large buildings, no single diagram exists
that contains all information for a large-scale software system. There is an upper limit of elements that our brain can process,
especially if there are also interconnections of different types between elements. Thus, if the system grows beyond a certain size,
abstractions are needed which can be thought of as maps at different scale. Simon Brown gives an example of this with the C4
model3. Where details are needed, additional diagrams can be created.

Of course, several viewpoints for software architecture exists as described by "The 4+1 ViewModel"4. This "static" architecture
that describes the decomposition of a system in its parts is the foundation for the "dynamic" aspects like information flow: If
there is no direct dependency between two components or between them and any of their commonly shared components, there
cannot be any information flow between them.

Consistency of the diagrams now becomes a challenge: Higher-level abstractions must not be violated at the lower level: There
must not be a secret tunnel at the detailed level where the higher level puts a clear barrier between components.

The last decades of agile software development have shown that it is impossible and impractical to do a big design upfront.
Not only the requirements from the outside (read 'business') may change, but most certainly the developers' understanding of
the domain improves over time and thus the architecture likely also needs to be adapted as a consequence. The effort needed to
change a functionality and the effects this change causes for the rest of the system very much depend on the number of usages
of this functionality.

1 "Is High Quality Worth the Cost?" , https://martinfowler.com/articles/is-quality-worth-cost.html, 2019
2 "Is Design Dead?" , https://martinfowler.com/articles/designDead.html, 2004
3 C4 Model , https://c4model.com/
4 "Architectural Blueprints—The '4+1' ViewModel of Software Architecture" by Philippe Kruchten, https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-
architecture.pdf, 1995

https://martinfowler.com/articles/is-quality-worth-cost.html
https://martinfowler.com/articles/designDead.html
https://c4model.com/

Motivation for Code Quality

2

Design for changeability therefore means to minimize coupling (i.e. the number of dependencies) between elements, because
elements with low coupling can be more easily re-arranged. Especially bad for coupling are cyclic dependencies that may cause
mental challenges in form of hen-and-egg problems and also make it harder to understand a system's structure if a large number
of elements are involved. You want to avoid an entangled mess as shown in the following picture (where green arcs represent
dependencies between Java packages and the direction of dependencies is counter-clockwise) that is often described as "big ball
of mud":

Figure 1.1. To Avoid: "Big Ball of Mud" Dependency Structure

As a consequence, we think that spending effort on a clean and consistent software architecture and controlling dependencies is
essential to code quality as well as regularly cleaning up other code smells.

Our experiences match those of well-known experts. Here is an incomplete list of resources that we found affirmative to our
thinking. They haven't lost any importance despite dating back a couple of years.

• 'Is High Quality Worth the Cost' by Martin Fowler, https://martinfowler.com/articles/is-quality-worth-cost.html, 2019

• 'Sustainable Software Architecture: Analyze and Reduce Technical Debt' by Dr Carola Lilienthal, dpunkt.verlag, 2020

• 'Is Design Dead' by Martin Fowler, https://martinfowler.com/articles/designDead.html, 2004

• 'Domain Driven Design' by Eric Evans, Addison-Wesley, 2004

Motivation for Code Quality

3

• 'Large-Scale C++ Software Design' by John Lakos, Addison-Wesley, 1996

• 'The Pragmatic Programmer: From Journeyman to Master' by Andrew Hunt and David Thomas, Addison-Wesley, 1999

• 'Structured Design' by Edward Yourdon and Larry L. Constantine, Prentice-Hall, 1979

• 'Your Code as a Crime Scene' by Adam Tornhill, Pragmatic Programmers, 2015

• 'Applying UML And Patterns' by Craig Larman, Prentice Hall, 2000

• 'Refactoring to Patterns' by Joshua Kerievsky, Addison-Wesley, 2005

• 'Agile Software Development' by Robert C. Martin, Prentice Hall, 2003

Automating Checks
Manually tracking the evolution of the internal structure of a software system is not efficiently manageable. With thousands of
classes and millions of dependencies this is impossible for any large system. You need a tool that automatically reports deviations
in the implementation from your envisioned architecture. We think that the lack of proper tool support is the reason why so
many projects suffer from software rot. There are many static analysis tools and linters that report errors and problems at source-
file level, but most are missing out on the big picture: Tracking dependencies across source files and validating if the structure
matches the envisioned design.

As a result, most systems contain a large number of cycle groups, elements are tightly coupled, no clear structure exists and if
documentation exists, it is not up-to-date. New developers have a hard time to know how they should structure new functionality,
where to place the new code and how it should interact with the existing code. Once you have lost control, the structural quality
typically spirals downwards quickly and the software ends up in a "big ball of mud". Regular quality initiatives feel like Sisyphean
tasks, because problems are created faster than they can be fixed.

Therefore, quality checks must be executed automatically by the Continuous Integration (CI) build, whenever new code is
committed. Even better, quality checks should be executed while programming, so that those problems never get into the version
control system.

Setting the Focus
Starting a new project with automated architecture checks in place is very practicable to maintain quality at a high level. It is
way harder to sustainably improve quality for existing projects. Resources are scarce, and new features need to be implemented,
so it is not feasible to simply stop all work and clean up everything first.

For any quality improvements, it is important to spend efforts where it supports the current work: This makes the positive effects
visible, and the enthusiasm for code quality will stay and won't fade away quickly.

For this reason, Sonargraph offers to compare the current state of the system against a previously run analysis. This 'System Diff'
identifies where quality was improved and worsened, making it ideal to support code and sprint reviews. Additionally, quality
gates can be defined that ensure that quality trends in the right direction. A ranking algorithm highlights those issues where fixes
provide high benefit, i.e. that are urgent and important: Issues that were added recently, that have a high impact on the system
and where involved files have been changed recently.

The Sonargraph Product Family
Architects and developers are supported by Sonargraph to maintain and improve the quality of their software. Its focus is on
architecture and dependencies, but it offers also a large number of metrics, duplicate code checks and additional rules that can
be activated as needed, e.g. to detect unused code. Sonargraph is built upon the experiences that hello2morrow gained during
the development and support of the predecessor products Sonargraph 7, SotoGraph and SotoArc. Sonargraph is lightweight
and integrates smoothly with different IDEs, build and quality infrastructures (e.g. Eclipse, IntelliJ, SonarQube, Jenkins, Ant,
Maven, ...).

Sonargraph consists of several products that help to ensure quality throughout the software development as shown in the following
image:

Motivation for Code Quality

4

Figure 1.2. Sonargraph Products

• Sonargraph-Architect allows code exploration and definition of rules, i.e. architectures, metrics, anti-patterns, thresholds, tasks,
refactorings. It offers additional analyzers. e.g. to detect code duplications and to provide custom metrics and issues.

• Sonargraph-Developer are integrations into IDEs that provide early feedback to developers. With a Developer license it is also
possible to start the Sonargraph-Architect application and use its advanced visualization and exploration possibilities.

• Sonargraph-Enterprise is a web application that provides the history of metrics for multiple Sonargraph systems.

• Sonargraph-Build are integrations for various environments to run the quality checks on the continuous integration server.

• Further plugins exist that allow the integration of Sonargraph into SonarQube and Jenkins.

We host an Open Source project on GitHub that provides easy access to all information contained in a Sonargraph XML report
and can be used for custom post-processing: https://github.com/sonargraph/sonargraph-integration-access

Use Cases and Key Functionality
The following describes key functionality of Sonargraph and typical uses cases. This is just a summary, the rest of the user
manual provides more details.

Architecture Definition

Sonargraph uses a Domain Specific Language (DSL) approach to describe the architecture. A system's architecture can consist
of multiple architecture aspects which are checked in parallel. Alternatively, the architecture can be defined interactively.
Architecture diagrams can be generated allowing to investigate connections between architecture artifacts.

https://github.com/sonargraph/sonargraph-integration-access

Motivation for Code Quality

5

Simulate Refactorings

Sonargraph allows the simulation of refactorings. For this, you can create multiple so-called virtual models. A virtual model is
a space where the model from the parser(s) can be modified by refactorings and detected issues can be transformed into tasks or
ignored (called resolutions). This allows the simulation of different approaches to change an existing structure. A virtual model
can be based on another virtual model making it possible to reuse common refactorings and resolutions.

The 'cycle-breakup' analyzer proposes refactorings to find an efficient way to eliminate a cycle. It takes into account defined
architectures and allows to interactively fine-tune the solution.

NOTE: A virtual model might affect metric values since the structure of the system can be changed with refactorings and issues
can be transformed into tasks or ignored.

Hotspot Visualization

Sonargraph analyzes information from Source-Control Management (SCM), currently Git. The combination of issues and code
changes and the visualization as software maps (a.ka. "Code Cities") allows the visual identification of hotspots.

Tracking Changes in Quality

If Sonargraph is used in existing projects there might be an overwhelming number of reported issues. The 'System Diff' analyzer
allows focussing on changes, making it the ideal companion during reviews. Quality gates can be defined on the current system
state or in comparison to a baseline, making it easy to follow the 'Boyscout Rule' and gradually improving the system's quality.
The 'Issue Ranking' view recommends issues that are both urgent and important to fix.

Great Parser Model Detail, Little Memory Consumption

Dependencies are tracked down to method and field level offering more detailed exploration. Sonargraph has little memory
consumption, as only the model coming from the different parsers is held in memory and all 'derived' structural elements (e.g.
a layer) and their dependencies are calculated on demand.

Snapshots

The complete model of a system is stored in a compact binary format. This enables fast startup times (the last snapshot is used if
available) without having to perform a full re-parse. Furthermore complete systems might be compared and historically analyzed
- even passed around to enable reviews based on them - by directly loading the snapshot.

Fast Execution

Analyzers calculate metrics and analyze dependency structures (e.g. cycles) and content of source files (e.g. duplicated code).
These analyzers run in parallel in a multi-threaded environment providing more speed while not blocking user interaction. Once
an analyzer has finished, it`s results are available to the user.

Extensible Analysis

The user can extend Sonargraph's functionality by writing Groovy scripts accessing the model created by Sonargraph. These
scripts can either simply act as custom queries finding artifacts with specific characteristics and/or to create issues pointing to
potential problems in the system or create additional metrics.

Sonargraph also offers a plugin API to integrate external analyzers and to extend the parser model by custom elements. The
currently existing plugins are 'Spotbugs' and 'PMD' for further file-local issues and 'Swagger' and 'Spring Microservices' to reveal
web service dependencies.

Multiple Language Support

Sonargraph supports different languages depending only on the license without the need to have different installations. There is
a unified approach (i.e. one user interface) to explore and monitor systems implemented in different languages. Systems have a
module structure where each module can have a different language.

Motivation for Code Quality

6

Inter-module dependencies with different languages are detected where possible (e.g. by analyzing JNI calls). A generic
component approach is used for all supported languages - currently Java/Kotlin, C#, C/C++, Python.

Flexible Exploration of Dependency Structures

You are free to decide how to explore dependencies. Sonargraph offers a tree-like explorer, a graph viewer and a simple table-
based viewer.

Automated Updates and Flexible User Interface

Automated updates and a flexible user interface (layout and customization) are provided as Sonargraph is built upon the Eclipse
Rich Client Platform (RCP). Sonargraph-Build plugins for Maven and Gradle can also be configured to update automatically.

Exchangeable Quality Artifacts

The software system analysis comes with a multiple file approach. The software system is comprised of a main software system
file, analyzer configurations, user defined scripts, different architecture aspects and so forth. The approach makes it easy to share
valuable aspects of the analysis between software systems as well as to centralize common aspects in bigger companies.

7

Chapter 2. Getting Started
You are reading this, because you care about the quality of your code base and that's great!

Sonargraph identifies problematic areas and supports you to gradually improve your code base. Be aware that this is not an easy
task, especially if no static code analysis checks have been executed for a long time on your project! It is very likely that there
will be an overwhelming amount of issues that would take too long to be all fixed. But Sonargraph will steer you towards those
issues where fixes provide the most benefit.

Don't Panic!

Not all issues will be easy to fix. Some, like huge cycle groups, might be really hard to solve.

Our advice is to treat "quality improvement" not as a short-term "sprint" but rather as necessary and integral part of software
development that needs to be done continuously. The best you can do is to accept the current state of quality, look forward and
gradually get rid of issues where code needs to be modified. If you cannot eliminate a big cycle group in one go, at least make
sure that it does not get worse and free elements from it piece by piece.

The benefits will be great, because it not only improves the code base but these efforts will also make you a better programmer /
architect, since you will be forced to think a lot about good solutions for the problems identified by Sonargraph.

"A Fool with a Tool is still a Fool"

This applies for Sonargraph, too. Programming and architecting skills need time, a lot of reading (see our
recommendations at the end of the previous chapter) and deliberate practice.

Sonargraph is an excellent tool to tell you about the existing problems in your code. Finding good solutions is still
your task!

This chapter is meant to be a quick reference on how to get started with Sonargraph. Links are provided to other chapters of the
user manual, where you find more details.

Motivation and Key Concepts
In case you skipped Chapter 1, Motivation for Code Quality, we urge you to go back and read it. It provides convincing arguments
about the usefulness of high-quality software, in case you need to convince someone else in your organization that these efforts
are well spent. We also included a list of our favorite books that helped us write better software. As a next step, we recommend to
get familiar with the key concepts used within Sonargraph by skimming Chapter 5, Getting Familiar with the Sonargraph System
Model, so you know what we mean when we talk about "module", "root directory", "namespace", "component", "physical",
"logical", "issue", etc.

Initial Configuration
Before you can analyze your code base, you need have a license. Check Chapter 3, Licensing for details on how to activate your
license on Sonargraph.

If you want to analyse C/C++, C# or Python code, you probably need to configure some preferences, so that Sonargraph
finds the code of the corresponding platforms on your machine. This is required to correctly resolve dependencies. Check
chapters Section 4.7, “C/C++ Compiler Definitions”, Section 4.8, “C# Configuration”, and Section 4.10, “Python Configuration”
respectively.

Getting Started

8

Help!

You will need some time to know your way around Sonargraph. We do our best to make the interactions as obvious as
possible, but our intuition might differ from yours in some places. If you get stuck and don't know what to do next, simply
press F1 and some guidance will be provided in the context help with additional pointers to more detailed information.

In case that is not sufficient, please send us a feedback via the menu "Help" → "Send Feedback..." and we will get back
to you as soon as possible for further support.

Setup Sonargraph System and Define the Scope of Analysis
Having resolved all the initial tasks, it is now time to import your code to Sonargraph. We implemented several importers that
should let you create a Sonargraph system based on code developed with Eclipse, Intellij IDEA or Visual Studio. Check Chapter 6,
Creating a System for details. In case the automatic import is not possible, a manual setup is also supported. When the import has
finished, hit "refresh" and let Sonargraph analyze your code. Afterwards, the Workspace view lists all modules and directories
where code has been found. In case you want to exclude code from the analysis or simply ignore issues in certain areas, configure
the workspace filters accordingly as described in Section 8.7, “Managing the Workspace”.

In case your workspace in your IDE has changed and new modules/projects have been created, you can also create new modules
via several different importers as described in Chapter 7, Adding Content to a System.

Initial Assessment
If you are like us, you will be keen on seeing some dependencies now. For this, you can select any number of modules from
the "Navigation" view, open the context menu via right-click and select "Show in Exploration View". The view shows the
dependencies as green arcs as they have been derived from the code.

Figure 2.1. Exploration View

Selecting a node or dependency, the "Parser Dependencies View (Out)" view displays the details. We dedicated a whole chapter
about how to explore the code and make the best use of the powerful functionalities: Section 8.10, “Exploring the System”

In case you started with static code analysis for an existing project, it is likely that the "Issues" view shows a huge list of problems.
Of course, you can apply filters: Either by selecting elements in the tree view shown in the upper part or by selecting the issue
types you are interested in. Section 9.2, “Examining Issues” describes all the possible interactions.

Getting Started

9

Not all issues should be treated equally. Some are more relevant to the future development than others and refactoring efforts
should be focussed on them. We implemented an algorithm based on the "Eisenhower Method" to identify issues that are both
important and urgent to fix. The suggested ranking can be examined in the "Ranking" view, the "Properties" view shows details
of the individual parameters and how they contribute to the computed score. Check Section 9.2.1, “Identifying the Most Relevant
Issues to Fix” for details.

Most likely cycle group issues will be among the most relevant issues. We have seen groups involving hundreds of elements,
so their impact on the code base and the architecture is huge. Reducing the amount of code involved in cycles will have a very
positive effect on the maintainability. How Sonargraph helps to investigate and to eliminate cycles is described in Section 8.9,
“Analyzing Cycles” and Section 8.9.3, “Breaking Up Cycles”.

Duplicate code also has a negative impact, since it bloats the code base and makes bug fixing more difficult, because you need
to know where the duplicates exist you need to repeat the fix at all occurrences. The inner workings and configuration options
of the duplicate code analyzer are described in Section 8.12, “Detecting Duplicate Code”.

Of course, Sonargraph also computes a lot of metrics. The Metrics view as described in Section 8.14, “Examining Metrics
Results” allows to search for outliers. This gets more convenient if you configure metric thresholds for those metrics that you
find interesting. We prepared some thresholds for you, that can be imported as a quality model (check Section 6.4, “Quality
Model” for details).

Define Meaningful Thresholds
Agreeing on "sensible" thresholds can be a matter of tough debates. Our advice is to not take them too serious. But, most of the
times, you will find that the code is easier to understand after you applied a refactoring to eliminate the issue. In case it is not,
you should talk to a colleague and maybe she will come up with a better refactoring proposal.

To identify hotspots, you can use treemaps as described in Section 9.2.2, “Identifying Issue Hotspots”. Simply looking at the
code base from a different perspective can reveal suprising insights. Give it a try!

TIP

The best place for a Sonargraph system definition is next to the code base. If you haven't done it yet, share the system
definition with the team and add it to your version control system. All information that makes up a Sonargraph system
definition is contained in plain text files that are easy to read and to track their changes.

Define Architectures
One of the main ideas behind Sonargraph is to detect unwanted dependencies within the code base, so that the "big ball of mud"
can be prevented. An architecture defines how parts of the system can reference each other. Sonargraph makes the architecture
"actionable" by automatically verifying that the implementation matches the definition. Chapter 11, Defining an Architecture
describes the rationale behind the implementation of the architecture as a Domain-Specific Language (DSL), and demonstrates
the features using an example scenario.

The architecture DSL is tremendously powerful and allows to define complex structures with minimal effort. But it needs time to
learn all constructs and how to combine efficiently. That's why modeling the architecture interactively during system exploration
was implemented in the "Architectural" view. It also allows defining refactorings while modeling, and it is fun to see how the
system's structure is improving. Chapter 13, Interactive Restructuring and Code Organization describes details. (Note: No code
is changed in this process, only tasks are created that need to be executed in your IDE.) The "Architectural" view is a sandbox.
Once you are happy with the results, the architecture definition and tasks can be transferred and will then be actively checked.

TIP

The transfer creates a file containing the architecture defined with the DSL. If you have repetitive structures in your
architecture, you should use DSL constructs to eliminate them, for example via "aspects" as described in Section 11.3,
“Reusing Architecture Aspects”.

A lot of users like architecture representations as box-and-line diagrams. Since our architecture meta-model was derived from
UML component diagrams, this is the implemented visualization that shows how the defined artifacts are interconnected. The

Getting Started

10

hierarchical layout of elements follows the approach that is consistently implemented within Sonargraph: High-level elements
with outgoing connections are above low-level elements with incoming connections. See Chapter 12, Visualizing Architecture
Aspects.

Define Resolutions and Tasks
Knowing where the problems are is important. Sometimes, you decide you want to live with them, so Sonargraph lets create you
"Ignore" definitions to move these problems out of focus. Sometimes, you find them important enough to be fixed, so you can
define "Fix" definitions and recommend possible solutions. Using the Sonargraph IDE integrations for Eclipse or IntelliJ IDEA,
those fix definitions will show up in the editor and help the developer to implement the solution.

Sonargraph also allows the simulation of refactorings: You can evaluate the effects of "move", "rename" and "delete" refactorings
before they are implemented. The Sonargraph IDE integrations make it dead-easy to execute "move" and "rename" refactorings
by delegating these to the IDE's builtin refactoring functionalities. The functionality of the integrations is described in Chapter 20,
IDE Integration.

NOTE

Sonargraph task definitions should have a short life span. Otherwise there is the risk that tasks and the underlying code
base get out of sync.

Continuously Check the Quality
The more frequent the quality is checked, the faster is the feedback about new problems and the easier it is to fix them. That's
why SonargraphBuild can be integrated into your Continuous Integration (CI). It is up to you how to react on the results, either
let the build fail or only send an email out to the developers. We have a dedicated user manual for this product that details all the
configuration options: http://eclipse.hello2morrow.com/doc/build/content/index.html

Incremental Quality Improvements
Big-bang approaches rarely work. We propose that you accept the current state, move forward and ensure that the quality improves
over time. Sonargraph lets you focus on changes and highlights added, worsened, improved and removed issues in the "System
Diff" view. You create a baseline that the system's quality will be compared against, as described in Chapter 14, Examining
Changes. We recommend to define goals that you want to achieve, e.g. during the next sprint or until the end of the next release.
Sonargraph lets you define those as quality gates for metrics and issues (see Chapter 15, Defining Quality Gates) and checks
them automatically.

Once you have completed the above steps and got familiar with Sonargraph's features, it's time for a recap. You should think
about when and how you want to use Sonargraph to check that you are still on track. Baselines can support reviews for features
and releases and ensure that no additional problems are introduced.

Apart from ensuring that no new issues are introduced, we recommend to regularly look at the ranked issues and select some of
them to be fixed. It is also worth to check for hotspots using treemaps, so that areas for larger refactorings can be identified.

Using Special Checks
You can extend Sonargraph by writing additional checks and compute futher metrics via Groovy scripts. A number of predefined
scripts exist that can be imported from the built-in quality models. They check for "dead code", compute metrics like "Depth
of Inheritance", identify code that has the most impact on coupling ("ACD Top Scorer") and detect patterns like "Singleton" to
name a few examples. Chapter 16, Extending the Static Analysis provides more details.

Stay Up-To-Date
No software is perfect and Sonargraph is no exception. We heavily use assertions to check for internal consistency. Sonargraph
will let you know if one of them fails and we kindly ask you to send us the error report. Bug fixes have high priority for us and
we frequently release updates that the application will offer you to install at startup.

http://eclipse.hello2morrow.com/doc/build/content/index.html

Getting Started

11

We regularly publish blog articles at https://blog.hello2morrow.com/ to illustrate the benefits that you get by using certain
features. Our web site also contains a number of videos that show Sonargraph in action (https://www.hello2morrow.com/videos).

In case you have ideas for additional functionality, please send them to us via "Help" → "Send Feedback..." and we will be happy
to integrate them in our backlog.

https://blog.hello2morrow.com/
https://www.hello2morrow.com/videos

12

Chapter 3. Licensing
When you start Sonargraph you will be asked for an activation code or a license file. For additional licensing and pricing
information please contact <sales@hello2morrow.com> or <support@hello2morrow.com> and check our web
site .

3.1. Getting an Activation Code or a License
When you have purchased a Sonargraph license, an activation code or a license file will be delivered to you.

There might be a program for free Sonargraph licenses which are time-limited and/or size-limited. Please register on our website
and check the available programs.

In order to replace a valid license by a new one, choose "Help" → "Manage License..." from the user menu in the GUI-based
product. Sonargraph licenses are bound to a named user. The usage by a different user is a violation of the license agreement.

3.2. Activation Code Based Licensing
Activation code based licensing activates Sonargraph licenses via Internet or a local license server by requesting a so-called
ticket. Every activation code is customer specific and represents a pool of Sonargraph user licenses as purchased and licensed
to the specific customer. Activation code based licensing technically requires that Sonargraph has Internet access or that a local
license server is reachable. There are two types of activation code based licenses available:

1. Flexible User License (if you bought Sonargraph before version 9.0 you have flexible user licenses)

2. Floating License (new with Sonargraph 9.0)

Flexible user licenses support a feature that allows customer-driven transfer of a Sonargraph user license to another user after
some amount of time. This works like this:

• When an activation code based license is requested, Sonargraph automatically requests a license ticket from the hello2morrow
license server. This ticket expires after some time, for example after 30 days. During these 30 days, the use of the Sonargraph
installation that requested the ticket is licensed (by the user who ran Sonargraph when the license ticket was requested).
Sonargraph can be used during this period without any access to the Internet.

• After the ticket of a Sonargraph installation has expired (in our example scenario, this happens on the 31st day after the ticket
has been requested), one of two things typically happen:

1. The same Sonargraph installation is started again. Sonargraph then notices that the license ticket has expired and lets the
user know about it by presenting a dialog to manually request a new ticket from the hello2morrow license server, for the
same activation code or a different one if desired. The new ticket again is valid for the same time period. You can toggle

the feature at ' Help → Renew License Ticket Automatically ' to have Sonargraph silently perform license ticket requests
using the current activation code, without further user interaction.

2. Alternatively, the user of the installation might not continue to work with Sonargraph; then the license is now, after the
expiration of the ticket in the Sonargraph installation, available to some other user. The hello2morrow license server will
supply a license ticket to the next user that requests one for the given activation code.

Note that the number of license tickets that can be supplied by the license server for some activation code might be more than
one. For example, a company might license Sonargraph for 20 users. The same activation code can be used by all of them, but
as soon as the 21st license ticket is requested for this activation code, this request will be denied. A new request for a ticket will
only be fulfilled after one of the already supplied tickets has expired, so that at any one moment, at most 20 non-expired license
tickets exist for the activation code.

It is not required that the same user requests a replacement of an expired license ticket; any user that knows the activation code
can request one of the free tickets. This mechanism reduces the effort needed for license management in a changing user group.

https://www.hello2morrow.com/products/sonargraph/architect_pricelist
https://www.hello2morrow.com/products/sonargraph/architect_pricelist

Licensing

13

However, in order to avoid any misuse we strongly encourage you to restrict the information about your activation code to those
persons who are supposed to use Sonargraph.

If you have any suspicion about misuse please inform <support@hello2morrow.com> immediately. We can promptly
deactivate an activation code so that any further misuse is stopped and provide a new activation code to you.

Floating licenses bind a ticket to an instance of Sonargraph while it is running. As soon as Sonargraph is terminated the license
can be used by another user.

Most of our customers are using our Internet based license server, so there is no need for you to operate your own license server as
long as the machines running Sonargraph have access to the Internet. If this is not the case or you want to avoid being dependent
on the availability of hello2morrow's web-based license server you can request the usage of a local license server by contacting
us via <sales@hello2morrow.com> or <support@hello2morrow.com>. Once your request has been approved, you
can download hello2morrow's local license server and run it on your premises. If you have a flexible user license it is also possible
to run Sonargraph with file based licenses.

3.3. Proxy Settings
If you use hello2morrow's Internet servers and Activation code based licensing, you need Internet access. If your network
configuration does not allow direct Internet access, but provides access through an HTTP proxy instead, you can specify the host
name and port of the proxy server. If the proxy server access is password protected, you can supply a user name and a password
in order to authenticate.

For the GUI-based product, the proxy settings can be changed via "Preferences..." → "Proxy Settings" .

Check the user manual of Sonargraph-Build for proxy configuration options of the build server integrations.

3.4. License Server Settings
I you use your own license server you need to configure the access to it. You must specify the host name and port of the license
server.

For the GUI-based product, the proxy settings can be changed via "Preferences..." → "License Server Settings" .

14

Chapter 4. Initial Configuration
This chapter summarizes what is needed for Sonargraph to run, how the update mechanism works and the necessary configuration
before you can start creating software systems .

Related topics:

• Chapter 3, Licensing

• Appendix B, Tutorial - Java

4.1. Installation and Updates
Sonargraph is built upon the Eclipse Rich Client Platform (RCP) framework. The following prerequisites must be fulfilled:

• Microsoft™ Windows™ , Mac OS-X or Linux® operating system.

• 2048 MB RAM (Win32: 1400 MB)

Sonargraph leverages the advantages of the Eclipse Rich Client Platform update mechanism, thus, it will automatically connect
to the hello2morrow update site and check for new versions at startup.

On Windows, Sonargraph stores application specific data (e.g. state files for the undo/redo history) in the directory
%APPDATA%\hello2morrow\Sonargraph. If you notice slow performance during edit operations and you cannot exclude
this directory from the virus scanner, create a script that reconfigures the environment variable "APPDATA" and then starts
Sonargraph.

4.2. Help
The documentation for Sonargraph (i.e. this document) is also integrated into the product and available via the main menu entry

"Help" → "Help Contents..." or by pressing the Ctrl+F1 shortcut. It also provides a search functionality.

Dynamic / context-sensitive help is available within the application via the shortcut F1 .

If there is no answer to your question available, contact us via the built-in feedback functionality, which can be found at "Help"

→ "Send Feedback..." or by sending an email to <support@hello2morrow.com> .

Initial Configuration

15

4.3. Editor Preferences
For architecture files and scripts you can set editor preferences. In the "Preferences..." menu, you find the possibility to change
the editor preferences:

Figure 4.1. Editor Preferences

• Format files on save If set architecture and script files are formatted when saved, otherwise not.

• Show white space If set white space characters are shown with special characters, otherwise not.

• Indentation for empty lines If set empty lines will be automatically indented while being formatted, otherwise empty lines
will stay empty.

• Indentation size Set the indentation size (only relevant for tab policy "Blanks").

• Tab policy Choose between "Blanks" to use blanks for indentation, and "Tabs" to use tabs for indentation.

• Position of opening braces Choose between "On the same line" to put opening braces on the same line, and "On the next
line" to put opening braces to the next line.

• Position of closing braces Choose between "On the same line" to put closing braces on the same line, and "On the next line"
to put closing braces to the next line.

• Line delimiter Choose between "Windows" which will end lines with CR and LF, and "Unix" which will end lines with a LF.

Initial Configuration

16

4.4. License Server Preferences
In the "Preferences..." menu, you find the possibility to change the license server preferences:

Figure 4.2. License Server Preferences

4.5. Proxy Preferences
In the "Preferences..." menu, you find the possibility to change the proxy preferences:

Figure 4.3. Proxy Preferences

Initial Configuration

17

4.6. Update Site Preferences
In the "Preferences..." menu, you find the possibility to change the update site preferences:

Figure 4.4. Update Site Preferences

• Update Site URL Use this update site to check for new releases of Sonargraph Standalone. Change this if you want to operate
a local mirror of the official hello2morrow Sonargraph update site.

Port The port number of the update site.

If a proxy is configured in Section 4.5, “Proxy Preferences” it will be used while connecting to the update site.

4.7. C/C++ Compiler Definitions
Sonargraph uses internally the Edison Design Group (EDG) C/C++ Front End to parse C/C++ sources. In order to emulate
the behavior of your C/C++ compiler, Sonargraph needs a compiler definition. A compiler definition contains the location of
the directories containing the system include files, a list of predefined macros and other options for the EDG parser defining
language features and compatibility levels. You will not be able to successfully parse a software system without a proper compiler
definition for your compiler. One compiler definition has to be set as the "active" definition, which will be used by default for
opened software systems containing C/C++ modules.

Sonargraph comes with pre-defined compiler definitions that are activated by default depending on the platform Sonargraph
is running on:

• "CLang" for Mac OS-X.

• "GnuCpp" for GNU C++ compiler on Unix based systems (Linux, Unix).

• "VisualCpp_x_y_z" for Windows based systems that have Microsoft Visual Studio Compiler installed. (x = version,
y=architecture, z=processor, e.g. VisualCpp_12.0_x86_amd64). These definitions will not be automatically generated anymore
because from Visual Studio 2019 on it is not possible anymore to query the registry for the installation location of Visual
Studio. You have to tell Sonargraph where Visual Studio is installed. You can even register different Visual Studio versions
with Sonargraph. To register an installation use the "Visual Studio Installations" preference page under the C/C++ preference

Initial Configuration

18

page group. To get there just select "Preferences" from the "Windows" menu. You then add the root directory of each Visual
Studio installation you would like to use with Sonargraph. The root directory must have a sub-directory "VC".

If you are using a different compiler the easiest way to create a new compiler definition is to use the wizard under the "File/New/
Configuration..." menu. If you have used our old product Sotograph before the wizard offers you to import a Sotograph compiler
definition into Sonargraph. If you do not have a Sotograph compiler definition file you can ignore this step.

In the "Preferences..." menu, you can manage and modify existing compiler definitions or create new ones based on existing
compiler definitions.

Figure 4.5. C++ Compiler Definition

The translation tab allows to define how options retrieved from imports need to be handled: For C++ modules created based on
imports (e.g Makefile or Visual Studio 2010 project files (.vcxproj)), only macro (-D) and include (-I) preprocessor options will
be applied. Use the translation functionality if any additional options of the imported project are required for parsing or the EDG
parser uses a different value than your standard compiler.

For certain compilers it is possible to dynamically retrieve predefined macros and the include search path. To do that compiler
definitions can be based on Groovy templates that invoke the compiler to query those settings. This is of course not possible for
all compilers. Therefore we also have created a compiler definition wizard that will collect the information about the compiler

to be emulated from you. You can invoke this wizard from the "File" → "New" → "Configuration..." menu. The wizard also
supports the import of compiler definitions from Sotograph. (Previous tool from hello2morrow)

NOTE

You need to "activate" a compiler definition to use it for parsing. Just selecting a definition is not enough.

Initial Configuration

19

NOTE

Replacing the active compiler definition or modifying its content will force a reparse of the currently loaded software
system as soon as the compiler definition is activated or the changes are applied.

By default, compiler definitions are stored in the Sonargraph home directory. These definitions are not intended to be shared.
If you want to share compiler definitions across team members, it is recommended to specify a separate directory in the search
path that contains these shared definitions. See Section 4.9, “Search Path Configuration” .

Initial Configuration

20

4.8. C# Configuration
Sonargraph includes the dependencies to external assemblies (DLLs) in its analysis. The paths where the external assemblies
are located need to be defined in an "Installation Profile". The preference dialog opened via the menu "Preferences..." , allows
the definition of your own profiles. The definition of assembly directories is based on Groovy Templates, allowing for flexible
profiles that can be shared between team members.

Sonargraph detects the installed Microsoft .NET frameworks and offers them as installation profiles. For .NET 5 as well as .NET
Core and other target frameworks, matching profiles can be generated via MsBuild. Make sure that MsBuild is configured
correctly by opening the "Build Executor" preference page (see Section 4.8.1, “C# Build Executor Configuration”). On the
preference page "Profiles Generation" select the frameworks for which you want to generate the installation profiles. Afterwards,
you can configure one of them as the "active" installation profile, or configure them as a system profile (see Section 7.3.4, “C#
Module Configuration”).

These profiles can be used as templates to generate new profiles. The activated profile is used as default profile for all new
software systems that contain C# modules.

For some project types you need to specify additional assemblies to be included (e.g. Windows.winmd for XAML projects). This
can be done in the lower section of the preference page as shown in the screenshot below:

Figure 4.6. C# Profiles Configuration

NOTE

Modifying the content of a profile that is used by the currently opened software system will force a full reparse as soon
as the profile is activated or the changes are applied.

As default, installation profiles are stored in the Sonargraph home directory. These profiles are not intended to be shared. If you
want to share installation profiles across team members, it is recommended to specify a separate directory in the search path that
contains these shared profiles. See Section 4.9, “Search Path Configuration” .

Initial Configuration

21

4.8.1. C# Build Executor Configuration
On Windows: For most accurate results, specify the shell that is used to build the project, e.g. Visual Studio Developer Prompt
or PowerShell. This ensures that the same assemblies (DLLs) are loaded that are also used by Visual Studio. Sonargraph tries to
locate the latest Visual Studio Developer Prompt at startup. If that is not the correct one to be used, the following MSDN page
provides additional information: https://msdn.microsoft.com/en-us/library/ms229859%28v=vs.110%29.aspx You can right-
click on the identified application and open the "save location" where you find the corresponding shortcut file. Right-click again
on that file to open the properties and select the "Properties" tab. The executable can be found in the "Target" text field.

Visual Studio project files (.csproj) for C# projects are processed to examine inter-project dependencies, references to external
assemblies, relevant source files and pre-processor options to be used. If Sonargraph is executed on Windows operating system,
the latest C# installation is determined and MSBuild.exe is located. If this automatically determined executable is not correct,
click on "Detect MsBuild.exe Candidates" to search for further possible executables. On other operating systems the built-in
parser is used per default. If you have xbuild installed (the MSBuild implementation of the Mono platform), define the path to
its executable here.

NOTE

The built-in parser is sufficient for simple Visual Studio project files. But if advanced features are used, e.g. variables
like $(VSInstallDir), user profiles or conditional constructs, you need to use MSBuild or xbuild.

NOTE

A minimum "ToolsVersion" of 4.0 is required. This is fulfilled for Visual Studio 2010 and newer.

Figure 4.7. C# Build Executor

https://msdn.microsoft.com/en-us/library/ms229859%28v=vs.110%29.aspx

Initial Configuration

22

4.9. Search Path Configuration
Similar to a Java classpath, C++ compiler definitions and C# installation profiles are looked-up using search paths. The search
paths contain at least one entry, which is per default located within the Sonargraph user-home directory. Further directories can
be added to the search path that allow to share configurations between users, i.e. if those directories belong to a network drive.
Those directories are searched if the configuration file is not found in the installation-specific directory.

Figure 4.8. Search Path Configuration

Initial Configuration

23

4.10. Python Configuration
Sonargraph supports Python version 3 and higher. To enable the support Sonargraph must know the location of the executable
for the Python interpreter. You can configure that in the "Python Preferences" "section of the Sonargraph preferences dialog.
We also assume that you would use virtual environments for managing project specific dependencies. In that case you should
configure the Python interpreter of your virtual environment in the setting dialog brought up by "System/Configure". In any case
Sonargraph will ensure that your interpreter supports at least Python 3.

Since Python is a dynamic language many dependencies will not be detectable by Sonargraph - everything is an object and typing
information is rarely available. Nevertheless the model will still contain the most relevant dependencies (e.g. object creation,
inheritance, function calls, member access etc.) so that the result is good enough to analyze dependencies and enforce architectural
constraints. Please be sure to read the section about Sonargraph's Python model in the next chapter.

To analyze a Python system with Sonargraph you must execute the following steps:

• Create a new software system by using "File / New / New System..."

• Add a Python module by selecting "File / New / Module / New Python Module...". Usually Python systems only contain a
single module.

• Add the root directory for your Python project by right clicking on the module you created in the previous step and select "New
Root Directory...". If you have more than one source root directory you can add several.

• If you project uses a virtual environment please configure the Python 3 interpreter of this virtual environment via the "System /
Configure..." dialog.

• Save your newly created system.

• Start the parser by clicking on the "refresh" icon (top left icon in the tool bar). The first parser run will always take longer since
we have to parse all the directly and indirectly imported files from the Python library.

• Now you should have a model and you can browse dependencies, metrics and anything else that is contained in the model.

24

Chapter 5. Getting Familiar with the
Sonargraph System Model
The software system is the scope of analysis in Sonargraph . This chapter describes the model used by Sonargraph to represent
a software system based on your code components and elements in order to fulfill different goals regarding the analysis.

5.1. Physical File Structure
The Sonargraph software system is physically represented in the file system by a directory <System-name>.sonargraph that
contains a file named system.sonargraph :

Figure 5.1. Physical File Structure

• system.sonargraph contains all information necessary to parse the code, i.e. the workspace information about modules,
directories, etc. See Section 8.7, “Managing the Workspace” and Chapter 6, Creating a System .

• Analyzers sub-directory contains configuration for code duplication, metric thresholds and which of the Groovy scripts are
executed automatically.

• Models sub-directory contains the virtual model files, i.e. the information about resolutions (todo, ignore, fix) for detected
issues.

• Scripts sub-directory contains the Groovy scripts that allow custom queries.

Analyzer files and scripts are part of the Sonargraph quality model. See Section 6.4, “Quality Model”

5.2. Language Independent Model
The language independent domain model of the system is depicted in the following diagram. Domain models for specific
languages are detailed in subsequent sections. Referenced types that cannot be located in the workspace are put under the
"External" node. External elements are not part of the metrics calculations.

Getting Familiar with the Sonargraph System Model

25

Figure 5.2. System Domain Model

5.3. Language Specific Models
The language specific models are built around the central idea of a component as defined by John Lakos in "Large Scale C++
Software Design": “A component is the smallest unit of physical design.”

They represent specializations of the language independent model elements. Those specializations depend, of course, on the
elements of the language.

5.3.1. Java/Kotlin Model

Sonargraph parses the Java/Kotlin byte code (i.e. the .class files) for the static analysis. For a basic analysis, it is sufficient to
specify the directories where the compiled byte code can be found. For a more advanced analysis like the detection of duplicate
code blocks and the direct navigation to references in the source code, the source root directories are required (recommended).
If the source file is available for a found type (class, interface, ...) the compilation unit is created underneath the corresponding
source root directory. If no source can be found the compilation unit is created under the corresponding directory where the byte
code was found. The following diagram shows the domain model for Java.

Getting Familiar with the Sonargraph System Model

26

Figure 5.3. Java Domain Model

For inner classes and anonymous inner classes the correct nesting of Java compilation units is applied to types and methods
respectively. This is not shown in the diagram for simplicity reasons.

All classes found in the byte code of the specified workspace are part of the system. Classes that are referenced by these classes
but cannot be found in the given root directories are not part of the workspace and appear in the "External" node.

5.3.2. Kotlin Specific Issues
We added support for the JVM version of Kotlin to Sonargraph. There are, however, some issues with the Kotlin support that
cannot be solved easily due to the way Sonargraph analyzes the code. The biggest issue comes from inline functions and methods.
Since Sonargraph is relying mostly on byte code to analyze dependencies you will not see the dependencies at the location where
the code is inlined. In most cases this is not really a serious problem, but you should be aware of this problem. The easiest
way to avoid the problem is limit using inline functions in your code. Most of the time the potential performance gain can be
neglected anyway.

5.3.3. C++ Model
Sonargraph uses the Edison Design Group (EDG) C++ Front End for parsing C/C++ code. The EDG parser must be configured
appropriately in order to simulate your native C++ compiler. The basic domain model for C++ is shown in the figure below.

Getting Familiar with the Sonargraph System Model

27

Figure 5.4. C++ Domain Model

An important difference to the model of other languages is the fact that C and C++ are using header files to declare items and
source files to implement them. Associated header and source files form a logical unit that is called a component in Sonargraph.
In other languages like Java components are always represented by single source files. Sonargraph is able to determine the
components automatically by looking for declares relationships. If a function is declared in header "function.h" and implemented
in a source file "function.cpp" Sonargraph will automatically combine the two into a component called "function". The component
is anchored in the directory of the source file.

It is possible for a component to have more than one header file, if the elements implemented in a source file are declared in more
than one header file. It is also possible for a component to have more than one source file, if the elements declared in a header
file are implemented in more than one source file. It is nevertheless good practice to avoid those situations.

Sometimes it can happen that the automatic creation of components creates overly large components containing unrelated header
and source files. That is usually caused by cross declaration, e.g. a global variable is declared in several unrelated header files. If
you come over a component that contains unrelated source files you can always analyze the situation by opening the "Component
Construction View". To open this view right click on a component in the navigation view and select this view from the context
menu. The view will show a graphical representation of all the declares relationships within a component. Using that view it
should be easy to find the rogue declarations that cause unrelated files to end up in a single component. You fix the problem
by removing the rogue declarations from their header files. Instead you should include the correct header file before using the
declared entity.

Sonargraph will attach a warning issue to components that contain more than one header file so that you can easily find
components that might be containing unrelated source files. If after inspection you come to the conclusion that the source files
in a component are properly related you can ignore the corresponding issue in the issues view (by right clicking on the issue
and selecting "Ignore" from the context menu). Ignoring the issue will hide it from the issues view and also will suppress the
warning marker that was attached to the component.

Sometimes it is also possible that a component only contains a single header file, e.g. when a class has only inline members. In
that case there are situations when it will be impossible for Sonargraph to determine where to anchor such components. To solve

Getting Familiar with the Sonargraph System Model

28

this problem Sonargraph will create an artificial module called "Unbound Components" and anchor the component there. The
user can then right click on such components and select "Assign to module..." from the context menu. After saving the current
system state that decision will be persisted. As soon as the last unbound component has been assigned to a module the artificial
module will disappear.

In the example below for example the component "shared" could belong to "module_a" or to "module_b". Only the user is able
to resolve that.

5.3.4. C# Model
Sonargraph parses the C# source files and relies on the existence of all referenced assemblies. Sonargraph offers C# profiles to
specify the directories where assemblies are located. Types found in these referenced assemblies are put under the "External"
node.

Figure 5.5. C# Domain Model

Getting Familiar with the Sonargraph System Model

29

5.3.5. Python Model

Sonargraph parses the Python source files of your project and all directly and indirectly included files from the Python library
and other third party libraries used by your software system. Since namespaces in Python work quite differently compared to the
other languages supported by Sonargraph we decided that Python modules are considered as namespaces/packages in the logical
model. So in the namespace view your Python modules (i.e. source files) will show up as packages.

For the cycle analyzer that means that Python modules play a double role as "components" and as packages at the same time.
So package cycles can actually contain single Python modules.

When it comes to analyzing dependencies with respect to calling a method of a class that can only be resolved if the class of the
receiver is known at compile time, which usually is only true for calls on "self" and if type hints are available.

5.4. Logical Models
Besides the model that comes from each language-specific parsing process, Sonargraph offers two more models that contain
system-based and module-based logical elements which are calculated based on the physical model. These elements are basically
logical namespaces and logical programming elements and their calculation is explained with more detail below.

Logical Namespaces

To better understand the concept of Logical Namespaces, it is necessary first to take a look at a couple of examples of physical
namespaces:

Figure 5.6. Physical Namespaces

In the image, two source files are displayed, BulkOperationCleanupAction.cs and CollectionAction.cs. The C# parser detects
that below each one of them we have the namespace NHibernate.Action; on the physical level they are both independent and
have no relation. On the logical level on the other hand, the content will look like this:

Getting Familiar with the Sonargraph System Model

30

Figure 5.7. Logical Namespaces

As it can be inferred from the images, Sonargraph maps all physical namespaces that have the same name into a single
logical namespace. This mapping can be system-based or module-based, see Section 5.4.1, “System-Based Logical Model” and
Section 5.4.2, “Module-Based Logical Model” for more information.

Logical Programming Elements

Logical Programming Elements construction from Programming Elements is not as simple as logical namespaces construction
and it is language-specific.

• Java: Logical Programming Elements are mapped 1 on 1 to Programming Elements.

• C/C++: When programming C or C++, there are declarations/definitions for Programming Elements such as classes, structs,
unions, routines, variables and namespaces. In this case, the declaration(s) and definition(s) are mapped into a single Logical
Programming Element. All other Programming Elements that do not follow the declaration/definition approach will be mapped
1 on 1 to Logical Programming Elements.

• C#: Logical Programming Elements are mapped 1 on 1 to Programming Elements except for partial types; in their case, all
partial types that contribute to the same definition are mapped into a single Logical Programming Element.

The construction of Logical Programming Elements can be system-based or module-based, see Section 5.4.1, “System-Based
Logical Model” and Section 5.4.2, “Module-Based Logical Model” for more information.

5.4.1. System-Based Logical Model

After parsing the source files from any language, Sonargraph creates a system-based logical model based on the parser model
which correspond to following diagram:

Getting Familiar with the Sonargraph System Model

31

Figure 5.8. System-Based Logical Model

The system-based logical model is constructed in a way that the mapping from physical elements to logical elements occurs in
the internal and external scopes separately meaning that the following conditions will be met:

• Given a physical element "abc" inside a module of the user code and a physical element "abc" inside the external elements, there
will be a logical element "abc" belonging to the InternalLogicalNamespaceRoot and another logical element "abc" belonging
to the ExternalLogicalNamespaceRoot in the system-based logical model.

• Given a physical element "abc" inside a module X of the user code and a physical element "abc" inside the module Y also
in the user code, there will be a single logical element "abc" belonging to the InternalLogicalNamespaceRoot in the system-
based logical model.

5.4.2. Module-Based Logical Model

After parsing the source files from any language, Sonargraph creates a module-based logical model based on the parser model
which correspond to following diagram:

Getting Familiar with the Sonargraph System Model

32

Figure 5.9. Module-based Logical Model

The module-based logical model is constructed in a way that the mapping from physical elements to logical elements occurs
inside each module and in the external scope separately meaning that the following conditions will be met:

• Given a physical element "abc" inside a module X of the user code and a physical element "abc" inside the module Y also in
the user code, there will be a ModuleBasedLogicalNamespaceRoot X containing a Logical Programming Element "abc" and
another ModuleBasedLogicalNamespaceRoot containing also a Logical Programming Element "abc".

• Given a physical element "abc" inside a module X of the user code and a physical element "abc" inside the external scope,
there will be a ModuleBasedLogicalNamespaceRoot X containing a logical element "abc" and another logical element "abc"
belonging to the ExternalLogicalNamespaceRoot in the module-based logical model.

33

Chapter 6. Creating a System
Basic working units in the Sonargraph workspace are called modules. A system consists of one or several modules representing
the components that your product is made up of. Each module contains one or several root directories pointing out to the source
code or the executable artifacts.

At the menu "File" → "New" → "System" Sonargraph provides different wizards to easily create software systems . You can
either create an empty system and manually add modules to it or use one of the language based wizards.

If you need to have modules from different languages in the same system you can add those of the second language later,
regardless of the type of system you have created. See Chapter 7, Adding Content to a System

All wizards contain a page where you can specify the system's name, a short description for it and the local directory where you
want to create the system. Optionally, you can use a predefined quality model for the new system. See Section 6.4, “Quality
Model”

To create an empty system to which you can add modules later select "File" → "New" → "System" → "New System...". You
will be asked for a system name and a storage directory for the Sonargraph system folder. See Chapter 7, Adding Content to a
System for how to add modules to your system.

TIP

It is always smart to store the Sonargraph folder at the root of your project because its content needs to be added to your
version control system. This folder does not contain any binary files, all content of the Sonargraph system definition is
contained in plain text files, making it easy to track changes.

6.1. Creating a Java System
Sonargraph offers four different methods to create Java systems:

• System based on Java Eclipse workspace: See Section 7.1.1, “Importing Java Modules Using an Eclipse Workspace”

• System based on Java IntelliJ project/file: See Section 7.1.2, “Importing Java Modules from IntelliJ”

• System based on Maven POM file: See Section 7.1.3, “Importing Java Modules from Maven POM File”

• System based on Bazel workspace: See Section 7.1.4, “Importing Java Modules Using a Bazel Workspace”

NOTE

If you plan to use our Eclipse or IntelliJ plugins, place the Sonargraph system in a directory that is parallel to your
modules and not part of any of your Eclipse or IntelliJ modules. Otherwise executing Sonargraph refactorings might
easily corrupt the system's information, if the Sonargraph files are not excluded from modifications during refactoring
execution.

6.2. Creating a C# System
You can import directly from a Visual Studio solution file. After that you can even add additional modules from .csproj files
or another solution file.

6.3. Creating C/C++ Systems
Creating a C/C++ system is a bit more complex than creating a system for other languages. First we need to select or create a
compiler definition. Then we need to define the required include directories for each module as well as the macro definitions

Creating a System

34

required for conditional compilation. Sometimes it is also necessary to exclude certain compilation units from modules. The
"Create New C/C++ System..." wizard gives you maximum flexibility to specify all that. But if you use CMake or Visual Studio
you can also import the system more conveniently.

The first page of each C/C++ system creation wizard will allow you to select an existing compiler definition or create a new one.
If you decide to create a new compiler definition the next wizard pages will guide you through this process step by step.

If you use the "Create New C/C++ System..." wizard please make sure to select the root directory of your system as the storage
location for the Sonargraph folder. Only source files located directly or indirectly under this directory can be added to the system.
The wizard will scan all files under this directory for "#include" statements and will try to locate the referenced include files. The
scanner does NOT consider conditional compilation, so you might see lots of irrelevant unresolved include references that you
can ignore safely. By adding additional include folders you can make sure that all relevant include references can be resolved.

Here are the other wizards to create new C/C++ systems:

• System based on C/C++ CMake JSON command file: Allows to create a system out of a generated compile command
JSON file.

Name your new system and choose a directory to store it. In the next wizard page you need to choose the location of your JSON
command file. To generate such a file you need to run cmake with -DCMAKE_EXPORT_COMPILE_COMMANDS=ON.

The next wizard page presents the root directories found in the JSON file and allows you to fine tune those directories and sub-
directories you want marked as root directories or excluded in the resulting system. You need to mark at least one root directory:

Figure 6.1. Marking root directories from JSON file

The final page of the wizard allows to give a name to each one of the modules that will be created out of the root directories
marked in the previous step. Sonargraph will try to guess a module name out of the root folder name. You are able to change
that name if it should not fit.

Creating a System

35

Figure 6.2. Naming modules for root directories from JSON file

• System based on C/C++ Makefile command capturing files: Allows to create a system using make generated capturing
files. See Section 7.2.2, “Importing C++ Modules Using Make Command Capturing Files”

• System based on Sotograph command capturing file: Allows to create a system using a Sotograph command capturing file.

• System based on C/C++ Visual Studio 2010 (or newer) Solution file: See Section 7.2.1, “Importing C++ Modules from
Visual Studio Files”

Most wizards are similar whether you create a new system or add modules to an existing system.

6.4. Quality Model
Sonargraph defines a "Quality Model" as a group of settings and files aimed to help you getting started with your code analysis.

The components of the quality model are displayed in the Files view. See Section 8.6, “Managing the System Files”

When creating a new system you can optionally use one the pre-defined quality models that ship with Sonargraph . The default
quality model suggested depends on the type of system you want to create: If you are creating a system manually, you get the Core
quality model suggested, which contains language-independent settings and scripts. If you are creating a new software system
using one of the language-based wizards, you will get a quality model customized to the corresponding programming language.

Figure 6.3. New System with Quality Model

Creating a System

36

You can include or exclude quality model elements as you see fit for each project.

6.4.1. Importing a Quality Model
You can import an external quality model file, generated with a different installation of Sonargraph into the current software

system via the menu "File" → "Import Quality Model" .

Figure 6.4. Import Quality Model

Check "Discard current content" if you want to delete all the configurations and scripts currently loaded and start afresh with
the imported quality model elements.

NOTE

If don't discard your current content, quality model elements with equal names will still be overridden by the incoming
elements!

6.4.2. Exporting a Quality Model

To export the currently used quality model select "File" → "Export Quality Model" :

Figure 6.5. Export Quality Model

Select the quality model elements to be included in the resulting file with .sgqm extension.

37

Chapter 7. Adding Content to a System
Sonargraph supports both the manual creation of programming language specific modules and the usage of external sources like
Eclipse or IntelliJ workspaces, Visual Studio solution or project files to setup the workspace automatically.

The following sections describe the different ways you can add content to a software system.

7.1. Creating or Importing a Java Module
After a software system has been created, there are currently several ways to set up Java modules: Importing modules from an
Eclipse workspace, from an IntelliJ project folder or file, from a Maven POM file, from a Bazel workspace, and manually.

7.1.1. Importing Java Modules Using an Eclipse Workspace
You can import Eclipse projects as modules into an existing Sonargraph project or while creating a new system.

To import Eclipse projects as modules directly into an already existing Sonargraph project use "File" → "New" → "Module"

→ "Java Modules from Eclipse Workspace" .

Select the location of the Eclipse workspace you want to import projects from. You can choose those projects and root directory
paths that should be imported and those that should not. The imported Eclipse projects become modules in the Sonargraph
workspace.

Figure 7.1. Importing Java Modules Using an Eclipse workspace

Sonargraph will let you know about content that is already in the software system , empty or irrelevant directory paths and
dependencies between modules.

7.1.2. Importing Java Modules from IntelliJ

Adding Content to a System

38

You can import IntelliJ modules into an existing Sonargraph project or while creating a new system.

To import IntelliJ modules directly into an already existing Sonargraph project use "File" → "New" → "Module" → "Java
Modules from IntelliJ project/file"

Figure 7.2. Importing Java Modules from IntelliJ

Select either the IntelliJ project or file to import content from. Or select a directory to scan for IntelliJ module files. Then you
can choose those projects and root directory paths that should be imported and those that should not.

Sonargraph will let you know about content that is already in the software system, empty or irrelevant directory paths and
dependencies between modules.

Adding Content to a System

39

7.1.3. Importing Java Modules from Maven POM File

Sonargraph supports importing content from projects based on versions 2 and 3 of Maven. Select the wizard at "File" → "New"

→ "Module" → "Java Modules from Maven POM file"

Figure 7.3. Importing Java Maven Modules

Select the Maven POM file you want to use as source for the modules of the new project. You can optionally choose to import
test code referenced by the POM file and include modules defined for Maven profiles.

Sonargraph reads the global Maven settings file from ${M2_HOME}/conf/settings.xml. If ${M2_HOME} does not exist the
configuration is read from ${maven.home}/conf/settings.xml.

M2_HOME or maven.home is an environment variable referencing the local Maven installation directory.

M2_HOME or maven.home must be set before Sonargraph is started.

Sonargraph reads the user specific Maven settings file from ${user.home}/.m2/settings.xml

user.home is a system property already set by the JVM to the home directory of the user.

See Online Maven Settings Reference for more details.

NOTE

Changes to the configuration of the global and user settings.xml are persisted in your user preferences. Clearing the
paths is not persisted.

You can decide to remove both the global and user settings.xml for the import if all required information is contained
in the imported Maven POM.

NOTE

If your Maven build uses Tycho, this importer tries to get source and class directories from build.properties files.

https://maven.apache.org/settings.html

Adding Content to a System

40

7.1.4. Importing Java Modules Using a Bazel Workspace
You can import a Bazel workspace as a single module, or multiple modules (per Bazel build file, or per Bazel rule), into an
existing Sonargraph system or while creating a new system.

NOTE

For the Sonargraph Bazel import to work, a 'bazelisk' or 'bazel' executable must be found either in Bazel's workspace
root directory, or on Sonargraph's path.

Required Bazel version is 2.0.0 minimum.

Supported 'bazel rules' are 'java_binary', 'java_library', and 'java_test', others may be added in the future.

To create a new Sonargraph system from a Bazel workspace as a single module, or multiple modules, use "File" → "New" →
"System" → "New Java System Based On Bazel Workspace" .

To import a Bazel workspace as module(s) directly into an already existing Sonargraph system use "File" → "New" → "Module"

→ "New Java Module(s) Based On Bazel Build Files" .

To import a single Bazel build file as a module directly into an already existing Sonargraph system use "File" → "New" →
"Module" → "New Java Module(s) Based On Bazel Workspace" .

Select the location of the Bazel workspace you want to import modules from. Decide first if you want to import the whole
workspace as a single module, or as multiple modules. For multiple modules it is possible to use either the bazel output jars, or
the directories as Sonargraph root paths.

Figure 7.4. Importing Java Modules Using a Bazel workspace

Adding Content to a System

41

Sonargraph will let you know about content that is already in the software system , empty or irrelevant directory paths and
dependencies between modules.

Adding Content to a System

42

7.1.5. Creating a Java Module Manually

Select "File" → "New" → "Module" → "Java Module" . Alternatively, the context menu in the Navigation and Workspace views
can be used.

Sonargraph relies on the Java byte code for its static code analysis. For the ability to show dependencies in the source code,
the source directories must be provided as well. Source Root Directories and Class Root Directories can be added individually
using the corresponding context menu entries.

Alternatively, a dialog is available via the context menu "Manage Java Source/Class Root Directories/Archives..." that allows
the automatic detection of Source and Class Root Directories. The detected directories can be assigned to Java Modules via drag
and drop.

Figure 7.5. Manage Root Directory Path

Adding Content to a System

43

7.2. Creating or Importing a C++ Module
After a software system has been created, there are several ways to set up C++ modules: Import from a Visual Studio 2010 Project
file (.vcxproj), import via Makefile command capturing files or manual module creation.

7.2.1. Importing C++ Modules from Visual Studio Files

Via the menu entry "New" → "Module" → "C/C++ Module from Visual Studio Project file" a C++ module can be created based
on a .vcxproj file. Select the project file and the required configuration. The same approach applies for creating a system based
on a Visual Studio Solution file (.sln) as shown in the following screenshot:

Figure 7.6. Create C/C++ System Based on Solution File Import

7.2.2. Importing C++ Modules Using Make Command
Capturing Files

Select "New" → "Module" → "C/C++ Modules from Make command capturing files"

You will have to do a complete rebuild of your system while passing a special shell to the 'make' command. The special shell will
create raw files named 'h2m-capture.txt' for each 'Makefile' that executes compile commands during the make process. These
files contain a complete list of the compile commands and are used to extract the right options for the C/C++ parser. Sonargraph
will then translate these files into files named 'h2m-capture-rel.txt' Do not delete the translated capturing files, instead add them
to your version control system. They are used each time Sonargraph opens your system. If you change options or add or remove
files from your build you have to repeat the capturing process. Please note, that your top level 'Makefile' must be either in the
same directory as the Sonargraph system or in a sub-directory of that directory. Here are the commands you need to execute on
the level of your top-level 'Makefile':

Adding Content to a System

44

Example 7.1. Command Capturing Process

 SG_DIR=<replace with Sonargraph installation directory>
 $SG_DIR/bin/h2mcs clean
 make clean
 make <optional-targets> SHELL=$SG_DIR/bin/h2mcs

After executing those commands you should find 'h2m-capture.txt' files in the relevant project directories. 'make clean' can be
replaced with another command you use to force a complete rebuild of your system. On Windows platforms the capturing process
currently only works in combination with Cygwin.

Once the 'h2m-capture.txt' files you can import then into the wizard by clicking the "Collect Capturing Files" button on the
capturing wizard page. The next pages work just like the other wizards. You select root directories and then assign them to
modules.

7.2.3. Creating a C++ Module Manually

Via the menu "New" → "Module" → "New C/C++ Module(s)" plain C++ modules can be created. The wizard will guide you
through the process and will allow you to select root directories and assign them to new modules. You can also specify extra
include directories and macro definitions for conditional compilation.

NOTE

The Sonargraph folder must be stored in the root directory of your system. You can only add modules that are located
under this root directory.

7.2.4. C/C++ Module Configuration

For configuration of additional compiler options, select the menu entry "System" → "Configure C/C++ Module(s)..." . This
dialog allows to configure options using Groovy templates. You can define system wide options and/or module specific options.
System wide options will be applied to all modules. You can also define options that are not specific to any compiler by selecting
"Any Compiler" from the compiler definition drop down list. The effective options for a module are the system wide options
for "Any Compiler", then the system wide options for the active compiler, then the module specific options for any compiler
followed by the module specific options of the active compiler.

Adding Content to a System

45

Figure 7.7. C/C++ Module Configuration

TIP

The compiler options can be verified via the menu "System" → "Execute C/C++ Preprocessor". This is usually seven
times faster than a full refresh. Problems of the preprocessor are reported in the "C/C++ Parser Log" view.

Adding Content to a System

46

7.3. Creating or Importing a C# Module
After a software system has been created, there are several ways to set up C# modules: Import from a Visual Studio Project file
(.csproj), import from a Visual Studio Solution file (.sln) and manual module creation.

7.3.1. Importing C# Modules Using a Visual Studio Project File
You can import C# modules from a Visual Studio project file either when creating a new system using the corresponding wizard

or selecting "File" → "New" → "Module" → "C# Module from Visual Studio Project file" if you want to add a module to an
existing system.

Select the .csproj file and adjust the configuration and platform combination if necessary.

7.3.2. Importing C# Modules Using a Visual Studio Solution
File
You can import C# modules from a Visual Studio solution file either when creating a new system using the corresponding wizard

or selecting "File" → "New" → "Module" → "C# Module from Visual Studio Solution file" if you want to add modules to an
existing system.

Select the location of the solution file (.sln) or solution filters file (.slnf) to have Sonargraph search for projects to import. Select
your preferred configuration and platform combination.

7.3.3. Creating a C# Module Manually

Via the menu entry "File" → "New" → "Module" → "C# Module" a plain C# module can be created. The next step is to define

the source root directories via the context menu in the Workspace view or via the menu "File" → "New" → "Root Directory" →
"New Root Directory..." . See Section 8.7.1, “Definition of Filters, Modules and Root Directories” for more details.

7.3.4. C# Module Configuration
After creating a C# system or creating modules, it might happen that some referenced assemblies cannot be resolved. The
following screenshot shows how these errors are displayed in the Issues view.

Figure 7.8. Missing C# Assemblies

Before the system can be parsed, the errors need to be resolved.

First, make sure that you are able to build the project locally on your system with your usual build system. If you are using MSBuild
or xbuild, check the preferences for the build executor as described in Section 4.8.1, “C# Build Executor Configuration”. For
those two executors, Sonargraph starts them as external process to extract all required info. This should be sufficient for most C#
project types. If assemblies are missing, specify their paths on the installation profile level. See Section 4.8, “C# Configuration”.

Search paths for missing assemblies can be added using the menu entry "System" → "Configure C# Module(s)..." . Preprocessor
symbols and external alias are read-only for imported modules.

Adding Content to a System

47

Figure 7.9. C# Module Configuration

Modules that contain unresolved references to assemblies are marked with "(!)". If a module is selected in the treeview on the
left side, all referenced assemblies are shown with their paths on the right. Assemblies marked as "(virtual)" are referenced
by the module indirectly (mscorlib.dll, System.dll, System.Core.dll): The reference is not present in the C# project file but is
automatically added.

The lower part shows the paths that are used to locate referenced assemblies. The search path is constructed and searched in
the following order:

1. The directories defined on module level.

2. The directories of referenced installation profiles on module level.

3. The directories defined on system level.

4. The directories of referenced installation profiles on system level.

If you have already defined installation profiles as described in Section 4.8, “C# Configuration” , you can add them as references
by selecting "Profiles...". Or you can add individual directories via "Directories...".

You can also let Sonargraph search for assembly directories. Open the dialog via the button "Manage Assembly Directories..."
and specify a directory where the search is started. Found directories can be assigned to either the system or module profiles
by dragging them from left to right.

Adding Content to a System

48

Figure 7.10. Locate Missing C# Assemblies

WARNING

Sonargraph does not support different versions of core assemblies (mscorlib, System, System.Core) to be used within
the same software system. The easiest way to ensure that all modules use the same framework assemblies, assign the
required installation profiles on system level. All modules will then use the same folders to look-up assemblies.

NOTE

Assembly dependencies are automatically determined and located by MSBuild or xbuild executors. If MSBuild or
xbuild is configured as the build executor (see Section 4.8.1, “C# Build Executor Configuration”), missing assemblies
need to be added on system or installation profile level (see Section 4.8, “C# Configuration”). Any additional assembly
directories on module level are ignored.

NOTE

If your project does not reference external assemblies explicitly (e.g. for "Windows Store App" projects), references
pointing to .NETCore libraries are automatically loaded from .NETFramework folder, to avoid clashes with assemblies
that are referenced explicitly by other projects contained in the same system. This can lead to parser warnings, because
some external types or methods might not be present in the .NETFramework assemblies.

Adding Content to a System

49

7.3.5. C# MSBuild Configuration

NOTE

Sonargraph does not change or build your code! Before you analyze any C# project in Sonargraph, make sure that you
can successfully build the project using Visual Studio.

Sonargraph examines the registry on a Windows machine at startup to locate the latest Visual Studio version and to extract the
information to run MSBuild on the latest "Visual Studio Developer Command Prompt". See Section 4.8.1, “C# Build Executor
Configuration” for more details. Sonargraph tries its best to extract all required information about project references, referenced
assemblies, defined constants, etc. from the .csproj files. As the project setup can get elaborate with variables and conditions, the
invocation of MSBuild with an on-demand created small wrapper project file leads to the most precise results.

Unfortunately, the invocation of MSBuild for individual projects from the command-line does not necessarily lead to the same
results as building the project in Visual Studio. If MSBuild reports an error, the project file is processed with the limited built-in
XML parser and an issue is created for the module. The state of the MSBuild execution per module can be examined by opening

the configuration dialog via "System" → "Configure MSBuild...". The dialog indicates problematic modules with an error marker
and reports the last time of the MSBuild execution as well as the command-line that was used by Sonargraph and the error output
of MSBuild as shown in the following screenshot:

Figure 7.11. Configuration of MSBuild

In case of an error, MSBuild usually reports the exact location in the .csproj file as highlighted in the above screenshot. The
Visual Studio project can be easily opened via the provided link at the top of the dialog. Often, a variable is undefined that is

Adding Content to a System

50

present when the project is built in Visual Studio. Variables can be defined in the format '/p:name=value'. Those variables can
be defined on different levels and can override each other (module-level overrides system-level overrides installation-level):

1. Module: The variables are only present for the currently selected module.

2. System: The variables are present for all C# modules that are based on Visual Studio project files.

3. Installation: The variables are present for all Sonargraph systems that contain C# modules that are based on Visual Studio
project files.

The changed configuration of MSBuild can be tested per project on the dialog. The configurations are persisted to sonargraph-
msbuild.properties files that can be put under version control if the configuration is applicable for all team members.

TIP

Information about MSBuild properties and command-line options is available on the internet:

• MSBuild reserved and well-known properties

• Common MSBuild project properties

TIP

To investigate the property values that are used by Visual Studio, the output-level of MSBuild needs to be set to

"diagnostic". In Visual Studio 2017, this is done via the menu "Tools" → "Options", and then filter for "Build". The
MSBuild output verbosity can then be set on the right, as shown in the next screenshot:

Figure 7.12. Setting the MSBuild Verbosity Level in Visual Studio

https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-reserved-and-well-known-properties?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/msbuild/common-msbuild-project-properties?view=vs-2019

Adding Content to a System

51

If the project is now rebuilt, MSBuild logs a ton of information to the console that can be searched for the relevant
property.

In order to compare the detailed output from Visual Studio with the environment info that is seen by the MSBuild
executed by Sonargraph, add the following two lines as module-level properties. The information is logged in this case
to the file "D:\temp\MyLog.log".

/fileLogger
/fileLoggerParameters:LogFile=D:\temp\MyLog.log;Verbosity=diagnostic;Encoding=UTF-8

More info about possible log generation is available on the official MSBuild documentation: MSBuild command-line
reference

7.3.5.1. C# MSBuild Problems and Solutions

This section lists solutions for some known MSBuild problems.

Error MSB4019: The imported project 'XYZ' was not found

Please check how the path of the imported project file is defined in the .csproj file of the module. It is often defined conditionally
based on the existence of variables as shown in the following excerpt (line-breaks have been inserted for better readability):

<PropertyGroup>
 <VisualStudioVersion Condition="'$(VisualStudioVersion)' == ''">10.0</VisualStudioVersion>
 <VSToolsPath Condition="'$(VSToolsPath)' == ''">
 $(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v$(VisualStudioVersion)
 </VSToolsPath>
</PropertyGroup>
<Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />
<Import Project="$(VSToolsPath)\WebApplications\Microsoft.WebApplication.targets"
 Condition="'$(VSToolsPath)' != ''" />

If in this case the property "VisualStudioVersion" is not present, then the default value "10.0" is used to create the value for
"VSToolsPath". This in turn is used in this case for the import of "Microsoft.WebApplication.targets".

If Sonargraph determined an incorrect "VisualStudioVersion", please provide this as an additional property, e.g. "/
p:VisualStudioVersion=14.0". User-defined properties will be appended and thus override properties defined prior by
Sonargraph.

'XYZ' was unexpected at this time.

If there is no MSBuild error message but a rather cryptic message about "... was unexpected at this time.", then this indicates
that the Visual Studio Command Prompt could not be started. This is likely due to quotation marks in the PATH environment
variable. See Visual Studio 2010 command prompt not working for details.

Error MSB4041: The default XML namespace of the project must be the MSBuild XML
namespace.

This error usually indicates that the version of MSBuild that is used by Sonargraph is too old to process the Visual Studio
project files. Check in the C# preferences that the Visual Studio Command Prompt and the MSBuild executable are pointing to
sufficiently recent versions (see Section 4.8.1, “C# Build Executor Configuration”).

Error NETSDK1005: Assets file 'project.assets.json' doesn't have a target for 'XYZ'.

This error usually indicates that 'restore' needs to be executed. Add the additional option '/restore' to the System-level
configuration.

https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-command-line-reference?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-command-line-reference?view=vs-2019
https://social.msdn.microsoft.com/Forums/vstudio/en-US/56bdd445-adc6-46ab-a383-6714bdb2030d/visual-studio-2010-command-prompt-not-working?forum=vssetup

52

Chapter 8. Interacting with a System
This chapter describes how the views of Sonargraph can be used to interact and explore a system and conduct basic use cases
like examining duplicates and cyclic dependencies. More advanced functionality like adding custom metrics or defining an
architecture are explained in their own chapters.

8.1. User Interface Components
This chapter describes different graphical components of the main application window and additional frequently used
components.

8.1.1. Menu Bar
Contains menu entries that allow the execution of system-wide actions or commands that are applicable for the current selection;
the meaning of the categories is the following:

• File: Contains commands for creating, loading and saving systems as well as exporting or importing Quality Models (See
Section 6.4, “Quality Model”), creating Microsoft Excel, HTML and XML reports.

• Edit: Contains commands for undoing and redoing the last performed operations, editing and deleting components and perform
system-wide searches.

• System: Contains commands that allow re-reading the current system from the disk (and re-checking it), perform system
configuration and changing language specific module settings such as where source and compiled files are being searched for.

Additional entries allow creation of fix, ignore or TODO issues.

• Window: Provides access to the different views of Sonargraph and the preference pages to modify installation-wide settings.

• Help: This menu provides access to the online and dynamic help, allows management of license information, allows to send
feedback to the Sonargraph developers and provides general information about the installation.

8.1.2. Tool Bar

Figure 8.1. Tool Bar

Allows to access the most common operations. It is always visible regardless of the active view. It offers the following actions:

• Refresh : If there is currently no representation of the system in memory it performs a full parse. If the model exists, it
performs a "delta refresh" to update the in-memory content with the latest state from the disk. The synchronization of the
model with the disk content is normally not done automatically on startup, because this can take a considerable amount of
time. However, it can be specified that on opening the software system, a synchronization should be performed automatically

by checking the menu item "System" → "Refresh On Open" .

• Clear : Drops the memory representation of the system under consideration. After performing this action a full parse of
the system is required to resume with the analysis.

• Navigate Backward/Forward : Allows to navigate backward and forward in the history of recently performed actions
across the application.

• Manage Virtual Models : Allows to change the current virtual model or create a new one.
(See Section 9.1, “Using Virtual Models for Resolutions”)

Interacting with a System

53

8.1.3. Notifications Bar

Figure 8.2. Notifications Bar

The notification area is located in the bottom area. It informs about the current operation being performed with both a text
feedback and a progress bar. On right side, you find notifications about different situations going on in the application that may
be of interest to you such as proximity of license or support expiration date and proximity to reaching the limit of available
elements per the active license. Specifically:

• The icon indicates that there is at least one information notification available.

• The icon indicates that there is at least one warning notification available.

• The icon indicates that there is at least one error notification available.

• The icon indicates that there are no notifications available at this time.

To bring up notifications just click once on the icon.

8.1.4. Tables
Tables of views that potentially display huge amount of data like the Issues view can be filtered. To bring up the text filter as
shown in the screenshot below, use the key combination Ctrl+Shift+f . A row containing the text in any table cell will be shown.
Pressing Return activates the filter, pressing Escape clears it and displays again all items. A yellow background indicates if
any elements are filtered. Most tables can also be sorted by clicking on their column headers.

Figure 8.3. Table with activated text filter

Interacting with a System

54

8.2. Common Interaction Patterns
The following interaction patterns (called gestures) are common across the Sonargraph application:

• Single clicking on an element normally means to select it; holding the control key (command key on Mac) while clicking
normally aggregates the selection elements, and holding the SHIFT key normally selects all elements between the current one
and the last selected one.

• Double clicking not only selects the element but, if possible, shows it in a view that is best suited to inspect it or edit it. It is
important to note that a double click gesture will show the selected element in another view only if at least one of the following
two conditions is fulfilled:

• Element is associated with a single source file: Elements like C/C++, Java and C# source files, types, structs, methods, and
functions among others fulfill this conditions. For other elements like namespaces, packages or directories it is not possible
to associate them with a single source file.

• There is a single possibility of navigation: If the selected element only offers one view to navigate to, then the double-click
gesture will show the element in that view, otherwise, it will not meet this condition.

• Right clicking on elements normally presents a context menu with element-specific actions. Some of the most common
interaction patterns available with right-click are showing elements in different views, exporting tables to Excel and exporting
graphics as images to the file system among others.

• Drag and drop is used in several different contexts in Sonargraph to perform different operations: filters can be re-organized
in the Workspace view. Nodes can be re-arranged for better appreciation in the Graph and Cycle views while holding the
SHIFT key pressed. Dragging and dropping the mouse cursor while holding the SHIFT key and the primary modifier key of
the platform (CTRL on Windows/Linux and CMD on Mac) pressed in the Workspace Dependencies view allows to specify a
new dependency between two nodes (see Section 8.7.2, “Managing Module Dependencies”).

8.2.1. Special Graphic Elements Decorations

Across the Sonargraph is common to find two decorations:

• * : A star behind the name of an element means that the description of such element has been changed locally but not yet saved
to disk: The in-memory representation and the disk representation of the system are not identical.

• ! : An exclamation mark behind the name of an element generally means that this element needs your attention or requires
you to take some action on it.

8.3. Sonargraph Workbench
The default workbench of Sonargraph is divided into 4 regions. However, as Sonargraph is built upon Eclipse's Rich Client
Platform you can always re-arrange views as you like.

The following image shows these regions and the subsequent sections explain each one of them:

Interacting with a System

55

Figure 8.4. Sonargraph Workbench

1. Master Views: Located at the upper left hand side of the workbench, provide control over the system structure and the files
that make it up. All Master views offer the following operations:

• Collapse All : Collapses the whole tree of elements.

• Link : Selecting it specifies if the selection in the current Master view should be synchronized as far as possible with
the selection in the currently selected Slave view.

The Navigation and Namespaces views offer a "View Menu" option which can be used to specify whether the elements of the
tree are to be displayed in a flat mode or in the hierarchy induced by their dot-separated full paths. Exclusive to the "View
Menu" option of the Namespaces view is the possibility to choose between system-based or module-based representations.

2. Slave views: Located at the upper right-hand side of the workbench provide ways to manage and explore the components of
the system under consideration. The slave views have the capability of responding to selection from the master views.

3. Auxiliary views: Located at the lower right-hand side of the workbench, provide support to some of the slave views to expand
their system exploring capabilities.

4. Information views: Located at the lower left hand side of the workbench, they provide general information about the
properties of the selected elements and the status of the analyzers running over the system model.

Interacting with a System

56

8.4. Navigating through the System Components
The Navigation view presents the directory -or archive- structure of the source and/or binary files of the loaded system as it has
been determined from the workspace defined for the modules of the system.

Figure 8.5. Navigation View

The context menu interaction gives you options to inspect elements in suitable slave views or perform element specific actions
such as creating a TODO task (see Section 9.4, “Defining Fix and TODO Tasks”).

Interacting with a System

57

8.5. Exploring the System Namespaces
In order to be able to see and explore the logical models calculated by Sonargraph (See Section 5.4, “Logical Models”), users
can rely on the Master view called Namespaces view.

Figure 8.6. Namespaces View

As shown in figure “Namespaces View” , the logical elements that appear in Namespaces view also offer interactions for
exploration and source code visualization when it is the case.

This single view provides access to both system-based and module-based logical models. To choose which logical model you
want to see, use the view menu:

Figure 8.7. Logical Model Selection

Besides choosing which logical model to see, the Namespaces view also offers the possibility to change the logical namespaces
presentation from flat to hierarchical and vice versa.

Interacting with a System

58

8.6. Managing the System Files
The Files view represents the structure of the files that make up the current software system .

Figure 8.8. Files View

Those files are:

• System File: Named as "system.sonargraph", represents the current software system.

• Analyzers: Contains available configuration files of analyzers. A double click opens the corresponding configuration page.

Alternatively the configuration pages are reachable via "System" → "Configure...".

• Architectural Views: Contains architectural view models.

• Architecture: Contains architecture files. A new architecture file can be created using the context menu of the "Architecture"
folder. Existing architecture files can be added/removed from the architecture check also via their context menu.

• Dashboards: Currently, the file underneath is not modifiable and the content shown in the System view is fixed. In the future,
the content displayed in the System view will be configurable.

• Models: Contains virtual models of the current software system (see Section 9.1, “Using Virtual Models for Resolutions”).
These files only get modified when altering the set of resolutions and/or refactorings.

• Plugins: Contains plugin configuration files.

• Scripts: Contains scripts that can be executed for the current system. Those scripts have been added by either using a quality
model (see Section 6.4, “Quality Model”) or they have been created manually (see Chapter 16, Extending the Static Analysis).

• Settings: Contains language specific settings.

• Workspace: Contains workspace profiles.

Interacting with a System

59

The files presented in the Files view get a star symbol (*) when they are modified as explained in Section 8.2.1, “Special Graphic
Elements Decorations”

8.7. Managing the Workspace
The Workspace is a key concept in order to be able to set up and manage correctly a Sonargraph software system . Depending
on the workspace definition, Sonargraph will be able to detect the source files (and class files when applicable) that will be used
as input for the parsing process and generation of the domain models.

8.7.1. Definition of Filters, Modules and Root Directories
The Sonargraph workspace consists of the following elements that can be managed via the Workspace view:

• File Filter: Can be used to completely exclude files from being added to the model. The matching is based on the relative path
of Sonargraph input files. This works in contrast to the Production Code Filter which includes the elements in the model, but
explicitly marks them as excluded. As an example lets assume you do not want "dontLookAtMe.cpp" to be parsed and added to
the model. That can be achieved by adding the following exclude pattern: "**/dontLookAtMe.cpp". The filter matches against
the value of the property 'Identifying Path' shown in the Properties view for the selected element.

• Production Code Filter: Is used in order to exclude test code from the analysis. The filter is component based and processes all
internal components. External components for which all incoming dependencies come from excluded internal components are
also marked as excluded. Outgoing dependencies from non-excluded internal components to internal excluded components
are marked with the issue 'Dependency to Excluded Internal Component'. This might indicate a problem since non-test code
should not reference test code. The filter matches against the value of the property 'Workspace Filter Name' shown in the
Properties view for the selected element.

• Issue Filter: Is used in order to exclude portions of the code to no longer generate analysis issues (e.g. cycles, threshold
violations, duplicate code block issues, ...). This is useful in case you have legacy or generated code that you are not able to
adapt or don't want to adapt. The filter is also component based and processes all internal non-excluded components. The filter
matches against the value of the property 'Workspace Filter Name' shown in the Properties view for the selected element.

NOTE: Parser issues and architecture violations cannot be filtered.

• Module: Is the top-most element and the root container for all the user-defined elements of a Sonargraph software system .
Modules are equivalent to Eclipse projects, Maven modules, Visual Studio projects or IntelliJ projects and they contain at
least one Root Directory Path.

• Root Directory Path: Corresponds to a location on the user's file system and is the top-most directory where the search for
source files (and class files when applicable) will take place.

• External: Is the root container for elements that are used from within the user code but do not belong to any of the modules
of the software system .

Figure 8.9. Workspace View

Interacting with a System

60

What you need to know about the Workspace Filter: The workspace filter works best when used with source file based analysis
(i.e. C,C++ and C#). When analyzing Java .class and .java files are parsed. So special care must be taken to exclude .java files and
the corresponding .class files. Since using the Production Code Filter has the added benefit of detecting unwanted dependencies
from test to production code you should prefer the usage of the Production Code Filter.

What you need to know about the Production Code and Issue Filter:

• The filters use the 'Workspace Filter Name' of the components to produce matches with include and exclude patterns. The
'Workspace Filter Name' can be found in the Properties view when selecting a component. The name has the following
structure: [Module]/[Root Directory]/[Physical Path]/[Component name without extension]. The name 'Events/src/com/app/
events/Event' would refer to the component 'Event' in the directory 'com/app/events' in the root directory 'src' in the module
'Events'.

• The patterns support the following wildcards: ?=any character, *=any sequence between dots or slashes, **=any sequence.
Both filters have a built-in '**' include pattern. So it might be enough to add exclude patterns. If needed you can define your own
include patterns (disabling the built-in one). The include pattern(s) define which components pass and the exclude pattern(s)
subtract from that set.

• With the Search dialog you can check which programming elements have been excluded and which ones are ignoring issues.

To bring it up select "Edit" → "Search..." .

As seen in the previous image, the Workspace view offers interactions to create, edit and delete the workspace elements if
necessary.

8.7.2. Managing Module Dependencies

Dependencies between modules that have either been defined manually or that have been generated automatically during the
import/synchronization with external project files are visualized in the Workspace Dependencies View. It is important to note
that if the Workspace Dependencies were calculated by the software system as a result of the synchronization process, it is not
possible to modify them, nor delete or add more dependencies.

When Workspace Dependencies can be added manually, a dependency between modules might be created by pressing SHIFT
and the primary modifier key of the platform (CTRL on Windows/Linux and CMD on Mac) and dragging a line with pressed
left mouse button from source to target module.

Figure 8.10. Defining a Manual Workspace Dependency

Similarly, if Workspace Dependencies are manually defined, they can also be deleted via context-menu or double-click
interactions.

Interacting with a System

61

Figure 8.11. Defining a Manual Workspace Dependency

8.7.3. Creating Workspace Profiles for Build Environments

Workspace profiles help to solve the following problem for Java systems: If a workspace has been set up using for example
an Eclipse workspace import, these root directories likely do not exist on the build server but only on a developer's machine.
(Integration of Sonargraph-Build on the build server is described in more detail in the user manual of Sonargraph-Build.) In
order to run the same checks with Sonargraph on the build server, a workspace profile defines transformation of root directories.
Currently this applies only to Java class root directories. The transformation is done using an arbitrary number of profile patterns
that consist of regular matchers and replacement expressions. The profile name can then be applied in the Sonargraph-Build
configuration.

Each profile pattern consists of three parts:

1. Module name matcher: Regular expression matching module names. Only if this pattern matches, the module's root path
will be applicable for transformation by this profile pattern.

2. Root path matcher: Regular expression matching against the identifying path of roots of the matched module.

3. Root path replacement: This pattern defines the new path that will be used to create a new root directory for this module and
replace the existing path. Capturing groups that are used in the module name and root path matchers are accessible.

The two matchers are logically combined, so the capturing groups' indices of the root path matchers do not necessarily start at
1, but depend on the number of capturing groups in the module name matcher. Alternatively, named capturing groups can be
used, as illustrated in the following example:

Let's assume that every module of the system has the same layout and has a root path with the identifying path "./target/classes",
but you need to map that path to "./target/<module_name>-0.0.1-SNAPSHOT.jar". The three parts that make up the profile
pattern can be defined as shown in the following screenshot. A detailed explanation is given below the screenshot.

Interacting with a System

62

Figure 8.12. Creating Workspace Profile

1. Module name matcher: "(.*:)*(?<module>.*)" - This regular expression matches all module names and keeps the module
name in a named capturing group "module" that allows re-using the module's name for the JAR file. If the module has been
created by a Maven import and the name matches the schema groupId:artifactId, the groupId will be omitted by the first
optional capturing group.

2. Root path matcher: "(?<path>.*/target)/.*" - This regular expression matches against the identifying path of roots of the
matched module. The part that needs to be re-used is made available via another named capturing group "path".

3. Root path replacement: "${path}/${module}-xxx.jar" - This pattern defines the new root path that replaces the match. The
named capturing groups are used to insert the part of the original path that needs to be re-used and also the module name.

The next pattern replaces the "xxx" string with the correct version using a "standard" unnamed capturing group. It is a matter of
taste if you want to split the transformation into several profile patterns or do it in one step.

NOTE

All root directories must be mapped! If profile patterns result in the same mapping for different root directories of the
same module, only one directory will be created. Otherwise the same rules apply as for the standard software system
workspace: It is not possible that the same root directory is used by different modules.

TIP

More info about the regular expression capabilities can be found in the JavaDoc of java.util.regex.Pattern and its
section about capturing groups.

Related topics:

• Chapter 19, Build Server Integration

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#cg

Interacting with a System

63

8.8. Analyzer Execution Level
Analyzer execution levels have been introduced in Sonargraph 9.6.0. Depending on the currently set level not all analyzers are
executed. Depending on the goal of a session this results in a smoother user interaction. The user can select one of four levels

(Full, Advanced, Basic, Minimal) by System → Analyzer Execution Level .

The list of Analyzers to be run for each level depends on licensed features and languages, and can be shown by System →
Analyzer Execution Level → Description... .

Note

This setting is stored between sessions.

Note

If the level is not set to 'Full' not all possible issues and metrics are available.

The Analyzers, their Analyzer Execution Level, and their current state are show in Analyzers View.

Figure 8.13. Analyzers View

Related topics:

• The Analyzer Execution Level may also be set in Sonargraph Eclipse Plugin Section 20.1.4, “Setting Analyzer Execution
Level” .

• The Analyzer Execution Level may also be set in Sonargraph IntelliJ Plugin Section 20.2.1, “Assigning a System” .

Interacting with a System

64

8.9. Analyzing Cycles
The cycles analysis capability of Sonargraph is leveraged by the Cycle Groups, Cycle and Exploration views. The first one is
used to list cycle groups and the components involved in those and the other two allow to inspect in detail those cycle groups.

8.9.1. Revising Cycle Groups
Cycle Groups are containers for elements participating in a cycle. This view gathers those cycle groups found during system
analysis by the Cycle analyzer and groups them according to scope (system or module) and element level (e.g. component,
namespace, package, ...).

Figure 8.14. Cycle Groups View

The first column references, in different tree based levels, the category, a unique cycle group identifier and the elements
participating in the cycle. The second column informs about the number of elements involved in the cycle group and finally, the
third column shows the corresponding module name (for module based cycles) of the cycle or the system name.

Sonargraph considers cycles as issues, as they greatly contribute to the structural erosion of the code base. Thus, using right-click
on a cycle group you can define resolutions in order for it to be addressed by the team (see Chapter 9, Handling Detected Issues).

The context menu for a cycle group also offers options to visualize the cyclic elements in specialized views such as the Exploration
view (see Section 8.10, “Exploring the System”) and the Cycle View (see Section 8.9.2, “Inspecting Cyclic Elements”).

Interacting with a System

65

8.9.2. Inspecting Cyclic Elements
When choosing to examine a cycle group in the Cycle view, it allows to inspect in detail the dependencies between the cyclic
elements belonging to the selected group. Selecting a node or an arc allows to use the support of the Parser Dependencies (In
and Out) auxiliary views to point out to where in the code base the associated dependencies are being generated. Context menu
is also enabled for arcs and nodes.

The cyclic nodes are colored depending on their parent. The parent coloring source can be changed via the toolbar and information
about the different parents is also provided by clicking on the palette-icon in the toolbar. Generally, the more colors are shown,
the more entangled is your structure.

Figure 8.15. Cycle View

The Cycle view supports the same graphic exploration interactions as the Exploration, Graph and Workspace Dependencies
views. More details are described in Section 8.10.1, “Concepts for System Exploration”.

Interacting with a System

66

Via context menu the cycle group can also be displayed in the Exploration view as shown in the following screenshot. This has
the advantage that not only the elements participating in the cycle group are visible, but also their parents and the children that
are the endpoints of the involved dependencies.

Figure 8.16. Cycle Group shown in Exploration View

Interacting with a System

67

8.9.3. Breaking Up Cycles

The Cycle Breakup view can be opened via the context menu of the Cycle view. The context menu must be requested without
a selection (i.e. right click on the background).

Pressing "Compute" calculates a breakup set of edges to completely remove the given cycle. The algorithm used was presented
in 'Combinatorial Algorithms for Feedback Problems in Directed Graphs' written by Camil Demetrescu and Irene Finocchi. The
authors summarize the algorithm as follows:

Roughly speaking, our algorithm tries to find a compromise between two (somewhat opposite) approaches, i.e., removing light
arcs, that is, arcs with small weight, and removing arcs belonging to a large number of cycles. Indeed, light arcs are convenient to
be deleted as they contribute to breaking cycles, yet increasing the weight of the feedback set only to a limited extent. On the other
hand, if a heavy arc belongs to a large number of cycles, it may be convenient to choose it instead of a numerous set of light arcs.

The "Breakup" table shows edges from top to bottom representing the removal order and the effect on cyclicity and number
of cyclic nodes.

Dragging edges to the "Remove" table instructs the algorithm that these should be explicitly removed without considering the
number of parser dependencies. Drag them back to the "Breakup" table to remove this configuration. Edges to be explicitly
removed can also be dragged from the corresponding cycle view into the "Remove" table. If more edges are contained in the
"Remove" table than are necessary to break up the cycle, the breakup set is over-defined. Those unnecessary edges are indicated
by a grey background of the 'from' and 'to' element.

Pressing "Remove Violations" moves all violating edges to the "Remove" table.

Dragging edges to the "Keep If Possible" table instructs the algorithm that these should be kept if possible. If no more edges are
left to remove even those that should be kept are considered. Drag them back to the "Breakup" table to remove this configuration.
If the algorithm needs to consider edges as removal candidates that should be kept, the edges are analyzed from bottom to top
(i.e. the topmost edge is the last to be considered). This order can be changed in the "Keep If Possible" table by dragging edges
up or down. Edges that should be kept but need to be removed are highlighted in both tables with a yellow background of the
'from' and 'to' element.

Changing the set of edges to be explicitly removed or kept requires a re-computation. This is indicated by a grey background
color in the "Breakup" table and an (again) enabled "Compute" button.

If the "Breakup" table contains the correct edges that should be removed, a "delete" refactoring can be defined by multi-selecting
the entries and open the context menu via right mouse click. For details, see Section 10.1, “Creating Delete Refactorings”

Interacting with a System

68

Figure 8.17. Cycle Breakup View

Interacting with a System

69

Highlighting Added Cyclic Elements

If a baseline has been created and activated (see Chapter 14, Examining Changes) added cyclic elements are highlighted in the
Cycle view as well as within the tables of the Cycle Breakup view as shown in the screenshot below. These elements and their
incoming / outgoing dependencies are usually a good starting point for refactorings. The highlighting can be switched on and
off via the toolbar icon.

Figure 8.18. Highlighted Added Cyclic Elements

Interacting with a System

70

8.10. Exploring the System
Sonargraph offers a set of views such as Exploration, Graph and Dependencies views to allow users to explore the elements that
make part of a software system and the dependencies between them. The following sections describe these views in detail and
how to interact with them in order to make the most out of Sonargraph

8.10.1. Concepts for System Exploration
Before digging into the details of each view for system exploration (Exploration, Graph and Dependencies views), it is important
to know some concepts and operations that apply to all of them and even to some other views (Workspace Dependencies and
Cycle views). Dominating these concepts and operations when using the views allows users to extract a great amount of valuable
information that can be used to make decisions about software systems .

8.10.1.1. Focus Concept

For Exploration, Graph, Cycle, Workspace dependencies and Include Dependencies view, the focus concept is the key element
to understand how these views are created and how they can be modified to make a deeper analysis of the dependencies between
elements. Any of these views (Except for the Workspace Dependencies view when there are not workspace elements in the
system) will have at least one element in focus and any number of elements not in focus.

• Elements in Focus : Elements that are the center of the analysis. Dependencies will be calculated for these elements according
to the selected focus mode. When an Exploration or Graph view for example is requested by the user for a set of selected
elements, these elements will be the ones in focus.

• Elements not in Focus : Elements that appear as a result of the calculation of the dependencies for the elements in focus. They
appear in the views because they are the endpoint of a dependency from or to an element in focus but they are not the active
part of the dependency analysis.

8.10.1.2. Focus Modes

When creating a new Exploration, Graph, Cycle, Workspace Dependencies view or using the focus operation inside them, one
of the following focus modes can be selected:

• No Additional Dependencies : Only the selected elements and the dependencies between them are going to be part of the
displayed content.

• Incoming Dependencies : The selected elements plus the elements that directly depend on them will be part of the displayed
content along with the dependencies between all of them.

• Outgoing Dependencies : The selected elements plus the elements which they depend on will be part of the displayed content
along with the dependencies between all of them.

• Incoming and Outgoing Dependencies : The selected elements plus the elements which they depend on and the elements
that directly depend on them will be part of the displayed content along with all the dependencies involved.

8.10.1.3. Transitive Dependencies

Sometimes it is required to analyze relationships between elements beyond the direct dependencies. For this reason, Sonargraph
offers the option of taking into account the transitive dependencies for the focus operations. To better understand this concept
assume a system with the following dependencies between elements A, B, C, D and X:

• Element A depends on element B: A -> B

• Element B depends on element X: B -> X

• Element X depends on element C: X -> C

• Element C depends on element D: C -> D

Interacting with a System

71

Taking element X as a reference for this example, we can express the relationship between A and X as A -> B -> X and the
relationship between X and D as X -> C -> D. For these relationships the following statements are true:

• X has a transitive incoming dependency from A

• X has a direct incoming dependency from B

• X has a direct outgoing dependency to C

• X has a transitive outgoing dependency to D

8.10.1.4. Exploration and Graph-based Views Properties

Besides the input elements and the focus mode, Exploration and Graph-based views need the following 3 properties to be created:

• Transitivity: Users must indicate whether they want to see transitive dependencies for the supplied input or not. See
Section 8.10.1.3, “Transitive Dependencies”

• Only Internal: If selected, all elements under the External node will be excluded from the view.

• Dependency types: Users might want to focus the analysis on certain types of dependencies. The lower section in the dialog
allows the selection of the dependency types that will be considered for view creation or focus operations.

8.10.1.5. Creating Views Exploration and Graph Based views

Quick View Creation

Exploration and Graph-based views can be created by right clicking on a selection of elements, selecting the view to open and
providing one of the four focus modes from the context menu.

Figure 8.19. Quick View Creation

A new view will be created with the supplied focus parameter, only direct dependencies (not transitive), both internal and external
elements and all the parser dependency types available.

Advanced View Creation

If more configuration options are need upon view creation, users can right click on a selection, select the view to open and click
on 'Advanced...'. That will open the Advanced View Creation dialog where all available options can be configured.

Figure 8.20. Quick View Creation

Interacting with a System

72

The dialog shown in the previous image shows the advanced representation creation dialog where focus mode, properties and
dependency types can be specified prior to creation. See: Section 8.10.1.2, “Focus Modes”, Section 8.10.1.4, “Exploration and
Graph-based Views Properties”

8.10.1.6. Applying Focus

Since Exploration and Graph-based views can display an overwhelming amount of information, it is possible to perform focus
operations on these views in order to reduce the amount of displayed information to a set of nodes and edges that the user wants
to focus his attention on. Focus operations are performed by using the focus toolbar.

Figure 8.21. Focus Toolbar

Focus Properties

The focus operation requires the combination of the Exploration and Graph-based properties (See Section 8.10.1.4, “Exploration
and Graph-based Views Properties”) and the following properties of its own:

• Selection: Users can focus a view using the selected or unselected elements. It is also possible not to use a selection, in which
case, only the dependency types will be modified.

• Only Visible : If selected, only nodes and edges visible at the time of the focus operation will be considered, otherwise,
all the model will be used for the focus operation.

Quick Focus

The focus button in the focus toolbar offers a dropdown menu with 4 options to perform a quick focus operation.

Figure 8.22. Focus Dropdown Menu

As the image shows, there is one menu entry for each focus mode. These menu entries can be used to perform quick focus
operations which will use the current selection, the current value of the 'Only Visible' button, the focus mode of the menu entry
and keeps all the other properties of the current view (dependency types, only internal and transitive).

Advanced Focus

If more configuration is needed to perform a focus operation, users can push directly the focus button in the focus toolbar or use
the 'Advanced..' menu entry in the dropdown menu of this same button. Any of these operations will open the 'Advanced Focus'
dialog which allows the configuration of all view and focus properties.

Interacting with a System

73

Figure 8.23. Advanced Focus Dialog

8.10.1.7. Semantics of Colors

Architecture and Colors

When a license in use contains the Sonargraph Architecture feature, the Exploration, Graph, Cycle and Dependencies views
will use a set of colors to show whether the edges (or dependencies in the case of the Dependencies view) contain architecture
violations or not.

Figure 8.24. Semantics of Colors

• Green Color: All underlying dependencies comply with the architecture.

• Yellow Color: At least one but not all of the underlying dependencies create architecture violations.

• Red Color: All underlying dependencies create architecture violations.

Besides these 3 colors, views can eventually show some dependencies that will always be grayed. This means that these
dependencies are not taken into account by the architecture check, thus they are neither allowed nor violating dependencies.

Interacting with a System

74

Figure 8.25. Architecture Independent Dependencies

Selection and Colors

In the case of the Exploration Graph and Cycle views the selection will cause edges to display or hide their architecture-related
color. If a node is selected, its incoming and outgoing edges will reveal their architecture-related color, all other edges will be
grayed. If an edge is selected, it will be the only one revealing its architecture related color and the rest of them will be grayed.
This is of course assuming that a license containing the Sonargraph Architecture feature is installed, otherwise, incoming and
outgoing edges of selected nodes as well as selected edges will have a darker gray color whereas all other edges will have a
lighter gray color. This is also the case for Workspace Dependencies and Include Dependencies views, where edges will always
be presented in gray-scale colors.

8.10.2. Tree Based System Exploration
The Exploration view offers the possibility of using a tree representation to learn about the structure and interdependencies among
the structural elements of the software system :

Figure 8.26. Exploration View

Typical questions are:

Interacting with a System

75

• What are the dependencies between some layers, subsystems, packages or types?

• What is the reason for some unexpected dependency?

• How can one decouple a given pair of package trees?

• Where is package X or file Y located in the package tree?

The exploration view provides a number of means supporting you to:

• Get an overview of your software system on a high abstraction level.

• Drill down to answer specific questions.

• Zoom in and out of the Sonargraph model tree by expanding and collapsing nodes.

• Define focus so that irrelevant information is hidden.

8.10.2.1. Drilldown

One of the most powerful features of the Exploration view is the Drilldown. Users can expand the nodes that appear in the view
in order to see the dependencies between the children of the expanded object and the rest of the elements that make part of the
content of the view.

Figure 8.27. Before and After Drilldown

As expected, nodes in the Exploration view can also be collapsed in order to see de dependencies of the collapsed nodes with
the rest of the elements present in the view.

It is important for users to note that the expand operation will behave differently for nodes that are part, or are children of the
input used to generate the view and for elements that are not related to the input. For the first ones, they will be expandable if
they have children elements and the expand operation will show all children even if they have no dependencies at all. For the
second ones, they will only be expandable if at least one of the children has dependencies to other elements in the view and only
the children that do have dependencies will be shown; the ones that do not have dependencies will be omitted.

8.10.2.2. Extending the Focus

In an Exploration view, it is possible to extend the focus. In other words, it is possible for a group of elements not in focus to
become elements in focus, thus expanding the dependency calculation of the view with the dependencies for the selected elements
according to the current focus mode of the view.

To better illustrate the "Extend Focus" operation, assume the following Exploration view:

Figure 8.28. Sample Exploration view

Interacting with a System

76

This view has been created by selecting the "console" namespace with focus mode "In and Out", that is, showing incoming and
outgoing dependencies. Let's suppose that for whatever reason, "AlarmHandler.java" becomes an element of interest of the user
that created this view and it is important to see how it is related to the elements in the view other than "console". This can be

achieved by right clicking on the element and selecting "Focus" → "Extend Focus (Only Visible)"

Figure 8.29. Extend Focus Menu

The result of this operation is having both "console" and "AlarmHandler.java" as elements in focus and the rest of the visible
nodes as element not in focus.

Figure 8.30. Extend Focus Result

8.10.2.3. Removing Elements From Focus

Conversely to the Extend Focus operation, it is possible to remove elements from the focus. In other words, it is possible to
convert an element that is an active part of the dependency calculation into an element that is only an endpoint of a dependency
from/to others element in focus. If there are no dependencies at all involving the elements removed from focus, they will disappear
from the Exploration view.

To better illustrate the "Remove From Focus" operation, assume the following Exploration view:

Figure 8.31. Sample Exploration view

Interacting with a System

77

This view has been created by selecting the "console" namespace and "AlarmHandler.java" with focus mode "In and Out", that
is, showing incoming and outgoing dependencies. Let's suppose that for whatever reason, "AlarmHandler.java" is no longer
important for the dependency analysis and we want to make of it a passive element in the dependency calculation at most. This

can be achieved by right clicking on the element and selecting "Focus" → "Remove From Focus"

Figure 8.32. Extend Focus Menu

8.10.2.4. Interaction with Auxiliary Views

The Exploration view offers interaction with the Auxiliary views of Sonargraph (Parser Dependencies in and out views to be
precise). This interaction allows to see the underlying parser dependencies that are represented by the arcs in the view. Auxiliary
views can be used in two ways from the Exploration view:

• Arc selection: By selecting an arc and having the Parser Dependencies (Out) view in front, it is possible to see the underlying
parser dependencies for that specific arc.

Figure 8.33. Underlying Parser Dependencies for Arc

• Element selection: By selecting only one element and having the Parser Dependencies (In) or (Out) in front, it is possible to
see the underlying incoming or outgoing parser dependencies of the arcs that come into the node or go out of it.

Interacting with a System

78

Figure 8.34. Incoming and Outgoing Parser Dependencies

• View option synchronization: Parser Dependencies views (in and out) support the synchronization of the 'Show only violations'
view option with the current value of this same option in the Exploration view.

Figure 8.35. View option synchronization

To enable this feature select 'Used Connected View Setting' in the Parser Dependencies view and Sonargraph will set the
correct value from the Exploration view.

8.10.2.5. Expand Dependency to Component Level

The Exploration view offers the possibility of showing dependencies between all kinds of elements of the parser model, however,
users might find very valuable to see how Components are related in a software system . For this reason, Sonargraph offers the
possibility of showing the underlying dependencies between Components for an arc by double-clicking on it.

Interacting with a System

79

Figure 8.36. Expand Dependency to Component Level

Expanding an arc to component level will be available for all arcs except those whose both endpoints have a component as parent,
meaning that there are no underlying dependencies between components for that arc.

8.10.2.6. Context Menu Interactions

Sonargraph offers navigation possibilities from the Exploration view to other views in order to extract the greatest amount of
valuable information from the software system analysis. To see the navigation possibilities, select a single arc or an arbitrary
number of nodes and press right-click button.

Figure 8.37. Context Menu Interactions

8.10.2.7. View Options

To change the way the content is displayed in the Exploration view, the options that are located at the right-hand side of the
view's toolbar can be used.

Figure 8.38. View Options

• Highlight Input : When activated, an orange-dashed box will be drawn for the nodes used as input to create the view.

Interacting with a System

80

• Adjust Zoom Automatically : When activated, the view will automatically zoom in or out when the its size changes in order
to try to fit as much as possible its content to the available size.

• Use Antialiasing : When activated, the edges will look smoother and better defined, however, it is recommended to deactivate
this option when running Sonargraph on low-end hardware.

• Show Only Dependencies Of Selected Nodes : When this option is activated, only the incoming and outgoing arcs of the
selected elements will be shown, the rest will be hidden. If there is no selection, all arcs will be shown.

• Show Only Violations : When this option is activated, only arcs containing architecture violations are shown. If all underlying
parser dependencies of the arc are violations, then the arc will remain unchanged. If the arc has both violating and non-
violating parser dependencies, it will change from yellow to red and the width will be adjusted with the weight of the violating
dependencies.

• Hide Self Arcs : When activated, edges whose from and to endpoints are the same node will be removed from the view.

• Auto Expand : When activated, expand operations that result in the expanded node having only one child will cause this single
child to be expanded. This will happen recursively until at least 2 children are found or there are no more elements to expand.

8.10.3. Graph-Based System Exploration

The graph-based system exploration allows users to take an arbitrary selection of elements and create a graph representation with
nodes and edges to find out what their overall interaction looks like:

Figure 8.39. Graph View

By default, the graph perspective presents a levelized layout which comes handy to visualize the levels in which the software
system elements are classified according to their dependencies to each other.

8.10.3.1. Levels

Showing levelized content is a unique feature of the Graph view in relation to other views in the application. When a Graph view
is requested, Sonargraph organizes nodes in a way that given each edge of the graph and both From and To endpoints of the
edge, the From endpoint will always be in a greater level than the To endpoint.

Interacting with a System

81

Figure 8.40. Levels in Graph View

This way of layouting immediately gives the user an idea of how strong or weak is the coupling among the selected elements
that form the content of the view and how modifications will impact elements that belong to different levels.

8.10.3.2. On Demand Cycle Groups

When creating a Graph view for an arbitrary selection of elements, it is possible that there are cyclic dependencies among the
elements that make part of the content of the view. In this case, it would be impossible to define levels among the elements that
belong to a cycle and with all of them belonging o a same level, the readability of the graph would decrease. To avoid this effect,
Sonargraph gathers all elements that form cycle groups into elements called "On Demand Cycle Groups".

Figure 8.41. On Demand Cycle Groups

For a quick reference of the elements that are involved in an On Demand Cycle Group, hover the node with the mouse and a
tooltip with appear with the list of cyclic elements. For a detailed view of the cyclic elements and the dependencies involved,
right-click on the node and select "Show in Cycle View"

Interacting with a System

82

Figure 8.42. On Demand Cycle Groups

8.10.3.3. Interaction with Auxiliary Views

The Graph view offers interaction with the Auxiliary views of Sonargraph (Parser Dependencies in and out views to be precise).
This interaction allows users to see the underlying parser dependencies that are represented by the edges in the view. Auxiliary
views can be used in two ways from the Graph view:

• Edge selection: By selecting an edge and having the Parser Dependencies (Out) view in front, it is possible to see the underlying
parser dependencies for that specific edge.

Figure 8.43. Underlying Parser Dependencies for Edge

• Element selection: By selecting only one element and having the Parser Dependencies (In) or (Out) in front, it is possible to
see the underlying incoming or outgoing parser dependencies of the edges that come into the node or go out of it.

Interacting with a System

83

Figure 8.44. Incoming and Outgoing Parser Dependencies

• View option synchronization: Parser Dependencies views (in and out) support the synchronization of the 'Show only violations'
view option with the current value of this same option in the Graph view.

Figure 8.45. View option synchronization

To enable this feature select 'Used Connected View Setting' in the Parser Dependencies view and Sonargraph will set the
correct value from the Graph view.

8.10.3.4. Context Menu Interactions

Sonargraph offers navigation possibilities from the Graph view to other views in order to extract the greatest amount of valuable
information from the software system analysis. To see the navigation possibilities, select a single edge or an arbitrary number
of nodes and press right-click button.

Interacting with a System

84

Figure 8.46. Context Menu Interactions

8.10.3.5. Type Based Graph

When selecting a Type (e.g. classes or enums), the regular Graph view will show incoming and outgoing dependencies of the
selected elements to all kind of programming elements (fields, methods functions etc). To perform specific analysis like Java
hierarchy graphs, it is necessary to show the dependencies between Types (Java classes in this case) that aggregate the underlying
parser dependences to other programming elements than are children of types. To show a Type-based graph, select a Type in the
navigation view and select 'Show in Graph View (Type-Based).

Figure 8.47. Show Type-based Graph view

Figure 8.48. Type-based Graph

8.10.3.6. View Options

To change the way the content is displayed in the Exploration view, the options that are located at the right-hand side of the
view's toolbar can be used.

Interacting with a System

85

Figure 8.49. View Options

• Highlight Input : When activated, an orange-dashed box will be drawn for the nodes used as input to create the view.

• Use Antialiasing : When activated, the edges will look smoother and better defined, however, it is recommended to deactivate
this option when running Sonargraph on low-end hardware.

• Show Only Dependencies Of Selected Nodes : When this option is activated, only the incoming and outgoing arcs of the
selected elements will be shown, the rest will be hidden. If there is no selection, all arcs will be shown.

• Show Only Violations : When this option is activated, only arcs containing architecture violations are shown. If all underlying
parser dependencies of the arc are violations, then the arc will remain unchanged. If the arc has both violating and non-
violating parser dependencies, it will change from yellow to red and the width will be adjusted with the weight of the violating
dependencies.

• Hide Self Arcs : When activated, edges whose from and to endpoints are the same node will be removed from the view.

8.10.4. Treemap-Based System Exploration

The Treemap View allows users to create a 2D / 3D representation of the system to find out where the hotspots are. See also
Section 9.2.2, “Identifying Issue Hotspots”

Leaf elements are shown as squares. Their relative size is determined by the used size source. Their color is determined by the
used color source. Optional: Their height is determined by the used height source.

Parent elements show up as rectangles using grey color shades representing the nesting depth.

Figure 8.50. Treemap 2D View

Interacting with a System

86

Figure 8.51. Treemap 3D View

8.10.4.1. Configuration of a Treemap

Figure 8.52. Treemap configuration

The generation of a treemap is controlled by the shown configuration options, which are stored in an XML file with the specified
name.

• Select the elements to use as leafs.

• Select the size source which determines the resulting relative size of the leaf elements.

• Select the color source which determines the resulting color of the leaf elements.

• Set the red threshold. If set to '0' an even mapping of values to green, yellow and red is dynamically calculated. When set to
a value greater than '0', that value will be the first to be represented with a red color. The red threshold must be 0 or greater
than 0 and a multiple of 2.

• Optional (3D): Select the height source which determines the resulting height of the leaf elements.

Figure 8.53. Treemap configuration 3D

In the generated treemap leaf elements will be shown as squares making it easier to spot the relative size differences. The color
palette used for the leaf elements contains 3 green, 3 yellow and 3 red shades. For an 'ascending' color source (i.e. less is better)

Interacting with a System

87

a darker color represents a higher number. For a 'descending' color source (i.e. higher is better) a darker color represents a lower
number. Parent elements show up as rectangles using grey color shades representing the nesting depth.

There is a special color or height source named Issue Collector, which counts the leaf element's number of issues. The issues to
collect can be filtered by resolution and severity.

Figure 8.54. Treemap Issue Collector

8.10.4.2. Interaction with Auxiliary Views

When the option 'Link Master Views' in the top level toolbar is enabled, selecting a square/rectangle will reveal the corresponding
underlying element in the master view. The Properties view will show information about the corresponding underlying element
of the selected square/rectangle.

8.10.4.3. Context Menu Interactions

• New Delete Refactoring: Create a new Delete Refactoring for the selected element.

• New Move/Rename Refactoring: Create a new Move/Rename Refactoring for the selected element.

• New Todo: Create a new Todo for the selected element.

• Export Treemap View To Image: Export the Treemap as image.

• Export Treemap View To SVG : Treemaps can be exported as Scalable Vector Graphics (SVG). The resulting *.svg file can
be opened by any SVG-Editor or SVG-Viewer for further processing. The name of the elements (leafs and parents) are stored
in the *.svg file as titles, and may be shown as tooltips (depends on the capabilities of the SVG-Editor or SVG-Viewer).

8.10.4.4. Toolbar Interaction

The toolbar of the Treemap View contains interactions to change the size and view of the Treemap:

• Auto Resize : When activated, sets the zoom level to fit the current window size.

• Zoom in / Zoom out : Increases or decreases the zoom level.

• Home : Sets the zoom level to 1.0. Resets any rotation (3D only).

• Roll (3D only) : Rolls the treemap to the left or to the right.

• Rotate vertically (3D only) : Rotates the Treemap up and down.

8.10.4.5. Mouse Interactions

Scroll wheel: Use the modifier key (CMD, CTRL) of your operating system in combination with the scroll wheel anywhere in
a Treemap to zoom in or out at current mouse pointer position.

Left button drag: Drag the treemap around with left mouse button and SHIFT key pressed.

Hover: Hovering over a square/rectangle will open a tooltip showing additional information. That tooltip can be focused by
clicking into it with a left mouse click.

Interacting with a System

88

8.10.5. Tabular System Exploration

Sonargraph also offers the possibility of exploring the system in a tabular way through the Dependencies view. By selecting a
single element of the parser model, users can observe and explore its incoming, internal and outgoing dependencies.

Figure 8.55. Dependencies View

8.10.5.1. Drilldown

One of the most helpful features of the Dependencies view is its capability to allow users to drilldown from the dependencies
between the top-most elements in the model to the dependencies between the finest-grained elements in the parser model.

Figure 8.56. Drilling Down Dependencies

It is important to note that as seen in the previous figure, some elements that belong to the parser model are not taking into account
when drilling down in the Dependencies view in favor of readability. For example, packages "org", "apache", "cassandra" and
"cli" do not play one role in the drilling down other than providing a context for the element that is really makes part of the
content which is "transport". This apply as well for other structures that allow nesting such as Namespaces and Directory paths
in C/C++ and C# parser models.

In a similar way, when the Dependencies view is requested for an element that allows nesting, the selected element will take
part in the content of the view only if it has elements of a different kind as children, otherwise, it will be omitted. Similarly, all
children of the selected element that fulfill the same condition will be displayed for this request.

8.10.5.2. Interaction with Auxiliary Views

The Dependencies view offers interaction with the Parser Dependencies (Out) auxiliary view of Sonargraph . This interaction
allows users to see the underlying parser dependencies that correspond to each entry in the incoming, internal and outgoing
dependencies tables. By selecting only one dependency and having the Parser Dependencies (Out) in front, it is possible to see
its underlying parser dependencies.

Interacting with a System

89

Figure 8.57. Interaction with Auxiliary Views

8.10.5.3. Context Menu Interactions

Sonargraph offers navigation possibilities from the Dependencies view to other views in order to extract the greatest amount
of valuable information from the software system analysis. To see the navigation possibilities, right-click any dependency in
the view and select whether the interaction should consider the From or the To endpoint of the dependency. Depending on the
selected endpoint, navigation possibilities will show up.

Figure 8.58. Context Menu Interactions

Interacting with a System

90

8.11. Searching Elements
For systems with a very large code base, finding programming elements can sometimes prove challenging. Sonargraph offers a
search dialog to quickly locate programming elements in the currently open software system.

To bring it up select "Edit" → "Search..." .

Figure 8.59. Standard Search Dialog

The dialog will start revealing potential matches as soon as you start typing the element you are looking for. You can search
for simple or complete name of a programming elements and choose to omit members, search for excluded elements only, auto
match trailing characters and search ignoring case.

After selecting the correct element, the Navigation view highlights the found element.

If you want to extend the search to also find methods or member variables, deselect the option "Omit members". If also "Full
name" is activated, filtering by packages and types is possible as shown in the following screenshot.

Figure 8.60. Search Dialog to Locate Members

NOTE that you can either search in all programming elements or restrict the search to 'Excluded' or 'Issue ignoring'. This might
be used to check if the workspace filters (Production Code filter and Issue filter) have been configured correctly.

Interacting with a System

91

8.11.1. Searching Elements in Views
Text search functionality is supported by Graph and Exploration views and most table-based views, like the Issues view,
Refactorings view, Metrics view, etc. This functionality makes it easy to navigate a view that displays a high number of elements.
Matches are highlighted as shown in the following screenshot.

Figure 8.61. Text Search in Views

Interacting with a System

92

8.12. Detecting Duplicate Code
Duplicate code analysis in Sonargraph is achieved through the Duplicate Blocks view and the Duplicates Source View. The
Duplicate Blocks view lists duplicate code blocks that have been found in source files of the system that have not been excluded
from analysis via a filter. For each duplicate block, all the occurrences are listed, with source file, length of the block in lines,
start line of the block, and the tolerance, i.e., a number of lines that are different to another text block.

Figure 8.62. Duplicate Blocks View

Duplicate code blocks are considered as issues in Sonargraph as they make the maintenance of the code base more difficult. Thus,
duplicate code blocks can also be found in the form of Issues in the Issues view of Sonargraph (See Section 9.2, “Examining
Issues”). The context menu for a duplicate block (both in the Duplicate Blocks view and the Duplicates Source view) allows to
take care of it as an issue, by either ignoring it or creating a fix resolution for it.

By double-clicking (or selecting "Show In Duplicates Source View" in the context menu) on a line that represents a duplicate
code block, one jumps to the Duplicates Source View where the selected occurrence is presented side by side along with the next
occurrence in the block so that the similarities and differences can be appreciated:

Figure 8.63. Duplicates Source View

Interacting with a System

93

Normally, duplicate code blocks are computed automatically on every software system open or refresh via the duplicate code
analyzer.

8.12.1. Configuration of Duplicate Code Blocks Computation

The settings for how duplicates are located can be adjusted at "System" → "Configure..." → "Duplicate Code" . Usually, the
default settings are acceptable. In order to understand how the configuration parameters work, it is helpful to know how the
algorithm works. The main process is as follows:

• First, candidates for start lines of duplicate code blocks are determined. For this, all lines of all source files are read.

• If a line is too short (shorter than the number given in the configuration parameter "Minimal Line Length"), it is discarded.
This allows to save memory, since all other lines might have to be stored if there occur copies of them.

• Each non-discarded line is space-normalized (i.e., sequences of white space characters are replaced by a single space character;
and words that are not separated by whitespace characters are separated by a single space character). This normalization allows
to detect almost-copied blocks that only differ from each other by the whitespace in them.

• Lines that occur too often (more often than the number given in the configuration parameter "Maximal Number of Copies")
are discarded. This feature is used for excluding e.g. preambles that start every file from duplicate analysis.

• For any pair of identical lines that result from the steps above, it is checked if they are the start of a duplicate code block. Only
blocks that have a certain minimum length are reported (configuration parameter "Minimal Block Length").

• Two other parameters allow for a certain "slack" in the comparison so that not only completely identical blocks are found,
but also blocks that differ a bit.

1. The configuration parameter "Maximal Tolerance per Edit" works like this: When two text blocks are compared, the
comparison algorithm allows some differences, or "edits". Each single edit may only add, remove or change a number of
lines (the one given by this parameter) in order to make the blocks identical. Note that behind the edited region, the two
blocks must continue identically for at least one line.

2. The configuration parameter "Maximal Relative Tolerance Percentage" works like this: When comparing two blocks, the
number of edited lines in relation to the number of matched lines may never be larger than this percentage.

The total number of lines in all the edits that occur in a block comparison is the "tolerance" of the comparison. The larger it
is, the more lines need to be changed to consider the two blocks to be copies from one another.

• The algorithm up to this point only identifies pairs of start lines of duplicated blocks. The last step in the identification of
duplicated blocks is the aggregation: Not only are code blocks considered to be duplicates of one another when they form result
pairs in the algorithm above, but also when they are indirectly copies of one another. E.g., consider two already identified
pairs of duplicated blocks A,B on the one hand and C,D on the other hand, where the start of B equals the start of C; then A,
B, C and D are all considered to be duplicates of the same code block. This aggregation is done until no more blocks can be
aggregated. The tolerance specified for a code block in the view is the minimal tolerance that occurred during the comparison
of the block with other code.

Interacting with a System

94

8.13. Examining the Source Code
Anywhere in the Sonargraph workbench you have the option of double clicking (or right clicking + "Show In Source View") on
an element to show the source code of the clicked element if that is available.

Figure 8.64. Source View

 "Find Text" feature can be invoked with Ctrl-F (Command + F on Mac). If more than one occurrence of the search string is found,
press F3 to jump to the next search result. In the Script view (see Chapter 16, Extending the Static Analysis) and Architecture
File view the search feature offers also "replace" and "replace all" to ease content edition.

Regular expressions can be used for advanced match and replace use cases. Line-breaks in the replacement text can be specified
with \R. The implementation uses standard Java regular expression API and also allows using capturing groups. More details can
be found at the JavaDoc of java.util.regex.Pattern and JavaDoc of Capturing Groups .

As you move around the mouse cursor through the source code, you can see that some elements (names of fields, methods, types
and so forth) are being underlined. By pressing Ctrl (Command on Mac) and clicking on this 'hyper linked' elements you navigate
to the definition of the element which might be defined in the same source file or another.

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#cg

Interacting with a System

95

Figure 8.65. Hyperlinking and Find Text Features in Source View

8.13.1. Interaction with Auxiliary Views
The Source view offers interaction with the Auxiliary views: Parser Dependencies (Out), Parser Dependencies (In) and Markers:
Below the main source viewer, three tabs provide further information about the currently loaded source file:

• The Parser Dependencies (Out) tab lists all dependencies that depart from the source file. Clicking on a dependency jumps to
the respective line in the upper pane of the source view.

• The Parser Dependencies (In) tab lists all dependencies that arrive into the source file. Clicking on a dependency opens up
another instance of the Source view showing the file where the selected incoming dependency belongs to.

• In both Parser Dependencies views in and out, you can select the "Show Only Violations" and focus only on violating parser
dependencies.

Figure 8.66. Show Only Violations

To enable this feature, select "Show Only Violations" in the Parser Dependencies views (in and out) view options menu.

• The Markers tab lists all the markers of the source file. Markers are graphic indicators of issues in the source file under
inspection. It also shows user defined tasks (See Section 9.4, “Defining Fix and TODO Tasks”) and refactorings that pertain
to the file or elements in the file. Clicking on a marker jumps to the corresponding line in the upper pane of the source view.

Interacting with a System

96

8.14. Examining Metrics Results
Sonargraph calculates metrics on different abstraction levels and displays them in the Metrics view. Metrics are calculated on
different levels. Select the level in the combo box at the top left of the view and select the metric in the shown table. The list
of metric values is then displayed in the first tab on the right. The scope (i.e. for the whole system or a single module) can be
selected via the combo box at the top right of the view. The complete set of metric values can be exported via the context menu.
Some basic statistics like average, standard deviation, median, minimum and maximum values are displayed below the list of
values on the right.

Figure 8.67. Metrics View

The histogram for the selected metric and scope is shown in the second tab on the right. The chart can be exported as an image
via the context menu. The pie chart is only available for metrics with a defined threshold.

Interacting with a System

97

Figure 8.68. Metrics Histogram

If you are interested in all metrics of a specific element, the Element Metrics view can be opened via the main menu "Window"

→ "Show View" → Element Metrics.

Figure 8.69. Element Metrics View

The metric thresholds configuration allows to define threshold values for those predefined metrics in order to have an accurate
control of the behavior of your code base as it evolves.

Interacting with a System

98

Figure 8.70. Metric Thresholds Configuration

Thresholds can also be defined, edited or deleted via context menu by right clicking on a metric in the Metrics or Element Metrics
view.

Related topics:

• More information about the built-in metrics can be found in Chapter 21, Metric Definitions.

• Custom metrics can be defined using Groovy Scripts. More information is contained in Chapter 16, Extending the Static
Analysis.

Interacting with a System

99

8.15. Analyzing C++ Include Dependencies
The Include Dependency view is available via the context menu of a C++ source file, as shown in the following screenshot. It
allows analyzing the dependencies to header files.

Figure 8.71. C++ Include Dependency View

Interacting with a System

100

8.16. Creating a Report
Select "File" → "Export to HTML/XML Report..." to generate an HTML or XML report containing all metric values, issues and
resolutions (TODO, Ignore, Fix). You can select the element level for which the metric values are exported.

The corresponding XML schema can be found in <sonargraph-inst>/report.

TIP

The XML output is normalized to minimize the size of the file. To get a more expressive report, set the log level for the
ReportExtension to "debug" in <sonargraph-inst>/logback.xml.

NOTE

The report files can easily get several MBs big and take a few seconds to generate. Start with the default configuration
first to check the size and then increase the number of levels and the number of values per metric.

The HTML report contains tables that can be filtered, e.g. the table of "Unresolved Issues". The tables provide the following
functionality:

• The table header allows to filter for rows containing the specified text as shown in the screenshot. Paging will be enabled for
tables containing more than 25 rows. You can select to show 25, 50 rows per page or all on one page by using the combo
box on the right.

• The table header provides info about the number of items shown and the current page.

• The matching terms are highlighted as shown in the screenshot.

• Several filter conditions can be connected via logical OR (||) and logical AND (&&).

• Table cells containing numeric values can also be filtered for value ranges as shown in the screenshot.

• Rows can be sorted by clicking on the table column header.

• All filters can be cleared by clicking on the right-most icon.

• A short help function is available by clicking on the question mark on the right.

Figure 8.72. Table Filter Options in HTML Report

101

Chapter 9. Handling Detected Issues
This chapter explains the purpose of virtual models and how they can be used to define standard resolutions (Ignore, Fix) for
detected issues. It is also described which views can be used to get a summary of all issues, see how Sonargraph has prioritized
them and how to visualize hotspots.

The following views provide relevant information: Issues, Ranking, Ignore and Tasks view.

9.1. Using Virtual Models for Resolutions
Virtual models in Sonargraph are resolutions containers used to try different solutions for issues in the system without distorting
its original status. Sonargraph ships with two virtual models already created: "Parser" and "Modifiable".

• Parser is the model that is generated by the language specific parsers without structural changes or any resolutions for created
issues.

• Modifiable.vm is the (initially empty) model ready to save any refactorings or created resolutions by the user. It naturally
depends on the Parser model.

Virtual models management section is located on the right-hand side of the main toolbar. Using the green plus symbol you can
create as many different virtual models as you need to try out different resolutions with your software system and you will always
have your original model available in the "Parser" model.

Figure 9.1. Virtual Models

The "Modifiable" model is selected by default so you can start creating resolutions (fixes, ignores or TODO's) right away. On
the contrary, the "Parser" model, represents the "facts" model, determined by the parser, which means it can not be modified as
it represents the actual state of things on your software system.

NOTE

A virtual model might affect metric values since the structure of the system can be changed with refactorings and issues
can be transformed into tasks or ignored. So, depending on what you want you should select the corresponding virtual
model. If you want to see the unaltered metrics and structure you should select the 'Parser' virtual model (or an 'empty'
virtual model - without any refactorings or resolutions). In the user interface you can either select the virtual model in
the right-hand side drop down menu in the upper toolbar or in the Files view on the left hand side underneath the Models
folder with the corresponding context menu entry.

Handling Detected Issues

102

9.2. Examining Issues
Sonargraph offers views to support several use cases related to issues:

• Get an overview of all issues: The Issues view shows all detected issues, offers advanced filter options and aggregates issue
counts into the physical structure (system, modules, roots, files), so that hotspots can be detected easily.

• Get a prioritized list of issues related to the source code (i.e. no issues related to the Sonargraph system are shown): The
Ranking view shows the computed score for each issue. The score is based on the issue's urgency and importance. See section
Section 9.2.1, “Identifying the Most Relevant Issues to Fix” for details.

• Get a list of ignored issues: Some detected issue might not be are relevant, e.g. a method violates consists of more lines than
the defined threshold but splitting it up would make the algorithm more difficult to understand. Those issues can be ignored
(i.e. they are no longer shown in the Issues view) and the Ignore view list all these ignore definitions.

• Get a list of defined tasks: Tasks can be defined for issues that must be fixed, including implementation suggestions for the
developer. The issues are also no longer shown in the Issues view and the tasks can be tracked in the Tasks view.

The Issues view displays information about the found issues such as their severity, category, affected elements and the associated
provider. The upper half of the view displays the affected elements in a tree, following the file structure of the code and the
Sonargraph system files. The information about the number of affected elements, and numbers of issues of error, warning and
info severity is aggregated for each element and its children, making it easier to identify hotspots, i.e. modules with a high number
of detected issues. The list of issues is shown in the lower part for the selected elements and their children. If you want to see
all issues of the system, either click on the white space below the tree or select the System and Installation root nodes. If you
are only interested in issues for specific modules, select them in the tree and only issues related to code in those modules are
shown in the table.

The presentation mode (flat, hierarchical, mixed) of the elements tree can be switched via the view options menu in the top-
right corner.

NOTE

The numbers of issues and affected elements on a parent node are not necessarily the sums of the values of its children.
This is caused on the one hand by "composite" issues, e.g. "Duplicate Code Block" and "Cycle Group" that affect several
elements, but are only counted once for common parents of the affected elements. And on the other hand, the parent
element itself might also be involved in issues.

Figure 9.2. Issues View

Handling Detected Issues

103

Context menu and double click interactions give you options to examine the issue in a more suitable view. They also allow to
"ignore" or "fix" the issue by either ignoring it or creating a fix request for someone in the development team. These requests are
called "Resolutions" in Sonargraph and are covered in depth in the following sections.

In case of having too many issues, you can apply filters using the "Filter..." view option on the upper-right corner where several
criteria are offered to reduce the amount of visible issues:

Figure 9.3. Filter Issues

A filtered view is indicated by a yellow background.

TIP

A text filter can also be applied to the table displaying the issues. See Section 8.1.4, “Tables” for details.

You can also focus on issues for certain code regions by defining an Issue Filter as described in Section 8.7.1, “Definition of
Filters, Modules and Root Directories”.

Handling Detected Issues

104

9.2.1. Identifying the Most Relevant Issues to Fix

For existing systems Sonargraph might produce a huge number of issues. This is expected, if no static code analysis has been used
before, so don't be discouraged! Now, what issues should be fixed first? We have implemented an algorithm in Sonargraph that
borrows the main idea from "The Eisenhower Method"1, that a problem has importance and urgency dimensions. The algorithm
computes numbers for both and treats them as coordinates. The resulting score is defined as the distance from origin.

The goal of this algorithm is identifying those issues were fixes provide the most benefit. There is not much benefit in fixing
issues in code that has not been changed during the last year. On the other hand, recently introduced issues are usually easier
to fix since the context is still present in the developer's head. Also, issues that have a great impact like huge cycle groups that
involve frequently changed code and that could be resolved by eliminating a small number of dependencies provide a higher
benefit than refactoring a slightly too complex method.

The importance of an issue is computed including the issue category (e.g. architecture violation, threshold violation), severity
and impact (e.g. the size of a cycle group, the number of involved lines in a duplicate code block) as parameters.

The urgency is computed by including data from the source control management (SCM) to generate a boost for issues involving
files that have been changed frequently and from the System Diff (see Chapter 14, Examining Changes) to generate a boost for
new or worsened issues. Additionally, the number of references to break up a cycle group is included in the urgency calculation
to generate a boost for cycle groups that are now still easy to fix, also known as 'low-hanging fruit'. Similarly, the 'tolerance' (lines
being different) in duplicate code blocks is included to generate a boost for duplicate code blocks where it is now still easy to
extract common logic, i.e. duplicate code blocks with a low tolerance.

NOTE

Treat the computed scores and the ranking as hints! Let us know if you notice that a certain type of issue is constantly
ranked either too high or too low, or if you require further configuration options.

Details of the algorithm and individual computed values are displayed in the Properties view for a selected issue (see screenshot
below). Large cycle groups usually get a very high score, since their impact on the system is high and it is likely that any of the
involved sources have been modified. The selected duplicate code block shows a high "Urgency Ease of Fix" as both occurrences
are identical (0 reported tolerance) and is therefore a low-hanging fruit.

1 The Eisenhower Method , https://en.wikipedia.org/wiki/Time_management#The_Eisenhower_Method

https://en.wikipedia.org/wiki/Time_management#The_Eisenhower_Method

Handling Detected Issues

105

Figure 9.4. Ranking of Issues

Handling Detected Issues

106

9.2.2. Identifying Issue Hotspots
Since release 10.4.1 Sonargraph offers treemaps for visualizing the composition of a system with respect to its source files or
components. Treemaps allow the easy identification of hotspots as shown in the screenshot below, whereby each file is represented
by a square, the size of the square represents the size of the file. Green squares do not have issues, yellow have some, red squares
contain many issues.

Figure 9.5. Issue Hotspots Treemap Visualization

Parent elements are represented by rectangles using grey color shades to indicate the nesting depth. The representation of leaf
elements as squares makes it easy to spot relative size differences.

A new treemap configuration can be created via application menu "File" → "New" → "Other" → "New Treemap..." or via the
context menu of the 'Treemap' folder on the Files view. The configuration of the treemap is currently focused on the type of leaf
element ('Component' or 'Source File'), metric represented by square size ('Lines of Code' or 'Source Element Count') and the
resolution type ('None', 'Ignore', 'Task'). The red threshold configures the value that will be the first to be represented with a red
color. If set to '0' an even mapping of values to green, yellow and red is dynamically calculated.

TIP

When the option 'Link Master Views' in the top level toolbar is enabled, selecting a square/rectangle will reveal the
corresponding underlying element in the master view.

Handling Detected Issues

107

TIP

The Properties view will show information about the corresponding underlying element of the selected square/rectangle.

TIP

Hovering over a square/rectangle will open a tooltip showing additional information. That tooltip can be focused by
clicking into it with a left mouse click.

NOTE

Currently, no issues affecting elements above source file or component level are represented.

More functionality like filtering for specific issue types, categories, etc. will follow in upcoming releases.

Handling Detected Issues

108

9.3. Ignoring Issues
The upper section of the Ignore view provides information about the type of issue the resolution resolves, the assigned priority
for it, the assignee and an optional comment put in by the creator of the resolution among other data. The lower section displays
the affected elements of the issues that match the selected "Ignore" resolution.

Figure 9.6. Ignore View

As mentioned previously, you can also focus the analysis on certain code regions by defining an Issue Filter as described in
Section 8.7.1, “Definition of Filters, Modules and Root Directories”.

9.4. Defining Fix and TODO Tasks
"Fix" resolutions represent a proposed solution to one or many issues in the application. They are usually created to make sure
that the related issues get eventually dealt with by someone in the development team.

Sonargraph allows to define specific "TODO" tasks for the different system elements. Those tasks can be assigned to a member
of the development team to take care of. To define a TODO task, right click on the element and select "New TODO" in the
context menu.

The "Fix" and "TODO" tasks are listed in the Tasks view.

9.5. Editing Resolutions
Using the context menu, you can modify the assignee, priority or comment of a resolution and even delete it if you deem it does
not represent an appropriate solution anymore.

For some resolutions, right-clicking also offers the option of editing the element pattern of the resolution. The element pattern
is an identifier of the element(s) a resolution is applied to:

Handling Detected Issues

109

Figure 9.7. Resolution Dialog

The image above shows the element pattern matching mechanism between issues and resolutions. One resolution can be used to
match several different elements via a wildcard pattern. This mechanism allows to group together in the same resolution (ignore
or fix) current and new related issues as they are generated so to avoid the need to manually resolving each of them as they come
about. It also helps when dealing with issues that should likely be taken care of together or by the same person.

You can have an idea of what the pattern for a specific element looks like by creating a resolution for the related issue and then
looking at the element pattern section in the edit resolution dialog. You can create as many patterns for a resolution as you deem
convenient.

9.6. Details about Sonargraph's Resolution
Matching
Resolutions contain the fully qualified name of the affected element, so that they can be applied again when the System is
cleared and parsed or opened. As a consequence resolutions are vulnerable against rename operations of directories and files.
With Sonargraph version 10.5 advanced resolution matching has been introduced for cycle groups and duplicate code blocks, so
that the resolutions are matched, even if the fully qualified names of involved elements got changed. The "confidence" of the
resolution match is shown in the "Ignores" and "Tasks" views. Matching succeeds if the confidence is greater than 0.6. The same
algorithms are also used by the "System Diff" to identify matching issues from the baseline.

Also with Sonargraph version 10.5, the Script API was improved with the data type ISourceLineAccess that provides access
to file content and can be used to create issues that are more resilient against code changes by applying a similarity matching
algorithm taking into account the line's text, the line number, and surrounding lines as context. The following program listing
shows the key part of the script "FindFixmeAndTodosInComments.xml" (available in the "Core" quality model) that has been
improved with the new methods of the Script API:

Handling Detected Issues

110

visitor.onSourceFile
{
 SourceFileAccess source ->
 List<ISourceLineAccess> lines = source.getSourceLines();
 for(SourceLineAccess line : lines)
 {
 def fixmeMatcher = (line.getText() =~ fixmePattern);
 if(fixmeMatcher.count > 0)
 {
 numberOfFixmes += fixmeMatcher.count;
 def text = extractText(fixmeMatcher);
 result.addWarningIssue(source, "FIXME", text, line);
 }
 ...

Using this API, resolutions are now only applied for the selected issue and no longer automatically for all "FIXME"-issues in the
same file. "FIXME"-issues added later to the file need to be resolved separately offering a better control over new issues.

111

Chapter 10. Simulating Refactorings
Sonargraph allows the simulation of refactorings to quickly analyze different approaches to fix structural problems. Refactorings
represent a proposed improvement to your code base. They are usually created to make sure that the related improvement is dealt
with by someone in the development team, thus striving towards a healthy code base which is the ultimate goal of Sonargraph.

10.1. Creating Delete Refactorings
The Delete refactoring is available via "System" → "New Delete Refactoring..." or in the context menu when selecting an
appropriate element.

A delete refactoring may be applied to the following (physical) elements (i.e. elements that come from the parsing process and
are displayed in the Navigation view):

• Non-external programming elements (e.g. types, methods, fields)

• Non-external Directories (but not root directories)

• Non-external Namespaces

• Dependencies (parser level or aggregated)

When deleting parser level or aggregated dependencies there are up to 3 options. Their appearance, order and selected default
option depend on the current context:

• Delete Parser Dependencies: Delete the currently contained parser dependencies of a given edge based on parser dependency
patterns.

• Delete Parser Dependencies Based on Endpoints: Delete the parser dependencies of a given edge based on end point patterns,
after the next 'refresh' there could be more or less matches.

• Delete Violating Parser Dependencies: Only delete the violating parser dependencies of a given edge based on parser
dependency patterns.

Directories are always deleted recursively. Namespaces can be deleted flat or recursively. When deleting a type all its methods
and fields or nested types are deleted.

Delete refactorings on (physical) namespaces may also be applied in the (logical) Namespaces view. Since a logical namespace
(either in system or module scope) may be based on more than one physical namespace, the deletion of a logical namespace
might delete several physical namespaces.

Delete refactorings may also be applied in the Architecture view.

Delete refactorings may also be applied in the Exploration, Graph and Dependencies View which are opened based on arbitrary
Navigation, Namespace and Architecture view selections.

Delete refactorings can be managed in the Refactorings view as described in Section 10.3, “Managing Refactorings”.

10.2. Creating Move/Rename Refactorings
The Move/Rename refactoring is available via "System" → "New Move/Rename Refactoring..." or in the context menu when
selecting an appropriate element.

A Move/Rename refactoring may be applied to the following (physical) elements (i.e. elements that come from the parsing
process and are displayed in the Navigation view):

• Directories (but not root directories) for C# and C/C++

Simulating Refactorings

112

• Packages for Java

• Components for Java, C# and C/C++

• Physical top-level programming elements for Java, C# and C/C++ (e.g. types, free functions and global variables). 'Physical'
means that logical top-level programming elements are not supported (i.e. types and so forth in logical views)!

Move/Rename refactorings may also be applied in the Architecture view.

Move/Rename refactorings may also be applied in the Exploration, Graph and Dependencies View when they are opened based
on arbitrary Navigation and Architecture view selections.

10.3. Managing Refactorings
The upper section of the Refactorings view provides information about the type of refactoring, the provider, the applicability,
the assigned priority for it, the assignee and an optional description.

The lower section displays the affected elements of the refactoring.

Figure 10.1. Refactorings View

 The "Sonargraph Refactorings" view offers filter options in the top right corner. Refactorings can be filtered by status, priority,
assignee and description.

10.4. Best Practices
The code base of a living software project changes fast, therefore we recommend the following approach to work with
refactorings:

• Do not get carried away and create hundreds of refactorings! It is better to "simulate a little, refactor a little".

Try to limit the impact of individual refactorings. Move and rename a package at the top of the hierarchy might have severe
consequences on the code base and are most likely high-risk operations during implementation.

If a package or class file gets renamed to a different name than specified in the refactorings, the refactorings are no longer
applicable. There might be a chance in the future to semi-automatically update refactoring definitions based on the project's
history, but we do not know when this will be implemented.

Simulating Refactorings

113

• Work with only a few virtual models.

Note that in the IDE integrations, the standard "Modifiable.vm" is always applied and currently cannot be changed.

Virtual models are great for experimenting with refactorings in isolation. But, since refactorings are not synchronized between
virtual models, it is recommended to have one "main" model that contains approved refactorings and integrate the experiments
as frequently as possible. If the same compilation unit is affected by refactoring sequences in different virtual models,
implementing the refactorings of the first model will make the refactorings of the second model "inapplicable". We plan to
improve the exchange of refactorings between virtual models in future versions.

Related topics:

• Section 20.1.7, “Execute Refactorings in Eclipse”

114

Chapter 11. Defining an Architecture
Sonargraph allows the definition of an architecture via a Domain Specific Language (DSL) that is expressive and readable
enough so that every developer is able to understand it. The graphical representation in Sonargraph 7 allowed the creation of the
architectural blueprint in one single diagram. This led to potentially very big and complex diagrams that are difficult to understand.

The requirements for the new DSL approach were the following:

1. It should be possible to describe an architecture in a set of files. Some of them should be generic enough so that they could
be reused by many projects, e.g. a generic template describing the layering of a system.

2. It should be possible to describe an architecture in form of several completely independent aspects. E.g. one aspect describes
layering, another aspect describes components and a third aspect looks at separation of client and server logic.

3. On the other hand the language should also be powerful to describe the complete architecture in a single file.

4. The DSL must be easy to read and easy to learn.

5. The restrictions for dependencies should allow also the specification of dependency types (e.g. "new", "inheritance", etc.).

To create an architecture description you select "New Architecture File..." from the menu "File/New...". That will open an editor
where you can work on your architecture description. You can have as many architecture files as you like. If the description
should be used to check for architecture violations, the architecture file needs to be added to Sonargraph's architecture check.
This is done in the "Files" tab of the "Navigation" view by right-clicking on your architecture file and select "Add to Architecture
Check..." from the context menu. If you later decide to remove the file from Sonargraph's architecture check you can also do
this via the context menu.

It is also recommended to open the "Architecture View" while working on an architectural model via the menu "Window" →
"Show View" → "Architecture View". The view is split vertically into two main sections. In the top section there are three tabs to
provide a quick overview about the checked files in the physical and logical model as well as which files are currently not part of
the architecture check. These unchecked files might also include files that are imported by currently checked architectural files.

TIP

The context menu of a selected architecture model or artifact in the Architecture view offers the option to show
the selection in the Exploration. This usually reveals very quickly where the architecture needs adjustment or where
violations exist.

TIP

The context menu of a selected (and checked) architecture model also offers the option to show it as an UML Component
diagram in an Architecture Diagram view (See Chapter 12, Visualizing Architecture Aspects for details).

Defining an Architecture

115

Figure 11.1. Architecture View

The tabs for logical and physical models contain architecture models that are actively checked. That means you will be able to
see which elements are assigned to which artifact by browsing through the tree. You can also easily see which elements have not
been assigned to any artifact by inspecting the nodes for "Unassigned internal/external components".

The bottom section lists all architecture violations of the element selected in the middle section. If no element is selected all
architecture violations from all models are shown. If you click on a line in that table the associated violating dependencies are
shown in the "Parser Dependencies Out" auxiliary view.

11.1. Models, Components and Artifacts
To describe architecture in a formal way we first need to think about the basic building blocks that we could use to describe the
architecture of a system. The smallest unit of design is what we call a component. What is represented by a component depends
on the base model you choose for you architecture.

Since version 9.7 Sonargraph supports two different base models. The "physical" model - which is the default model and the only
model that was supported prior to 9.7 - is based on the model in the "Navigation View". Components are based on the physical
layout of your project. In Java a component is a single source files. In C# a component is a single C# source file or a top level
type in an external assembly. In C/C++ components are created dynamically out of combining associated header and source files.

The "logical" model is based on the model in the module based namespace view. Here our components are top level programming
elements, which for Java or C# is always some type, usually a class or an interface. The logical model organizes these types only
by their namespaces/packages. The directory structure of the project is not reflected in the model. In C/C++ components can also
be functions or other top level programming elements. For Java there is almost no difference between the physical and the logical
model. Only in the rare case that a Java file has more than one top level type the logical model would create one component for
each top level type, while the physical model only generates one component per source file.

So logical models are more interesting for languages like C++ and C# where the namespace structure is not related to the physical
organization of your project. For these languages it makes sense to use the logical model if your namespaces are in some way
reflecting your architecture.

To define an architecture you would group associated components into artifacts. Then you could group several of those artifacts
together into higher level artifacts and so on. For each artifact you would also define which other artifacts can be used by them.

Defining an Architecture

116

Each component has a name which we call the architecture filter name. In the physical model the filter name starts with the
module name or "External [language]". Then follows the path of the component relative to a module specific root directory. The
filter name ends with the name of the source file without an extension, All name parts are separated by slashes.

TIP

To determine the architecture filter name of a component just click on the component in the navigation or namespace
view and check the "Properties View". There you should be able to see the architecture filter name and other properties
of the selected item.

When using a logical model the filter name again starts with the module name followed by the namespace followed by the name
of the programming element. Each name part is again separated by slashes.

In most cases assignment of components to artifacts is based on their architecture filter name. But it is also possible to assign
components based on other attributes like annotations or implemented interfaces. This will be explained in more detail later in
this chapter.

// Main.java in package com.hello2morrow:
"Core/com/hello2morrow/Main"

// The Method class from java.lang.reflection:
"External [Java]/[Unknown]/java/lang/reflect/Method"

// SimpleAction.cs in subfolder of NHibernate:
"NHibernate/Action/SimpleAction"

// An external class from System.dll:
"External [C#]/System/System/Uri"

For internal components (components that actually belong to your project) we use the following naming strategy:

module/rel-path-to-project-root-dir/source-name (physical)

module/namespace-or-package/element-name (logical)

For external components (third party components used by your project) we use a slightly different strategy. Here we might not
have access to any source files:

External [language]/jar-or-dll-if-present/rel-path-or-namespace/typename (physical)

External [language]/jar-or-dll-or-header/namespace-or-package/element-name (logical)

Now we can use patterns to describe groups of components:

// All components from the Core module with "business" in their name:
"Core/**/business/**"

// All components in java.lang.reflect:
"External*/*/java/lang/reflect/*"

As you can see a single '*' matches everything except a slash, '**' matches over slash boundaries. You can also use '?' as a
wildcard for a single character.

Now we can build our first artifacts:

Defining an Architecture

117

model "physical" // or "logical"

artifact Business
{
 include "Core/**/business/**"
}

artifact Reflection
{
 include "External*/*/java/lang/reflect/*"
}

In the first line you specify which model you would like to use. If you omit the model specification we assume "physical".

We grouped all components from module "Core" with "business" in their name into an artifact named "Business". The reflection
classes from the Java runtime are now in their own artifact called "Reflection". Artifacts can also have "exclude" filters. They
help you to describe the content of an artifact with an "everything except" strategy. Exclude filters will always be applied after
all include filters.

TIP

More than one "include" statement can be used to assign components to an artifact. It is also possible to use "exclude"
statements to specify exceptions from the elements included above.

11.1.1. Using other criteria to assign components to artifacts
Sometimes the information needed to properly assign a component to an artifact is not part of its architecture filter name. Imagine
for example a code generator that generates classes for different functional modules. If all those classes end up in the same
package it becomes very hard to assign the generated classes to the right functional modules unless the class name contains some
clue. If those generated classes could be properly assigned based on an annotation that would be a far more effective method
of assignment.

The following class shows a practical example:

package com.company.generated;

import com.company.FunctionalModule;

@FunctionalModule(name = "Customer")
class E5173
{
 //
}

Neither the class name nor the package name contain a clue that this class is associated with the functional module "Customer".
Only the annotation gives that information away.

Since Sonargraph 9.7 it is possible to use what we call "attribute retrievers" in name patterns. In our example we would do the
assignment as shown below:

artifact Customer
{
 include "JavaHasAnnotationValue: com.company.FunctionalModule: name: Customer"
}

If a search pattern contains colons it is split up into the parts separated by the colons (colons must be followed by a single space).
The first part must be the name of an existing attribute retriever, in our example "JavaHasAnnotationValue". The last part is
always a pattern describing what we would like to match and can make use of the wildcards "**", "*" and "?". Everything in
between the first part and the last part are parameters for the retriever. Here we tell the retriever that we want to match with the
"name" attribute of the annotation "com.company.FunctionalModule". Most retrievers don't need parameters, the example above
is therefore already a pretty sophisticated use of attribute retrievers.

Defining an Architecture

118

11.1.2. List of predefined attribute retrievers
PhysicalFilterName

This retriever only works in the context of a logical model and will return the physical architecture filter name of a component. The
component in this case would be a logical element, e.g. a class. The result is the architecture filter name of the physical component
containing this element. Using this retriever allows you to mix physical and logical assignment strategies in a logical model.

WorkspaceFilterName

This retriever will return the workspace filter of any component. The workspace filter name is the relative path of the source file
containing an element. This can be useful to separate assignment by root directory (e.g. test code versus generated code), since
root directories are not part of any architecture filter name.

JavaHasAnnotation

This retriever only works for Java and will match if the pattern matches the fully qualified type name of any annotation of a class.
In a physical model if a Java file has more than one top level type we only consider the Java class that has the same name as the
file. Please note that "*" will match anything except dots ('.') for this retriever.

artifact Controller
{
 include "JavaHasAnnotation: **Controller"
}

This example will match any class that has an annotation ending with "Controller".

JavaTypeOf

This retriever only works for Java and will match if the pattern matches the fully qualified type name of any direct or indirect
super type (class or interface). In a physical model if a Java file has more than one top level type we only consider a Java type
that has the same name as the file. Please note that "*" will match anything except dots ('.') for this retriever.

JavaExtendsClass

This retriever only works for Java and will match if the pattern matches the fully qualified type name of any direct or indirect
base class of a class. In a physical model if a Java file has more than one top level type we only consider the Java class that has
the same name as the file. Please note that "*" will match anything except dots ('.') for this retriever.

JavaImplementsInterface

This retriever only works for Java and will match if the pattern matches the fully qualified type name of any interface implemented
by the class. In a physical model if a Java file has more than one top level type we only consider the Java class that has the same
name as the file. Please note that "*" will match anything except dots ('.') for this retriever.

JavaExtendsImplementsInterface

This retriever only works for Java and will match if the pattern matches the fully qualified Java name of any interface implemented
by a class or extended by an interface. In a physical model only the Java main type (i.e. the type matching the component's name)
is considered. This only works on 'internal' types. Please note that “*” will match anything except dots ('.').

JavaHasAnnotationValue

This retriever only works for Java and will match if the pattern matches value of a specific annotation of a class. It has two
parameters: the fully qualified Java name of the annotation class and the name of the annotation property to extract. In a physical
model if a Java file has more than one top level type we only consider the Java class that has the same name as the file. Please
note that "*" will match anything except dots ('.') for this retriever.

CSharpTypeOf

Defining an Architecture

119

This retriever only works for C# and will match if the pattern matches the fully qualified type name (namespace plus class name
separated by '.') of any direct or indirect super type. In a physical model a C# file will only be considered if it contains a type that
has the same name as the file. Please note that "*" will match anything except dots ('.') for this retriever.

CSharpExtendsClass

This retriever only works for C# and will match if the pattern matches the fully qualified type name (namespace plus class name
separated by '.') of any direct or indirect base class of a class. In a physical model a C# file will only be considered if it contains
a type that has the same name as the file. Please note that "*" will match anything except dots ('.') for this retriever.

CSharpImplementsInterface

This retriever only works for C# and will match if the pattern matches the fully qualified type name (namespace plus class name
separated by '.') of any interface implemented by the class. In a physical model a C# file will only be considered if it contains a
type that has the same name as the file. Please note that "*" will match anything except dots ('.') for this retriever.

CppExtendsClass

This retriever only works for C++ and will match if the pattern matches the fully qualified type name (namespace plus class
name with '.' as separator) of any direct or indirect base class of a class. In a physical model a C++ component will only be
considered if it contains a type that has the same name as the component. Please note that "*" will match anything except dots
('.') for this retriever.

CppHeaderPath

This retriever only works for physical models in C and C++ and will match if the pattern matches the identifying path of the
main header file of a component. The main header is the header file that has the name of the component, while the identifying
path is the relative path of the header relative to the Sonargraph system directory. Use this retriever if the location of a header
file is more relevant for the architecture than the source file location.

TIP

Some attribute retrievers require a fully qualified type name. The Properties view shows the "Fully Qualified Type
Name" property for a selected type and you can copy it from there.

Defining an Architecture

120

11.2. Interfaces and Connectors
To define allowed relationships between artifacts it helps to use some simple and effective abstractions. Lets assume every artifact
has at least one incoming and one outgoing named port. Artifacts can connect to other artifacts by connecting an outgoing port
with an incoming port of another artifact. We will call outgoing ports "Connectors" and incoming ports "Interfaces". By default
each artifact always has an implicit connector called "default" and an implicit interface also called "default". Those implicit ports
always contain all the elements contained in an artifact, unless redefined by the architect.

Let us now connect our artifacts:

artifact Business
{
 include "Core/**/business/**"
 connect default to Reflection.default
}

artifact Reflection
{
 include "External*/*/java/lang/reflect/*"
}

This will allow all elements contained in "Business" use all elements contained in "Reflection" by connecting the default connector
of "Business" with the default interface of "Reflection". In our architecture DSL you can also write this shorter:

artifact Business
{
 // ...
 connect to Reflection
}

// ...

If we reference an artifact without explicitly naming a connector or an interface the language will assume that you mean the
default connector or interface. Connections can only be established between connectors and interfaces. The syntax of the connect
feature is as follows:

connect [connectorName] to interfaceList

The interface list is a comma separated list of interfaces to connect to. The connector can be omitted, in that case the default
connector will be used.

A dependency from a component A to another component B is not an architecture violation if any of the following conditions
is true:

• Either A and/or B do not belong to any artifact.

• A and B belong to the same artifact.

• The artifact of B is nested in the artifact of A.

• There is an explicit connection from a connector that contains A to an interface that contains B.

• B belongs to the default interface of a "public" artifact that is a sibling of a artifact that has a default connector containing A.
The artifact of A must be defined before the artifact of B. In other words, "public" artifacts are accessible by sibling artifacts
defined above them. ("public" will be introduced later)

• The artifact of A or one of its parent artifacts is "unrestricted" and B is assigned directly or indirectly to a sibling of the
unrestricted artifact. In other words, unrestricted artifacts have access to all of their siblings. ("unrestricted" will also be
introduced later)

Defining an Architecture

121

• The artifact of A or one of its parent artifacts is "strict" (i.e. is a strict layer) and B is assigned directly or indirectly to the next
following sibling of the strict artifact. More precisely: A must be part of the default connector of the strict artifact, while B must
be part of the default interface of its next sibling. Strict layers are allowed to access the layer (artifact) directly below them.

• The artifact of A or one of its parent artifacts is "relaxed" (i.e. is a relaxed layer) and B is assigned directly or indirectly to the
any of the siblings of the relaxed artifact that are defined after it. More precisely: A must be part of the default connector of
the relaxed artifact, while B must be part of the default interface of any of its siblings that are defined after it. Relaxed layers
are allowed to access all the layers (artifacts) defined below them.

Any dependency that does not meet any of the above conditions is considered to be an architecture violation.

"strict", "relaxed" and "unrestricted" are mutually exclusive, i.e. an artifact can have at most one of those three stereotypes.

Now let us assume that we would not want anybody to use the class "Method" of the reflection artifact. This can be achieved
by redefining the default interface of "Reflection":

artifact Reflection
{
 include "**/java/lang/reflect/*"

 interface default
 {
 include all
 exclude "**/Method"
 }
}

Doing that makes it impossible to access the Method class from outside the "Reflection" artifact because it is not part of any
interface. Here we used an include all filter to add all elements in "Reflection" to the interface. Then by using an exclude filter
we took out Method from the set of accessible elements in the interface.

Most of the time you will not need to define your own connectors. This is only necessary if you want to exclude certain elements
of the using artifact from accessing the used artifact. Using more than one interface on the other hand can be quite useful. But
for the sake of completeness let us also define a connector in "Business":

artifact Business
{
 include "Core/**/business/**"

 connector CanUseReflection
 {
 // Only include the controller classes in Business
 include "**/controller/**"
 }

 connect CanUseReflection to Reflection
}

// ...

Now only classes having "business" and "controller" in their name will be able to access "Reflection".

Let us do something more advanced and assume that the architect wants to make sure that "Reflection" can only be used from
elements in the "Business" layer. To achieve that we can simply nest "Reflection" within the "Business" artifact and hide it from
the outside world:

Defining an Architecture

122

artifact Business
{
 include "Core/**/business/**"

 hidden artifact Reflection
 {
 // Need a strong pattern to bypass patterns defined by parent artifact
 strong include "**/java/lang/reflect/*"
 }
}

By declaring a nested artifact as "hidden" it will be excluded from the default interface of the surrounding artifact. We also don't
need to connect anything because parent artifacts always have full access to the artifacts nested within them. In general an artifact
can access anything that belongs to itself including nested artifacts and all components that are not part of any artifact. Access
to other artifacts requires an explicit connection.

Notice the strong include pattern. Without using a strong pattern the elements belonging to reflection would not make it past
the pattern filters defined by "Business".

You can also use the "local" modifier for artifacts. A local artifact will not be part of the default connector of the surrounding
artifact.

If you later find out that another part of your software needs access to "Reflection" too you have several options. You could add
an interface to "Business" exposing "Reflection" or you could again make a top level artifact out of it. Here is how you'd expose it:

artifact Business
{
 include "Core/**/business/**"

 hidden artifact Reflection
 {
 // Need a strong pattern to bypass patterns defined by parent artifact
 strong include "External*/*/java/lang/reflect/*"
 }

 interface Refl
 {
 export Reflection
 }
}

With export you can include nested artifacts or interfaces of nested artifacts in an interface. Now clients can connect to the
"Business.Refl". The counterpart of export for connectors is the keyword include. It will include nested artifacts or connectors
from nested artifacts in a connector.

In that particular example we can expose "Reflection" even more easily:

artifact Business
{
 include "Core/**/business/**"

 exposed hidden artifact Reflection
 {
 // Need a strong pattern to bypass patterns defined by parent artifact
 strong include "External*/*/java/lang/reflect/*"
 }
}

Now that looks a little strange on first sight, doesn't it - "exposed" and "hidden" at the same time? Well, "hidden" will exclude
"Reflection" from the default interface of "Business", while "exposed" makes it visible to clients of "Business". Now clients can

Defining an Architecture

123

connect to "Business.Reflection" which is a shortcut for "Business.Reflection.default". If "Reflection" had more interfaces they
could also connect to those other interfaces.

That brings us to another important aspect of our architecture DSL - encapsulation. An artifact only exposes its interfaces or
the interfaces of exposed artifacts to its clients. It is not possible for a client to connect to a nested artifact until it is explicitly
exposed by its surrounding artifact.

export and include can be used together with the keyword any. The following example shows how you could explicitly define
the default interface and the default connector of any artifact:

artifact SomeArtifact
{
 include "**/something/**"

 hidden artifact Hidden
 {
 // ...
 }

 local artifact Local
 {
 // ...
 }

 artifact Nested
 {
 // ...
 }

 interface default
 {
 include "**"
 export any // will export 'Local.default' and 'Nested.default'
 }

 connector default
 {
 include "**"
 include any // will include 'Hidden.default' and 'Nested.default'
 }
}

If you use any by itself it will include all nested artifacts except hidden artifacts for export and local artifacts for include. You can
also explicitly name an interface or a connector of a nested artifact after any. In that case the interface or connector is included
if it exists, even if its artifact is marked as hidden or local (see next example).

Defining an Architecture

124

artifact SomeArtifact
{
 include "**/something/**"

 hidden artifact Hidden
 {
 // ...
 interface UI { /* ... */ }
 }

 artifact Nested
 {
 // ...
 interface UI { /* ... */ }
 }

 interface default
 {
 export any.UI // will export 'Hidden.UI' and 'Nested.UI'
 }
}

This feature can become quite useful if there are many nested artifacts with a similar structure.

We mentioned before that an artifact can have the modifier unrestricted. This means that dependencies coming out of such an
artifact to any of its siblings will not be checked. That can be useful if you are creating an architecture description for an existing
system with many violations. By declaring some artifacts as unrestricted you are not being overwhelmed by violations and can
focus on the most important violations first. It is also useful for grouping legacy code that you want to exclude form architecture
checks.

strict artifact SomeArtifact
{
 include "**/something/**"
}
strict artifact OtherArtifact
{
 include "**/other/**"
}
unrestricted artifact Legacy
{
 // All remaining internal components
 include "**"
 exclude "External*/**"
}

In the example above the two artifacts above "Legacy" have clear architecture rules. They are both defined as strict layers, i.e.
they have access to the artifact defined directly below them. All remaining internal components are assigned to "Legacy". Since
"Legacy" is unrestricted, its dependencies towards its siblings are not checked. That can be quite useful when you start defining
an architecture for an existing system and only want to focus on certain parts of the system. Just keeping components unassigned
would have a slightly different effect. I our example we do not allow dependencies from "SomeArtifact" to "Legacy" because we
have defined "SomeArtifact" as a strict layer. That restriction could not be checked if we had kept the components in "Legacy"
unassigned.

Here is a summary of the different stereotypes that can be used on artifacts:

Stereotype Description

hidden The artifact will not be included in its parents default interface.

local The artifact will not be included in its parents default connector.

public All sibling artifacts defined above this artifact can implicitly access the default interface from this
artifact using their default connector.

Defining an Architecture

125

Stereotype Description

unrestricted All elements of this artifact can freely access the default interfaces of all the siblings of this artifact.

strict Creates an implicit connection from the default connector of this artifact to the default interface of its
next sibling. (strict layering)

relaxed Creates implicit connections from the default connector of this artifact to the default interfaces of all
sibling artifacts defined after this artifact. (relaxed layering)

exposed Makes this artifact visible to clients of its parent.

optional Don't warn if this artifact has no components assigned to it.

deprecated Do create a warning if any components are assigned to this artifact.

Table 11.1. Artifact stereotype summary

Additionally, in order to ease the visualization of the different stereotypes that can modify the behavior of an artifact, Sonargraph
uses the following icons and/or decorators:

 via "apply" via "require" public local hidden

artifact

unrestricted artifact

strict artifact

relaxed artifact

Table 11.2. Icons/Decorators for Artifacts

Note that artifacts via "apply" or "require" can also have decorators for public, local and hidden stereotypes.

At the end of this section let us have a look at the general syntactic structure of artifacts, interfaces and connectors:

artifact name
{
 // include and exclude filters
 // nested artifacts
 // interfaces and connectors
 // connections
}

interface iname
{
 // include and exclude filter
 // exported nested interfaces
}

connector cname
{
 // include and exclude filters
 // included nested connectors
}

The order of the different sections is important. Not following this particular order will lead to syntax errors.

Now that we have covered the basic building blocks we can progress to more advanced aspects. In the next section I will focus
on how to factor out reusable parts of an architecture into separate files that can best be described as Architecture Aspects. We
will also cover the restriction of dependencies by dependency types.

Defining an Architecture

126

11.3. Reusing Architecture Aspects
Let us assume we want to use a predefined layering for several modules of our software system. Without a mechanism for reuse
we would have to write something like that:

artifact Module1
{
 include "Module1/**"

 artifact UI
 {
 include "**/ui/**"
 connect to Business
 }
 artifact Business
 {
 include "**/business/**"
 connect to Persistence
 }
 artifact Persistence
 {
 include "**/persistence/**"
 }
 public artifact Model
 {
 include "**/model/**"
 }
 interface Service
 {
 export Business, Model
 }
}

artifact Module2
{
 include "Module2/**"

 artifact UI
 {
 include "**/ui/**"
 connect to Business
 }
 artifact Business
 {
 include "**/business/**"
 connect to Persistence
 }
 artifact Persistence
 {
 include "**/persistence/**"
 }
 public artifact Model
 {
 include "**/model/**"
 }
 interface Service
 {
 export Business, Model
 }
}

As you can see the inner structure of both modules is completely identical. Now imagine having dozens of modules. We clearly
need a better way to model that. That is where the apply directive (see below) comes into the game that allows splitting the
architecture into several architecture aspects, each contained in its own file.

Defining an Architecture

127

We also introduced a new artifact modifier on the fly: public. All artifacts marked as public can be used by all non-public artifacts
on the same level (siblings in the artifact tree). "UI", "Business" and "Persistence" therefore have an implicit connection to
"Model" (from default connector to default interface).

// File layering.arc
artifact UI
{
 include "**/ui/**"
 connect to Business
}
artifact Business
{
 include "**/business/**"
 connect to Persistence
}
artifact Persistence
{
 include "**/persistence/**"
}
public artifact Model
{
 include "**/model/**"
}
// Top level interfaces only make sense, when used together with "apply" (see below)
interface Service
{
 export Business, Model
}

// New file modules.arc
artifact Module1
{
 include "Module1/**"

 apply "layering"
}

artifact Module2
{
 include "Module2/**"

 apply "layering"
}

Now we only have to describe the inner structure of modules in one separate file and apply this structure to them using the apply
directive. That is a very powerful construct that will enable you to define reusable patterns.

Let us introduce two additional artifact modifiers that can be useful in certain situations: "optional" is used for artifacts defined
within an aspect that could potentially be empty. Using "optional" will suppress the warning marker that is attached to artifacts
that have no components assigned to them.

"deprecated" works the other way around. Artifacts declared as "deprecated" will get a warning marker if they have components
assigned. That features is very useful to catch components that are not named correctly. The next example will show both
modifiers in action:

Defining an Architecture

128

// File layering.arc
artifact UI
{
 include "**/ui/**"
 connect to Business
}
artifact Business
{
 include "**/business/**"
 connect to Persistence
}
artifact Persistence
{
 include "**/persistence/**"
}
public artifact Model
{
 include "**/model/**"
 connect to Util // since Model is public this is required
}
optional public artifact Util
{
 include "**/util/**"
}
deprecated artifact Deplorables
{
 include "**"
}
// Top level interfaces only make sense, when used together with "apply" (see below)
interface Service
{
 export Business, Model
}

We added two more artifacts. "Util" is for utility classes that might or might not be present. That is why we added the "optional"
modifier. "Util" is also "public"" so that all non-public sibling artifact can use the utility classes implicitly. Since "Model" is also
declared to be "public" we need to make an explicit connection to "Util" if we want "Model" to have access to "Util".

The artifact "Deplorables" catches all remaining components that are assigned to the surrounding artifact. Note that the order
of artifacts is critical in this case. "**" matches everything, so if we would move "Deplorables" to the top of the artifact list it
would get all available components assigned. At the end of the list it will only get those components that have not been assigned
to the artifacts above. If we did not have the "Deplorables" artifact those would usually stay assigned to the parent artifact or
stay unassigned if there is no parent artifact.

So, having an unconnected deprecated artifact like "Deplorables" is useful for several reasons:

• It catches all components that are not properly named.

• Usually it is desirable that parent artifacts distribute all their components among their children and do not keep components
to themselves. This is achieved by using the "**" pattern in "Deplorables".

• If there are components that are not properly named the artifact will get a warning marker and all dependencies to those
components are marked as architecture violations.

Defining an Architecture

129

11.4. Extending Aspect Based Artifacts
Now let us assume we want to refactor one of our modules to have an extra layer. We cannot do this change in the aspect file
because this would apply to all modules. If we still want to be able to use the aspect for this module we need some way to extend
or modify the elements in the aspect file:

artifact Module2
{
 include "Module2/**"

 apply "layering"

 // New layer
 artifact BusinessInterface
 {
 include "**/businessinterface/**"
 }

 // Now Business and UI need access to BusinessInterface
 extend Business
 {
 connect to BusinessInterface
 }
 extend UI
 {
 connect to BusinessInterface
 // UI should not use Business directly
 disconnect from Business
 }
}

Extending an artifact only makes sense in the context of apply directives. It allows us to add nested elements to an artifact and/
or modify its connections to other artifacts. Within an extended artifact you can also use the keyword override to override the
definitions of interfaces or connectors defined in the original version of the artifact:

artifact Module2
{
 // ...
 extend Business
 {
 // This assumes that the imported version of Business has an interface named "X"
 override interface X
 {
 // Use other patterns or other exports
 include "**/x/*"
 }
 connect to BusinessInterface
 }
 // ...
}

This allows you to adapt the architecture elements derived from an aspect file when needed.

Defining an Architecture

130

11.5. Extending Interfaces or Connectors
It is also possible to extend interfaces or connectors defined via apply. That is sometimes quite useful as shown in the following
example:

artifact Module2
{
 include "Module2/**"

 apply "layering"

 // New artifact that should also be part of the service interface
 artifact ServiceInterface
 {
 include "**/serviceinterface/**"
 }

 // Make the ServiceInterface artifact part of the interface Service
 extend interface Service
 {
 // add an extra export
 export ServiceInterface
 }
}

Without the possibility to extend interfaces or connectors we would be forced to create a completely new interface with a different
name.

Defining an Architecture

131

11.6. Adding Transitive Connections
Transitive dependencies are a useful addition to formal architecture descriptions. The following example shows a typical use case:

artifact Controller
{
 include "**/controller/**"
 connect to Foundation
}

artifact Foundation
{
 include "**/foundation/**"
}

Here Controller depends on Foundation. We also assume that classes from Foundation are used in the public interface of the
controller classes. That means that each client of Controller must also be able to access Foundation.

artifact ControllerClient
{
 include "**/client/**"
 connect to Controller, Foundation
}

This is certainly not ideal because it requires the knowledge that everything that uses the Controller artifact must also connect
to Foundation. It would be better if that could be automized, i.e. if anything connects to Controller it will automatically be
connected to Foundation too.

Using transitive connections this is easy to implement:

artifact ControllerClient
{
 include "**/client/**"
 connect to Controller // No need to connect to Foundation explicitly
}

artifact Controller
{
 include "**/controller/**"
 connect to Foundation transitively
}
// ...

Using the new keyword transitively in the connect statement will add Foundation to the default interface of Controller. That
means that anybody connecting to the default interface of Controller will also have access to Foundation without needing an
explicit dependency.

The new keyword only influences the default interface. For explicitly defined interfaces the transitive export also has to be made
explicit:

Defining an Architecture

132

artifact ControllerClient
{
 include "**/client/**"
 connect to Controller.Service // Will also have access to Foundation
}

artifact Controller
{
 include "**/controller/**"

 interface Service
 {
 include "**/service/**"
 export Foundation // Transitive connection must be explicit here
 }

 connect to Foundation transitively // only affects default interface
}
// ...

Before we had transitive connections an interface could only export nested artifacts. Now interfaces can also export connected
interfaces. In the example above we add the default interface of Foundation to the Service interface of Controller. Exporting
interfaces that are not a connection of the parent artifact will cause an error message.

Defining an Architecture

133

11.7. Restricting Dependency Types
Sometimes you are in a situation, where you allow one artifact to use another one, but would like to restrict the usage to
dependencies of a certain type. For example let us assume you do not want the UI layer to create new instances of classes defined
in the "Model" layer. Only "Business" and "Persistence" would be allowed to create "Model" instances. You can solve this by
creating a new interface that restricts the usage of certain dependency types:

artifact UI
{
 include "**/ui/**"
 connect to Business, Model.UI
}
artifact Business
{
 include "**/business/**"
 connect to Persistence, Model
}
artifact Persistence
{
 include "**/persistence/**"
 connect to Model
}
artifact Model
{
 include "**/model/**"
 interface UI
 {
 include all // everything in "Model"
 exclude dependency-types NEW
 }
}

Now it would be marked as an architecture violation if a class from the UI layer would create a new instance of an object from
the model layer. Please note that we had to remove the public modifier from "Model". If we had kept it there would have been
an implicit connection from UI to the default interface of Model bypassing our special restriction.

Currently the language supports the following list of language agnostic abstract dependency types:

 // instance creation
 NEW

 // inheritance
 EXTENDS

 // interface implementation
 IMPLEMENTS

 // function or method calls
 CALL

 // reading a field or variable
 READ

 // writing to a field or variable
 WRITE

 // all other uses
 USES

In the next section we will look at another advanced concept called "connection schemes".

Defining an Architecture

134

11.8. Connecting Complex Artifacts
In this section we will examine the different possibilities to define connections between complex artifacts. Let us assume we use
the following aspect file to describe the inner structure of a business module:

// File layering.arc
exposed artifact UI
{
 include "**/ui/**"
 connect to Business
}
exposed artifact Business
{
 include "**/business/**"

 interface default
 {
 // Only classes in the "iface" package can be used from outside
 include "**/iface/*"
 }

 connect to Persistence
}
artifact Persistence
{
 include "**/persistence/**"
}
exposed public artifact Model
{
 include "**/model/**"
}

This example also show a special feature of our DSL. You can redefine the default interface if you want to restrict incoming
dependencies to a subset of the elements assigned to an artifact. Our layer "Business" is now only accessible over the classes
in the "iface" package.

Now lets bring in some business modules:

// File modules.arc
artifact Customer
{
 include "Customer/**" // All in module "Customer"
 apply "layering"
 connect to Core
}
artifact Product
{
 include "Product/**" // All in module "Product"
 apply "layering"
 connect to Core
}
artifact Core
{
 include "Core/**" // All in module "Core"
 apply "layering"
}

Here "Customer" and "Product" are connected to "Core". We used the most simple way to connect those artifacts which means
that all elements in "Customer" or "Product" can use everything in the default interface of "Core". Since we redefined the default
interface of "Business" this is not everything in "Core". The default interface of "Core" exports all default interfaces of non-
hidden nested artifacts which means that the restrictions defined in "Business" are respected by surrounding artifacts.

Defining an Architecture

135

Nevertheless this way of connecting artifacts does not give us enough control. For example "Product.Model" could now access
"Core.UI" - not pretty. That means we need to put a bit more effort into the connection:

// File modules.arc
artifact Customer
{
 include "Customer/**" // All in module "Customer"
 apply "layering"

 connect UI to Core.UI, Core.Controller, Core.Model
 connect Controller to Core.Controller, Core.Model
 connect Model to Core.Model
}
artifact Product
{
 include "Product/**" // All in module "Product"
 apply "layering"

 connect UI to Core.UI, Core.Controller, Core.Model
 connect Controller to Core.Controller, Core.Model
 connect Model to Core.Model
}
artifact Core
{
 include "Core/**" // All in module "Core"
 apply "layering"
}

Now we are more specific about the details of our connection. Please note that we can only connect to "UI", "Controller" and
"Model" of "Core" because we have marked those artifacts as exposed. Otherwise they would be encapsulated and not directly
accessible. The "Persistence" layer is not exposed and can therefore only be used from inside its enclosing artifact.

Defining an Architecture

136

11.9. Introducing Connection Schemes
If you look closely you will find that both connection blocks in "Customer" and "Product" are absolutely identical. Now image
you had to connect dozens of artifacts in this way. That would be quite annoying and error prone. To avoid this kind of duplication
we added the concept of connections schemes:

// File modules.arc
connection-scheme C2C
{
 connect UI to target.UI, target.Controller, target.Model
 connect Controller to target.Controller, target.Model
 connect Model to target.Model
}

artifact Customer
{
 include "Customer/**" // All in module "Customer"
 apply "layering"

 connect to Core using C2C // connection scheme C2C
}
artifact Product
{
 include "Product/**" // All in module "Product"
 apply "layering"

 connect to Core using C2C
}
artifact Core
{
 include "Core/**" // All in module "Core"
 apply "layering"
}

Now I hope you agree that this is cool. Using connection schemes it becomes possible to describe the wiring between artifacts
in an abstract way. That makes it easy to change the wiring if the architect comes up with a new idea or wants to add or remove
restrictions.

In big systems you may need some additional nesting to avoid having too many toplevel artifacts:

Defining an Architecture

137

artifact SystemPartA
{
 //...
 artifact A
 {
 //...
 apply "layering"
 }

 artifact B
 {
 //...
 apply "layering"
 }

 connect to SystemPartB using Part2Part
}

arifact SystemPartB
{
 //...
 artifact C
 {
 //...
 apply "layering"
 }

 artifact D
 {
 //...
 apply "layering"
 }
}

connection-scheme Part2Part
{
 // Please note the use of "any"
 connect any.UI to target.any.UI, target.any.Controller, target.any.Model
 connect any.Controller to target.any.Controller, target.any.Model
 connect any.Model to target.any.Model
}

Here parts contain nested parts which share a common layering. The use of the keyword any allows to insert a wildcard for those
nested parts into the scheme. In our example each wildcard connection defined in the scheme would result in 4 real connections
since each part has 2 nested parts here (A.x to C.x, A.x to D.x, B.x to C.x and B.x to D.x). To keep the number of connections
under control only one any is allowed on each side of a wildcard connection.

Defining an Architecture

138

11.10. Artifact Classes
Artifact classes have been added as an optional and advanced feature that can be really useful in larger projects or in conjunction
with connection schemes. An artifact class basically names the connectors and interfaces an artifact is supposed to have. If an
artifact is declared to have a specific class Sonargraph will verify that it defines all the interfaces and connectors required by
the class. Moreover connection schemes can now also define source and target classes which allows immediate checking of
correctness.

Another benefit is that artifact classes make it a lot easier to organize artifacts into a tree so that the number of top-level artifacts
stays manageable.

Let us introduce a real example:

// File "layering.arc"
artifact Service
{
 // ...
 connect to Controller
}
artifact Controller
{
 // ...
 connect to DataAccess
}
artifact DataAccess
{
 // ...
}
public exposed artifact Model
{
 // ...
}
interface IService
{
 export Service, Model
}

// Main file "business.arc"
class BusinessComponent
{
 interface IService, Model
 connector Controller, Model
}

connection-scheme BC2BC : BusinessComponent to BusinessComponent
{
 connect Controller to target.IService
 connect Model to target.Model
}

artifact Customer : BusinessComponent
{
 apply "layering"
}

artifact Order : BusinessComponent
{
 apply "layering"

 connect to Customer using BC2BC
}

Defining an Architecture

139

The artifacts "Customer" and "Product" are specifying "BusinessComponent" as their artifact class. Therefore they must have
"IService" and "Model" either as an interface or as an exposed artifact. They also must have connectors or artifacts named
"Controller" and "Model". In our example the artifacts conform to the class. Otherwise Sonargraph would report an error.

The advantage of using artifact classes together with connection schemes: Now we can check the connection scheme for
correctness at the point of definition. Without the use of classes we can only do checks at the point of use.

Another aspect of artifact classes is that they help grouping components together in an elegant way. Let's look at another example:

artifact OrderProcessing : BusinessComponent
{
 local artifact Customer : BusinessComponent
 {
 apply "layering" // see above
 }
 artifact Order : BusinessComponent
 {
 apply "layering"
 connect to Customer using BC2BC // defined above
 }
 connect to ProductManagement using BC2BC
}

artifact ProductManagement : BusinessComponent
{
 artifact Product
 {
 apply "layering"
 connect to Part using BC2BC
 }
 hidden artifact Part
 {
 apply "layering"
 }
}

The first thing you should notice is that neither "OrderProcessing" nor "ProductManagement" define the interfaces and connectors
required by "BusinessComponent". They don't have to, because their nested artifacts do provide those connectors and interfaces.
If an artifact belongs to a class and does not explicitly define a required interface or connector Sonargraph will check if it has
nested artifacts that do.

In the case of interfaces Sonargraph will implicitly create a missing interface by exporting the matching interfaces of nested
artifacts that are not hidden. In the case of connectors Sonargraph will implicitly create a missing connector by including the
matching connectors of nested artifacts that are not local.

Here is the same example with all those implicitly defined interfaces and connectors explicitly defined:

Defining an Architecture

140

artifact OrderProcessing : BusinessComponent
{
 local artifact Customer : BusinessComponent
 {
 apply "layering" // see above
 }
 artifact Order : BusinessComponent
 {
 apply "layering"
 connect to Customer using BC2BC // defined above
 }
 // Implicitly defined
 connector Controller
 {
 include any.Controller // will not include Customer.Controller because Customer is local
 }
 connector Model
 {
 include any.Model // will not include Customer.Model because Customer is local
 }
 interface IService
 {
 export any.IService
 }
 interface Model
 {
 export any.Model
 }
 // end of implicit definitions
 connect to ProductManagement using BC2BC
}

artifact ProductManagement : BusinessComponent
{
 artifact Product
 {
 apply "layering"
 connect to Part using BC2BC
 }
 hidden artifact Part
 {
 apply "layering"
 }
 // Implicitly defined
 connector Controller
 {
 include any.Controller
 }
 connector Model
 {
 include any.Model
 }
 interface IService
 {
 export any.IService // will not include Part.IService because Part is hidden
 }
 interface Model
 {
 export any.Model // will not include Part.Model because Part is hidden
 }
 // end of implicit definitions
}

The implicit definitions only occur when you do not make an explicit definition. So you can always override those definitions
although this should hardly ever be necessary.

Defining an Architecture

141

Using artifact classes can become a very powerful pattern especially for the design of larger systems with many components
that have a similar internal structure.

Defining an Architecture

142

11.11. How to Organize your Code
In this article I am going to present a realistic example that will show you how to organize your code and how to describe this
organization using our architecture DSL. Let us assume we are building a micro-service that manages customers, products and
orders. A high level architecture diagram would look like this:

Figure 11.2. Architecture of the order management micro service

It is always a good idea to cut your system along functionality, and here we can easily see three subsystems. In Java you would
map those subsystems to packages, in other languages you might organize your subsystem into separate folders on your file
system and use namespaces if they are available.

Let us assume the system is written in Java and its name is "Order Management". In that case we would organize the code into
those 3 packages:

com.hello2morrow.ordermanagement.order
com.hello2morrow.ordermanagement.customer
com.hello2morrow.ordermanagement.product

This can easily be mapped to our DSL:

artifact Order
{
 include "**/order/**"
 connect to Customer, Product
}

artifact Customer
{
 include "**/customer/**"
}

artifact Product
{
 include "**/product/**"
}

Internally all three subsystem have a couple of layers and the layering is usually the same for all subsystems. In our example
we have four layers:

Defining an Architecture

143

Figure 11.3. Layering of a subsystem

A service would only expose its service ad its model layer to the outside. The service layer contains all the service interfaces and
talks to the controller and the model layer. The controller layer contains all the business logic and uses the data access layer to
retrieve or persist data using JDBC. The model layer is defining the entities we are working with.

We will use a separate architecture file named "layering.arc" to describe our layering:

// layering.arc
artifact Service
{
 include "**/service/**"
 connect to Controller
}

artifact Controller
{
 include "**/controller/**"
 connect to DataAccess
}

require "JDBC"

artifact DataAccess
{
 include "**/data/**"
 connect to JDBC
}

public artifact Model
{
 include "**/model/**"
}

interface IService
{
 export Service, Model
}

Please note, that we declared "Model" as a public artifact. That saves us the need to explicitly connect all the other layers to
"Model". Also note the "require" statement. Here refer to a third architecture file, that contains the definition of the artifact JDBC.
This way we can ensure that only the data access layer can make JDBC calls. using "require" will only declare the artifacts

Defining an Architecture

144

contained in the required file, but not define them. This means that the artifacts in "JDBC" have to be defined on another level.
The interface is used to define the exposed parts of a subsystem. When connecting to the "IService" interface you have only
access to the "Service" and the "Model" layer.

NOTE

Architecture files using "require" are not self-contained and cannot be added to the architecture check!

Now we use apply statements to apply the layering to our three subsystems:

artifact Order
{
 include "**/order/**"
 apply "layering"
 // Connect to the IService interface of Customer and Product
 connect to Customer.IService, Product.IService
}

artifact Customer
{
 include "**/customer/**"
 apply "layering"
}

artifact Product
{
 include "**/product/**"
 apply "layering"
}

// By using apply we define the artifacts of "JDBC" in this scope
apply "JDBC"

We also apply "JDBC" in the outermost scope to ensure that the artifacts in there are defined exactly once.

For the sake of completeness, here is the definition of "JDBC.arc":

// JDBC.arc
artifact JDBC
{
 include "**/javax/sql/**"
}

By using smart package naming it becomes easy to map your code to the architecture description. For example the order subsystem
would have four packages:

com.hello2morrow.ordermanagement.order.service
com.hello2morrow.ordermanagement.order.controller
com.hello2morrow.ordermanagement.order.data
com.hello2morrow.ordermanagement.order.model

As you can see it required relatively little effort to create a formal and enforceable architecture description for our example.

Defining an Architecture

145

11.12. Designing Generic Architectures Using
Templates
Many companies already have some established design patterns which are supposed to be used in most of their applications. For
example it makes sense to standardize the layering of business components. It also makes sense to establish specific rules how
one business component can access another one. The template feature in our architecture DSL makes it very easy to add generic
architecture blueprints to a quality model which would allow automatic verification of those architecture design patterns on any
business component without having to create a component specific architecture.

For generic architectures to work properly it is a good idea to think about code organization, in particular the efficient use of
name spaces or packages to reflect architectural intent. That can be easily done by using naming conventions:

com.hello2morrow.{component-name}.{layer-name}

In this simple example we assume that the component name is always the third part of a package/namespace name. The fourth
part represents the layer. Knowing that we can now create a generic architecture description for this example:

Defining an Architecture

146

// aspect file layering.arc
strict exposed artifact Service
{
 include "**/service/**"
}

strict exposed artifact Controller
{
 include "**/controller/**"
}

require "JDBC"

exposed artifact DataAccess
{
 include "**/data/**"
 connect to JDBC
}

public exposed artifact Model
{
 include "**/model/**"
}

public exposed optional artifact Util
{
 include "**/util/**"
}

deprecated hidden artifact Leftovers
{
 include "**"
}

// main file components.arc
template Components
{
 include "**/com/hello2morrow/(*)/**"
 exclude "**/com/hello2morrow/framework/**"

 artifact capitalize($1)+"Component"
 {
 apply "layering"
 }
}

public artifact Framework
{
 include "**/com/hello2morrow/framework/**"
}

In the aspect file "layering.arc" we define our standardized layering. At this point the layer artifacts do not really need to be
exposed. That will be needed later when we add connection schemes to our example.

In the main file we use the new template feature. An template is a special kind of artifact that can dynamically create children
artifacts out of elements that are matched by the pattern. The pattern must include at least one pair of parentheses so that we
can extract the component name and use it as part of the name of a generated artifact. Inside of a template there always is a
prototype artifact that uses a string typed expression as its name. '$1" represents the first extracted name part from the matched
architecture filter name. We append "Component" to the capitalized extracted name part to form the name of a generated artifact.
We explicitly exclude classes of a framework that is mapped to an extra artifact that has been declared to be public so that
everything defined in "Components" can use it.

For our example we assume there are 3 components distributed over the following 3 packages:

Defining an Architecture

147

com.hello2morrow.order
com.hello2morrow.customer
com.hello2morrow.product

Then the template artifact "Components" would generate 3 children artifacts named "OrderComponent", "CustomerComponent"
and "ProductComponent". All of those would have access to "Framework" because it is a public artifact defined beneath
"Components". But on the other hand the three generated components would not be allowed to access each other. Using templates
there are currently three ways to regulate dependencies between generated artifacts:

• No dependency allowed (like in the above example)

• By marking the prototype artifact as "unrestricted" the generated artifacts could use each other (from default connector to
default interface). It is always possible to restrict the default interface and/or the default connector by defining them explicitly.

• By using connection schemes in combination with artifact classes. That approach will be explained further down.

11.12.1. Using unrestricted generated artifacts

In the next example we use "unrestricted" in combination with a redefined default interface:

// main file components.arc
template Components
{
 include "**/com/hello2morrow/(*)/**"
 exclude "**/com/hello2morrow/framework/**"

 unrestricted artifact capitalize($1)+"Component"
 {
 apply "layering"

 interface default
 {
 export Service, Model, Util
 }
 }
}

public artifact Framework
{
 include "**/com/hello2morrow/framework/**"
}

Now the 3 generated artifacts can call each other, but only the "Service", "Model" and "Util" layers are exposed. If one of those
generated artifacts were to access the "DataAccess" layer of another one this would be marked as an architecture violation.

11.12.2. Using connection schemes to regulate accessibility

If you need more control about the way generated artifacts can interact with other generated artifacts we need to use connection
schemes in combination with artifact classes.

Defining an Architecture

148

// main file components.arc
class Layered
{
 interface Service, Controller, DataAccess, Model, Util
 connector Service, Controller, DataAccess, Model, Util
}

connection-scheme C2C : Layered to Layered
{
 connect Service to target.Service, target.Controller, target.Model, target.Util
 connect Controller to target.Controller, target.Model, target.Util
 connect DataAccess to target.DataAccess, target.Model, target.Util
 connect Model to target.Model, target.Util
 connect Util to target.Util
}

template Components : Layered
{
 include "**/com/hello2morrow/(*)/**"
 exclude "**/com/hello2morrow/framework/**"

 artifact capitalize($1)+"Component"
 {
 apply "layering"
 }
 connect all using C2C
}
// ...

Now you have total control about the way components access each other. The connection scheme determines for each of the
layers which layers can be used in the target artifact. The "connect all" statement declares the connection scheme to be used. The
scheme has to connect an artifact class to itself ("Layered" to "Layered" in this example) and prototype artifact must be of the
matching class. In our example that happens implicitly by using the class on the template.

Defining an Architecture

149

11.13. Best Practices
This section explains how the views of Sonargraph can be used efficiently while working with the architecture definition and
investigating reported architecture violations.

Investigate Violations

Architecture violations listed in the Issues view can have different root causes: a) There is a violating dependency, b) the
architecture definition needs to be updated.

For further investigation, you can do the following:

• Check the source code: Simply double-click on the violation.

• Investigate the dependency with more context: Right-click on the violation and select "Show in Exploration View" → "Out".

• Check the architecture definition: Right-click on the violation and select "Show in Architecture View". The Architecture
view is opened with the artifact selected that contains the element causing the violation. Double-click on the artifact and the
Architecture File view is opened, highlighting the line of the artifact's definition.

• Check the artifact dependencies: The description of the architecture violation contains more details, e.g. "[Static Method
Call] 'X' cannot access 'TypeA.java' from 'Y' ...". If you are interested in the context of the involved artifacts 'X' and 'Y', open
the Architecture view via right-click "Show in Architecture View". Open the context menu for the selected artifact and open

the architecture-based Exploration view via "Show in Exploration View" → "In And Out".

NOTE

The architecture-based Exploration view offers dependency information down to the component level, since that is
the smallest unit of assignment to an artifact.

Related topics:

• Section 8.10.1, “Concepts for System Exploration”

• Section 8.10.2, “Tree Based System Exploration”

Defining an Architecture

150

11.14. Architecture DSL Language Specification
For the sake of completeness please find a formal grammar of our architecture DSL in EBNF form. The semantics of the language
have been described in the preceding sections.

Body = Declaration* Connection*
 ;

Declaration = ArtifactDecl
 | ExtendDecl
 | ApplyDecl
 | RequireDecl
 | IncludeDecl
 | ExcludeDecl
 | InterfaceExt
 | ConnectorExt
 | InterfaceDecl
 | ConnectorDecl
 | Scheme
 | ClassDecl
 | TemplateDecl
 ;

ClassDecl = "class" IDENT "{" ClassMember* "}"
 ;
ClassMember = "interface" List
 | "connector" List
 ;

List = IDENT ("," IDENT)*
 ;
ArtifactDecl = StereoTypes "artifact" IDENT (":" IDENT)? "{" Body "}"
 ;

ExtendDecl = "extend" IDENT "{" ExtendBody "}"
 | StereoType+ "extend" IDENT "{" ExtendBody "}"
 ;

ExtendBody = Declaration* DisconnectDecl* Connection*
 ;

DisconnectDecl = "disconnect" IDENT? "from" IdentList
 ;

StereoTypes = StereoType*
 ;

StereoType = "public"
 | "hidden"
 | "local"
 | "exposed"
 | "unrestricted"
 | "relaxed"
 | "strict"
 | "optional"
 | "deprecated"
 ;

ApplyDecl = "apply" STRING
 ;

RequireDecl = "require" STRING
 ;

IncludeDecl = "strong"? "include" STRING
 | "include" "all"
 | "include" "dependency-types" DependencyTypes
 ;

Defining an Architecture

151

ExcludeDecl = "exclude" STRING
 | "exclude" "dependency-types" DependencyTypes
 ;

DependencyTypes = DependencyType ("," DependencyType)*
 ;

DependencyType = IDENT
 ;

InterfaceDecl = ("override"|"optional")? "interface" IDENT "{" InterfaceBody "}"
 ;

InterfaceExt = "extend" "interface" IDENT "{" InterfaceBody "}"
 ;

InterfaceBody = IDeclaration*
 ;

IDeclaration = IncludeDecl
 | ExcludeDecl
 | Export
 ;

ConnectorDecl = "override"? "connector" IDENT "{" ConnectorBody "}"
 ;

ConnectorExt = "extend" "connector" IDENT "{" ConnectorBody "}"
 ;

ConnectorBody = CDeclaration*
 ;

CDeclaration = IncludeDecl
 | ExcludeDecl
 | Include
 ;

Export = "export" SpecIdentList
 ;

Include = "include" SpecIdentList
 ;

SpecIdentList = SpecIdent ("," SpecIdent)*
 ;

SpecIdent = "any" ("." IDENT)*
 | IDENT ("." IDENT)*
 ;

IdentList = Identifier ("," Identifier)*
 ;

Identifier = IDENT ("." IDENT)*
 ;

Connection = "connect" "to" IdentList "transitively"?
 | "connect" Identifier "to" IdentList "transitively"?
 | "connect" "to" IdentList "using" IDENT
 ;

Defining an Architecture

152

Scheme = "connection-scheme" IDENT (":" IDENT "to" IDENT)? "{" TargetUse* "}"
 ;

TargetUse = "connect" Identifier "to" TargetIdentList
 | "connect" "any" "." Identifier "to" TargetIdentList
 ;

TargetIdentList = TargetIdent ("," TargetIdent)*
 ;

TargetIdent = "target" ("." IDENT)+
 | "target" "." "any" ("." IDENT)+
 ;

IDENT = ("A" .. "Z" | "a" .. "z")("A" .. "Z" | "a" .. "z" | "0" .. "9" | "_" | "-")*
 ;

TemplateDecl = StereoTypes "template" IDENT (":" IDENT)? "{" TemplateBody "}"
 ;

TemplateBody = TemplateInclude+ TemplateExclude* TemplArtifact TemplateConnect*
 ;

TemplateInclude = "include" STRING
 ;

TemplateExclude = "exclude" STRING
 ;

TemplateConnect = "connect" "to" IdentList "transitively"?
 | "connect" Identifier "to" IdentList "transitively"?
 | "connect" "to" IdentList "using" IDENT
 | "connect" "all" "using" IDENT
 ;

TemplArtifact = StereoTypes "artifact" NameExpr (":" IDENT)? "{" Body "}"
 ;

NameExpr = NameItem
 | NameItem "+" NameExpr
 ;

NameItem = STRING
 | "$" ["1"-"9"]
 | IDENT "(" NameExpr ")"
 ;

 // '@' stands for any character except the context specific terminator
STRING = '"' (@ | '\\' @)* '"' | "'" (@ | '\\' @)* "'"
 ;

153

Chapter 12. Visualizing Architecture
Aspects
Sonargraph’s domain specific language (DSL) to describe architecture aspects is very powerful. An architecture aspect consists
at least of 1 top-level architecture file that has been added to the architecture configuration and is checked automatically. Such a
top-level architecture file can include other architecture files reusing common definitions. For any checked architecture file (i.e.
an aspect) it is possible to generate a UML component diagram.

A UML component diagram complements in several ways our text based architecture aspects:

1. It is a commonly accepted form of communicating architecture definitions.

2. It shows the resulting architecture aspect in 1 diagram even if it is spread over several files.

3. It can be used to cross-check the underlying text based architecture aspect (i.e. are the resulting restrictions the intended ones?).

Let’s have a look at a concrete example. Suppose we want an architecture aspect containing 2 (vertical) slices (domain driven
divisions) Customer and Common and 3 layers (technical divisions) View, Model and Persistence. Furthermore we want a separate
License component usable only from the Common slice and a JDBC component usable only from the Persistence layers.

One way to express this with our architecture DSL would be the following:

Visualizing Architecture Aspects

154

Figure 12.1. DSL Example

Our top-level architecture file would be Slices.arc, using Layers.arc and Jdbc.arc. Make sure to add the top-level architecture
file to the architecture check via the context menu entry Add To Architecture Check on the corresponding file. As you can see
above the Slices.arc is checked. Note that in the example above we have omitted all include patterns that would be needed to
match the code for the sake of simplicity.

Once we have a checked architecture file we can simply generate an UML component diagram via the context menu entry Show
in Architecture Diagram View on the corresponding file.

Visualizing Architecture Aspects

155

Figure 12.2. Generate UML Component Diagram

In our example that results in the following UML component diagram:

Figure 12.3. UML Component Diagram

The generated UML component diagram is interactive in the sense that you can select different elements (e.g. components,
connectors, interfaces). The selected element is highlighted in yellow along with it’s connected elements (e.g. a connector that
is included in a higher level connector), reachable (i.e. allowed) elements are highlighted in green. Components also might have
child components, such components can be expanded and collapsed (e.g. Customer and Common).

Connectors and interfaces that show a small solid black rectangle on their anchor point are directly defined by their component.
The ones without that decorator are coming from child components.

Visualizing Architecture Aspects

156

The different elements also offer a tooltip showing interesting information about incoming/outgoing connections and other
aspects. Clicking into the tooltip window will leave it open (until pressing ESC). The content of the tooltip may be selected
and copied.

The currently visible UML diagram may be exported as an image using the context menu.

The components are layout in a levelized grid. Components with no incoming connections are on top, components with no
outgoing connections are on the bottom. The further down a component is, the more other components depend on it. Components
on the same level have more incoming dependencies from left to right. Components with the same number of incoming
dependencies have more outgoing dependencies from left to right.

As long as the view stays open it is also updated when saving changes to the underlying architecture file(s).

Lets cross-check the usage of our JDBC component by selecting it:

Figure 12.4. Cross-check the JDBC Component

As we can see JDBC may only be used from the Persistence layers. More details are provided by the tooltip of the component.

Visualizing Architecture Aspects

157

Let’s check our License component:

Figure 12.5. Cross-check the License Component

Great, our License component may only be used from the Common slice. Again, more information is provided by the tooltip
of the interface.

158

Chapter 13. Interactive Restructuring and
Code Organization
Sonargraph offers the concept of the architectural view to enable:

• Interactive restructuring a software system via refactorings.

• Interactive organization of a software system via architecture artifacts. Components (physical) or top-level programming
elements (logical) are assigned to those artifacts based on the package, namespace or directory structure or based on an
architectural pattern language overcoming structural constraints.

• Generation of architecture DSL files that can be automatically checked.

• Generation of refactoring lists that are applied to the "production" modifiable (virtual) model.

An architectural view is created using a specific structural aspect and by applying operations to it. The structural aspect is created
based on the currently loaded (parsed) system after applying the selected virtual model. Multiple architectural views can be
defined that are each persisted in an individual file.

• Creation of an architectural view which is persisted in a file. Use menu "File" → "New" → "Architectural View" → "New
Architectural View..." or right-click in the Files view on the Architectural Views node and use the corresponding context menu
entry. Choose between 4 model structures (physical with or physical without root directories, logical system or logical module
scope) when creating an architectural view. An existing architectural view can be opened from the files view via the context
menu or via double-click. Both "create" and "open" interactions require a loaded parser model.

• The architectural view shows a tree-like structure down to component level (physical) or top-level programming element
(logical).

• Selection support by pressing SHIFT in combination with the arrow keys (up and down) or left mouse click for bulk selection.
Use the modifier key (CMD, CTRL) of your operating system in combination with left mouse-click to add or remove elements
to/from the current selection.

• Artifacts with their properties can be created either based on a selection or empty. Try the context menu on selections (right
mouse click) to see what is possible. F2 allows editing 1 or multiple artifacts.

• Assign/remove elements to/from existing artifacts via drag and drop.

• Change parent/child structures of artifacts via drag and drop.

• Assign components (physical) or top-level programming elements (logical) to artifacts with manual filter definition using
patterns. All assignment strategies from the architecture DSL are supported, see Section 11.1, “Models, Components and
Artifacts” and following chapters.

• Define explicitly allowed artifact connections.

• Hide non-artifact/non-module nodes in their corresponding artifacts to make them unaccessible.

• Apply delete refactorings to non-artifact/non-module nodes.

• Apply delete refactorings to dependencies.

• Apply move refactorings to components (physical) or top-level programming elements (logical).

• Apply rename refactorings to non-artifact/non-module nodes.

• Use focus operations to visualize only certain elements of the Architectural view.

• Create packages, namespaces or directories when needed as targets for move refactorings.

Interactive Restructuring and Code Organization

159

• Create 'Findings' based on dependencies. Those findings appear in a list, have a name an optional description. Optionally
dependencies violating the architecture contained in a finding can be ignored. It is also possible to apply focus operations
based on findings.

• The operations you apply (e.g. create/edit artifacts, move elements, delete elements ...) may be seen in the operations view. The
operations may also be deleted from that list using the context menu. Operations that have no effect (e.g. a previous element
is no longer their because the code changed) are marked with a warning marker.

• The architecture is checked in real-time meaning that you see the dependencies changing their colors according to their violation
state when applying operations.

• Undo/redo of operations.

• Forward/backward navigation.

• Export what you see into images files on disk.

• Generation of an architecture DSL file based on the model defined in the architectural view.

• Export of resulting refactorings into an Excel file.

• Export of resulting violations into an Excel file.

• The views Properties, Parser Dependencies (Out) and Parser Dependencies (In) react to the selection in the Architectural view
and show the corresponding additional information of the selected element.

Things to come:

• Drill down to programming element level.

• More architecture check related features.

Interactive Restructuring and Code Organization

160

13.1. Architectural View
The Architectural view offers 3 presentation modes that affect recursive elements (e.g. package, namespace, directory):

• Mixed: empty elements without siblings are compacted.

• Hierarchical: all elements are shown.

• Flat: only the elements containing elements of other types are shown in parallel.

The Architectural view uses the following strategies to visualize different aspects:

• The Architectural view shows some horizontal grey lines. These are the level lines. Non-cyclic elements between 2 lines are not
depending on each other. Cyclic elements of 1 cycle group are on the same level. Those elements are marked with a red shade
rectangle. Different red shades are used for different cycle groups (relative to their parent) as well as a cycle index property
is shown in the Properties view. Nodes belonging to the same cycle group show the same cycle group index. To differentiate
non-cyclic and cyclic elements on the same level an additional red line is shown dividing the level.

• If an element has children, it will show a collapse/expand figure (+/-). If the background of this figure is darker it has more
children.

• If elements and dependencies are not fully shown due to a focus they are marked with a grey triangle. For elements that means
either that not all child nodes or not all dependencies are shown or both. For dependencies that means that not all underlying
dependencies are included in the corresponding arc.

• Selected elements are highlighted with a yellow background. Dependent and using elements have a yellow ocher background.

Figure 13.1. Architectural view

Interactive Restructuring and Code Organization

161

13.2. Assigning Elements to Artifacts
The Architectural view offers 2 strategies to assign elements to artifacts:

• Explicit assignment per drag and drop based on either package/namespace/directory or components (physical) or top-Level
programming elements (logical). Alternatively the 'Move' dialog can be used.

• Manual filter management based on components (physical) or top-Level programming elements (logical) based on patterns
supporting different underlying identifiers or annotation, super class or super interface dependencies.

NOTE: An artifact has either explicitly assigned elements or has a manual filter but not both. Artifacts with explicitly assigned
elements and manual filters can be mixed in one Architectural view.

When creating/editing an artifact the manual filter can be managed on the second page of the artifact wizard.

Figure 13.2. Artifact Filter

The basic flow to add a new pattern is as follows:

• Choose the assignment strategy by pressing the button marked with '1'. There you can choose between several options
summarized below.

• Add a new pattern by pressing the button marked with '2'.

• Edit the pattern in the field marked with '3'. The currently matching elements are show in the area labeled with 'Matching'.

• Once the pattern is valid the icon on the button marked with '4' turns green. If you are satisfied press the button to add it to
the already existing pattern shown in the area labeled with 'Filter'.

Interactive Restructuring and Code Organization

162

HINT

Moving the mouse pointer on top of the assignment strategy label ('[Core] Architecture Name Physical:' in the
screenshot) will show a tool tip explaining the pattern usage with example. The tool tip is focusable. Clicking into it
will convert it into a small dialog staying o top supporting selection/copy of the shown text.

Available assignment strategies:

Strategy Structure Mode Type Languages

Architecture Filter Name
Physical

Physical All

Architecture Filter Name
Logical

Logical All

Physical Filter Name Logical All

Workspace Filter Name Physical, Logical All

Extends Class Physical, Logical All

Implements Interface Physical, Logical Java, C#

Has Annotation Physical, Logical Java

Has Annotation Value Physical, Logical Java

Header Path Physical C,C++

Table 13.1. Available Assignment Strategies

See Section 11.1, “Models, Components and Artifacts”, Section 11.1.1, “Using other criteria to assign components to artifacts”
and Section 11.1.2, “List of predefined attribute retrievers” in the architecture DSL documentation for examples.

163

Chapter 14. Examining Changes
Sonargraph provides an overwhelming amount of information for large systems. Most of the times comparing the information
against a baseline and focussing on the changes is enough - like a newspaper versus a whole encyclopedia. This feature is available

in Sonargraph via the "System Diff" view that can be opened via "Window" → "Show View" → "System Diff" . The baseline is
represented by an XML report and can be applied by clicking the links at the top of the view opens the dialogs:

1. "New Baseline": Allows creating and directly applying a new baseline, e.g. at the beginning of a feature implementation or
before changing the software system. Adding some context info makes it easier to identify the report later on.

2. "Open Baseline": Allows selecting an existing XML report from disk, e.g. to compare the current system against a report
generated by Sonargraph-Build at the end of the last sprint. Previously selected baselines are displayed in the table with the
most recently used at the top.

3. "Download Baseline": Allows downloading an existing XML report from your Sonargraph-Enterprise server.

4. "Export Diff Report": Generates a HTML report of the current diff information.

5. "Detach Baseline": Disables the System Diff analyzer. This is useful to speed up processing when you modify the configuration
for a large system.

TIP

The same can be achieved by changing the analyzer execution level to anything below "Full" via the menu "System"

→ "Analyzer Execution Level".

Two types of baselines can be created: "System" and "Local" baselines. A system baseline is meant to be useful for all users
of the Sonargraph system and is used by Sonargraph-Build. Thus, it is stored in the Sonargraph system's directory "Baselines".
System baselines are usually created at the beginning or end of a release. A local baseline is only useful for the current user and
usually has a shorter life-span. Examples are baselines created before a feature is implemented.

TIP

If a baseline is generated at the beginning of a feature implementation, the System Diff view provides a quick overview
about changes related to Sonargraph issues and how the overall state of the system has developed.

NOTE

This functionality is only available in the commercial version of Sonargraph.

Differences are detected related to the system configuration (path, name, features, analyzers, scripts, plugins), system-level
metrics, workspace (filter, modules, root directories), issues, resolutions (ignores, tasks, refactorings), cycle groups, duplicate
code blocks and Architecture Models, i.e. checked architectures. More information about a detected change is provided in the
"Details" column. The comparison for architectures is done on the 'model' level, i.e. changes in comments, formatting changes
and changes that do not alter the semantic of the model are not reported. The following screenshot shows changes in the issues
view with a focus on cycle group issues:

Examining Changes

164

Figure 14.1. System Diff View (Issues)

NOTE

Since the cycle group names are not stable, the matching is done based on the contained elements. If up to 40% of
the cyclic elements have changed, the cycle groups are matched, otherwise they are treated as different groups and are
reported as removed from the baseline and added in the current system.

A similar approach is taken for duplicate code blocks, where the individual occurrences are matched against each other,
tolerating extension and shortening of blocks.

The following types of changes in cycle groups are detected:

1. Added: Cycle group was not present in baseline.

2. Removed: Cycle group existed in baseline but is no longer present. If two or more baseline cycle groups are integrated into a
single cycle group or a baseline cycle group is split into several smaller cycle groups, this is indicated in the "details" column.

3. Improved: Cycle group consists now of fewer elements and/or has fewer parser dependencies to remove.

If a cycle group is the result of splitting a baseline cycle group, this is indicated in the "details" column. Cyclic elements of
this group are reported as added.

4. Worsened: Cycle group consists now of more elements and/or has more parser dependencies to remove.

If a cycle group is the result of integrating two or more baseline cycle groups, this is indicated in the "details" column.

5. Modified: If up to 40% of the cyclic elements have changed but the number of cyclic elements in the cycle group is the same
it is identified as the same group and marked as modified.

If a worsened cycle group is opened in the Cycle view, the added elements are highlighted. See “Highlighting Added Cyclic
Elements” for details.

The tab "Cycle Groups" provides additional details about the added/removed cyclic elements. Filter options on the top-right
corner of the tab allow to hide unmodified cyclic elements or issues with resolution.

Examining Changes

165

Figure 14.2. System Diff View (Cycle Groups)

Current Limitations

The following changes only indirectly affect the Sonargraph issues, but will be treated as changes by the diff detector. The issues
in the baseline report will be reported as removed and the issues from the current system as added, despite the fact that the issues
are logically the same:

1. If an element (e.g. type, method) or one of its parents (e.g. namespace, module, root) is renamed, its fully qualified name
changes and thus its issues are reported as changed.

2. If a script or an architecture file is renamed, the origin of the issues generated by those resources is changed.

3. If artifacts in architectures are renamed, the resulting issues cannot be matched.

NOTE

As with every modification: Frequent and small changes are easier to review than big-bang refactorings.

This feature has been introduced with the Sonargraph release 9.13 and we will continue improving the precision of
the results and integrating it into other views in upcoming releases. Feedback is always welcome and can be sent to
<support@hello2morrow.com>.

Export Diff Report to HTML

The System Diff view allows exporting the current info to HTML as the following screenshot illustrates. Sections that contain
changes are marked with an exclamation mark "(!)" in the navigation area on the top left.

Examining Changes

166

Figure 14.3. HTML Diff Report

167

Chapter 15. Defining Quality Gates
Starting with version 10.3 Sonargraph provides the option to define quality gates (commercial license required). A "quality gate"
consists of a set of conditions. If one or more conditions are not met, this is flagged by a "Quality Gate Condition Failed" issue.
Conditions define the expectations for the current system's state as well as for an expected quality trend w.r.t a defined baseline.
Some sample conditions:

• "Less than 10 error issues without resolution."

• "No threshold violations for metric 'Core:SourceFile:TotalLines'."

• "No additional error issues."

• "Number of architecture violations must be reduced by at least 10%."

• "An increase in the Average Component Dependency (ACD) must be lower than 5%."

Sonargraph allows the definition of any number of quality gates and validates those that are "activated", similar to architectures
and scripts. Activated quality gates are validated by the "Quality Gate" analyzer. A quality gate consists of two sections, the
section for conditions based on the current system state and the section for conditions based on the system diff with respect to a
baseline (see Chapter 14, Examining Changes). The Quality Gate view shows the conditions at the top and the table in the lower
half lists the matched issues / elements for the selected condition.

Figure 15.1. Quality Gate View

TIP

An unlimited number quality gates is supported, so there is no reason to put too many conditions into a single quality gate.

NOTE

Conditions for the current system's state can only be defined on issues. If you want to set a condition for a certain metric
value, define a threshold for that metric and then check on the existence of threshold violations.

Defining Quality Gates

168

15.1. Creating Quality Gates
A new quality gate can be created via the main menu "File" → "New" → "New Quality Gate..." or by selecting the "Quality
Gates" folder in the "Files" view and opening the context menu.

Define Conditions for the Current System's State

A condition for the current system's state can be created via the context menu of the "Current System Conditions" node. If a
metric id is specified, only threshold violations for that metric are matched.

Figure 15.2. Current System Condition Dialog

TIP

To match threshold violations, simply specify a metric id and use the wildcard "any" as issue type.

Define Conditions With Respect to a Baseline

Conditions with respect to a baseline can either be defined based on issues or metric values. The "Baseline Issue Dialog" looks
similar to the "Current System Condition" dialog and adds additional input fields for threshold violations.

Defining Quality Gates

169

Figure 15.3. Baseline Issue Condition Dialog

TIP

If small changes to existing threshold violations should be tolerated, define an absolute or relative threshold for the
metric value difference.

Some issues support a "relaxed" check, meaning that already existing issues that got slightly worse are tolerated. The following
table provides the details about the effect of "relaxed" and "strict", an "X" means that the condition will fail for this change, "-"
means that the change is tolerated:

Change "Relaxed" "Strict" (default)

Any added issue of severity error or warning. X X

Any issue that changed severity from warning to error. X X

Any issue whose resolution got removed. X X

Cycle group with more involved elements. X X

Cycle group with more parser dependencies to remove. - X

Threshold violation with a worsened metric value, if no diff threshold is defined. - X

Threshold violation with a worsened metric value, if the value diff is below the defined
threshold.

- X

Duplicate code blocks with more occurrences. X X

Duplicates code blocks with more involved lines. - X

Table 15.1. Effect of "Relaxed" and "Strict"

Defining Quality Gates

170

Define Baseline Metric Conditions

Values for some metrics will grow as more code is added to the system. An example are coupling metrics. It is nevertheless
useful to monitor how much a metric value changes, as a big increase is usually an indicator for a bad design decision. Changes
in metric values can be monitored via "Baseline Metric Conditions". The dialog allows the configuration of an absolute and/
or relative threshold:

Figure 15.4. Baseline Metric Condition Dialog

NOTE

Only metrics on 'System' level are supported because only those values are currently part of the 'System Diff'.

Defining Quality Gates

171

Define Quality Gate Exclude Filters

For both sections of the quality gate it is possible to define "Exclude Filters". Issues matched by an exclude filter will no longer
affect the outcome of any issue condition contained in the same section, i.e. either conditions for the current system's state or
baseline conditions.

Figure 15.5. Exclude Filter Dialog

TIP

The column "Information" provides details about how many issues a filter matches and how many conditions are
affected.

Defining Quality Gates

172

15.2. Using Quality Gates in the Continuous
Integration (CI) Build
Sonargraph-Build can be used to enforce quality gates. All that is needed is a failSet configuration including the issue type
"QualityGateIssue". The example below shows the XML configuration file for the shell integration of Sonargraph-Build. The
same options exist for the other integrations (Ant, Maven, Gradle):

<sonargraphBuild
...
 <failSet failOnEmptyWorkspace="true">
 <include issueType="QualityGateIssue" />
 </failSet>
</sonargraphBuild>

The result of the quality gate check is printed to the console (slightly formatted here):

...
Checking active quality gate(s)...
[Failed] Quality Gate 'No_Additional_CycleGroups'
 [Failed] Baseline Conditions:
 [Failed] Condition "Change of metric value for 'Core:System:CyclicComponents' must be
 <= 1,00 (absolute)" [0 -> 2 (+2)]
 [Failed] Condition "Change of metric value for 'Java:System:CyclicityPackages' must be
 <= 1,00 (absolute)" [0 -> 4 (+4)]

[Failed] Quality Gate 'No_Threshold_Violations'
 [Failed] Current System Conditions:
 [Failed] Condition "<= 0 threshold violations for metric 'Core:Type:SourceElementCount'
 with severity 'Any' and resolution 'None'" [5 issues matched (0 excluded)]
 [Passed] Condition "<= 0 issues of type 'ThresholdViolation'
 with severity 'Error' and resolution 'None'" [0 issues matched (0 excluded)]
 [Passed] Baseline Conditions:
 [Passed] Condition "No additional or worsened threshold violations for metric
 'Core:Type:SourceElementCount' with severity 'Any' and resolution 'None'"
 [0 issues matched (0 excluded, 0 tolerated)]
Check of quality gates failed.
Quality Gate Summary: 2 of 2 failed.
...

Defining Quality Gates

173

15.3. Current Quality Gate Limitations
As the Quality Gate feature is pretty new, there are still some things on our roadmap that will be implemented in the following
releases:

• The Quality Gate analyzer is the last analyzer executed, therefore changes in quality gate issues are not part of the system diff.

174

Chapter 16. Extending the Static Analysis
Sonargraph presents the possibility to write Groovy scripts that will be run over the current software system in order to get
specific results.

Scripts support the following use cases (among others): Create and calculate custom metrics, identify specific elements, list
dependencies to methods, create issues for detected anti-patterns.

To get an idea of the Script API's power, it is recommended to examine the existing scripts contained in the provided quality
models. For the core and each of the supported languages (Java, C#, C++) a script named VisitorExample.scr exists that illustrates
the available Script API.

Figure 16.1. Script View

The Script view has two main sections:

• Script editing area: In this area you can write Groovy based scripts to retrieve information of your system in ways that would
not be possible otherwise.

• Results area: Shows the results from the executed script which can be software system elements, dependencies between the
different components of the system, a tree structure of elements, a list of issues, or metrics created by the script.

The execution of the current script can be triggered by clicking the button "Run" below the text edit area.

16.1. Interaction with Auxiliary Views
The Script view offers interaction with the Markers Auxiliary view which lists all markers of the script file. Typically those
markers indicate compilation errors.

Extending the Static Analysis

175

16.2. Groovy Scripts from Quality Model
When creating a new system , an existing quality model can be used, which usually contains some scripts. (See Section 6.4,
“Quality Model”)

Figure 16.2. Quality Model

16.3. Creating a new Groovy Script
A new Groovy script can be created by "New" → "Other" → "Script" , or by selecting a Groovy script directory in the Files view
(See Section 8.6, “Managing the System Files”) and choosing "New Script..." in the context menu. The "New Script Wizard"
will open.

Figure 16.3. New Script

On the main page the following metadata of a Groovy script can be edited:

• the name of the Groovy script (must be unique in its directory)

• a description for the Groovy script

• a timeout value in seconds: whenever the Groovy script takes more time to run, it is stopped automatically

• the output file path where the textual output produced by println-Statements within the script is written.

• a list of APIs the Groovy script can use: "Core" contains functionality available to all languages, selecting any of the other
languages offers additional functionality. Obviously, relying on a language specific API makes the script language dependent.

Extending the Static Analysis

176

16.3.1. Default Parameters in a Script

Every Groovy script has a binding with some predefined parameters

• out the output stream of a Groovy script. Use out.println "message" or println "message" in the script. The
output will appear in the Console view and in the output file (in case an output parameter has been specified).

• result of type Result Access (see JavaDoc) for adding the results of a Groovy script.

• coreAccess of type CoreAccess (see JavaDoc) for all Groovy scripts.

• javaAccess of type JavaAccess (see JavaDoc) for Groovy scripts using the Java API.

• cppAccess of type CppAccess (see JavaDoc) for Groovy scripts using the C++ API.

• csharpAccess of type CSharpAccess (see JavaDoc) for Groovy scripts using the C# API.

16.3.2. Adding Parameters

User defined parameters may be added to a Groovy script. In the Groovy script they can be referenced by their name, preceded
by "parameter".

There are three different types of parameters:

• String parameter a default value can be given, a list of candidates (allowed values) can be given

• Integer parameter a default value can be given, a list of candidates (allowed values) can be given

• Boolean parameter allowed values are "true" or "false" (case insensitive)

Figure 16.4. Parameter Definition

Now if you defined a parameter "level", it can be referenced in your script with name "parameterLevel":

./html/scriptApi/index.html/../com/hello2morrow/sonargraph/core/controller/system/script/ResultAccess.html
./html/scriptApi/index.html/../com/hello2morrow/sonargraph/core/controller/system/script/CoreAccess.html
./html/scriptApi/index.html/../com/hello2morrow/sonargraph/languageprovider/java/controller/system/script/JavaAccess.html
./html/scriptApi/index.html/../com/hello2morrow/sonargraph/languageprovider/cplusplus/controller/system/script/CppAccess.html
./html/scriptApi/index.html/../com/hello2morrow/sonargraph/languageprovider/csharp/controller/system/script/CSharpAccess.html

Extending the Static Analysis

177

Figure 16.5. Parameter Usage in Script

Extending the Static Analysis

178

16.3.3. Creating Run Configurations

Run Configurations allow a parameterized execution of a script. Right-click on a Groovy script in the Files view and select "New
Run Configuration...".

Figure 16.6. Create Run Configuration

A Run Configuration consists of

• a name

• a description

• a list of parameters and values that are inherited from the script's default Run Configuration.

Run configurations are used in two places: When a Groovy script is run manually, and when a Groovy script is run automatically.
They are saved in the same directory as the script as <scriptname>#<runconfigname>.rcfg

16.4. Editing a Groovy Script
To edit the metadata (description, API use, parameters, run configuration) of a Groovy script, select the script and choose "Edit
Script..." from the context menu, or press F2 . To edit the Groovy script source code, open it in the Script view.

16.4.1. Auto Completion

To start auto completion in the Script view, place the cursor at the position you want autocompletion for and press CTRL+SPACE .

Figure 16.7. Auto Completion

Extending the Static Analysis

179

Delayed Auto Completion

The first request for the auto completion might take several seconds to complete since some initialization needs to be
done behind the scenes.

16.4.2. Compiling a Groovy Script
After editing a script the "Run" button changes to "Compile". Press "Compile" first, and after successful compilation the button
will change its caption to "Run". If the Groovy script wasn't compiled successfully, there will be some Markers applied to the
Groovy Script.

Figure 16.8. Script View Marker

Figure 16.9. Script View Marker Tooltip

Update Automated Script

If this Groovy script is configured to be run automatically, the button "Update automated Script" will be active after a
change, successful compilation and saving the script.

16.5. Producing Results with Groovy Scripts
Press the "Run" button to run a Groovy script manually. The combo box allows to change the Run Configuration to be used.

After a script was executed, the results of the scripts appear in five different tabs. The tabs that really hold results are marked
with an exclamation mark. The class ResultAccess (see JavaDoc) provides methods to add different types of results.

The "Elements" and "Dependencies" tab hold a list of elements/dependencies, which were added by the script with

 result.addElement()

./html/scriptApi/index.html/../com/hello2morrow/sonargraph/core/controller/system/script/ResultAccess.html

Extending the Static Analysis

180

Figure 16.10. Script View Elements Tab

The "Tree" tab holds structure of nodes, which were added by the script with

result.addNode()

A node can have child nodes, or child elements.

Figure 16.11. Script View Tree Tab

The "Issues Preview" tab shows a list of issues, which were added by the script with one of

 result.addInfoIssue()

 result.addWarningIssue()

 result.addErrorIssue()

Figure 16.12. Script View Issues Preview

The "Metrics Preview" tab shows a list of metrics, which were added by the script with

MetricIdAccess id = coreAccess.getOrCreateMetricId(
 "SupertypeUsesSubtype",
 "Supertype uses subtype",
 "A super type must not know its subtypes",
 false /*non-float*/);
result.addMetricValue(id, coreAccess, warnings)

Figure 16.13. Script View Metrics Preview

Extending the Static Analysis

181

16.6. Running a Groovy Script Automatically
It is possible to run Groovy scripts automatically whenever the workspace is refreshed. Go to "System" → "Configure..." →
"Automated Scripts" and add the Groovy script + Run Configuration.

Figure 16.14. Script Runner

Run a Script With Different Run Configurations

It is possible to add the same Groovy script multiple times with different run configurations to the list of automated
scripts.

Metrics and Issues

When a script running automatically creates a metric, this metric is displayed in the Metrics view. Executing the same
script manually lets the metric show up in the "Metrics" tab of the Script view, but not in the Metrics view.

The same applies for any issues created during the script execution.

16.7. Managing Groovy Scripts
The Files view shows the organization of Groovy scripts. To add a new Groovy script directory, select an existing one (or the
root directory "Scripts") in Files view, and choose "New Script Directory..." from the context menu.

To delete a script directory, select it in Files view, and press DEL , or select "Delete Script Directory" from the context menu.
All contained Groovy scripts and Groovy script directories will be deleted recursively.

Single or multiple selected Groovy scripts can be deleted via DEL , or via the context menu.

Automated Scripts

If any of the deleted Groovy scripts was configured to be run automatically, it will be automatically removed from the
list of automated scripts.

16.8. Groovy Script Best Practices
This chapter provides hints for improving the performance of Groovy scripts. This becomes more important the more scripts are
configured to be executed automatically and thus run on every "refresh".

16.8.1. Only Visit What is Needed
The Script API uses the "Visitor" pattern to traverse the information of a software system. The pattern is very popular and
explanations are easy to find.

Extending the Static Analysis

182

Use the Right "visit" Method

Choosing the "visit" method that matches the script's purpose leads to fewer methods being called by the visitor and faster
execution:

1. CoreAccess.visitLogicalModuleNamespaces() : Visits logical module namespaces and contained elements. See Section 5.4,
“Logical Models” for details.

2. CoreAccess.visitLogicalSystemNamespaces() : Visits logical system namespaces and contained elements. See Section 5.4,
“Logical Models” for details.

3. CoreAccess.visitParserModel() : Visits all elements of the parser model, i.e. no logical system or module namespaces.

4. CoreAccess.visitModel() : Visits all elements of the model. Most powerful, but obviously the most detailed and slow execution.

Only Visit Interesting Parts of the Model

If you are not interested in visiting externals or certain root directories, stop the visitor traversing that part of the model. The
easiest way to exclude external elements from the analysis:

visitor.onExternal
{
 //We are not interested in external
 return;
}

Similarly, if you only want to investigate dependencies to external elements, you can stop the visitor from traversing the internal
model:

visitor.onModule
{
 //We are not interested in internal
 return;
}

If you want to check only a specific module named "Test", you can do the following:

v.onExternal
{
 return;
}

visitor.onModule
{
 ModuleAccess module ->
 if (module.getName().equals("Test"))
 {
 //only visit children of this module
 visitor.visitChildren(module);
 }
}

visitor.onType
{
 TypeAccess type ->

 //Prints out only types of module "Test"
 println "Type $type";
}

The same approach should be used to limit the visiting of other model elements (e.g. namespace, component, type, method, field).

Extending the Static Analysis

183

16.8.2. Find Text in Code
If you want to create metrics or issues based on text contained in source files, the visitor offers the method onSourceFile() and
the class SourceFileAccess that provides access to individual lines.

Combined with regular expressions this is a very powerful method to identify anything in the code that is not contained in the
model, e.g. FIXME or TODO in comments.

The following is an excerpt from the script FindFixmeAndTodoInComments.scr contained in the "Core" quality model:

def todoPattern = ~/\/\/\s?TODO.?\b/;
ICoreVisitor visitor = coreAccess.createVisitor();

visitor.onSourceFile
{
 ISourceFileAccess source ->
 if(source.isExcluded())
 {
 return;
 }

 List<ISourceLineAccess> lines = source.getSourceLines();
 ...
}

TIP

The compilation of the regular expression pattern is an expensive operation and should be done in the "global" section
of a script, not within a visit() method.

TIP

Limit the number of scripts using SourceFileAccess. Sonargraph does not keep file contents in memory, thus visiting
source files and traversing individual lines causes the actual files being opened. This is a costly operation and slows
down the execution.

If you notice that various scripts contain source matching and this is time consuming, think about minimizing file
operations by violating the "Single Responsibility Principle" and merge the functionality of several scripts into one.

184

Chapter 17. Using Additional Plugins
Sonargraph offers a plugin infrastructure, so that it is possible to extend Sonargraph's internal model and to create additional
issues. Plugins can contribute to the internal model during the 'create model' and 'create dependencies' phases and create issues
during the 'analysis' phase. There currently available plugins are explained in the following sections:

• Spring Microservices

• Swagger

• Spotbugs

• PMD

Plugins can be installed by Sonargraph's Plugin Manager Preference Page.

On Sonargraph's Plugin Manager Preference Page you can install plugins from disk, configure and delete them, or install them
from Sonargraph plugin repository.

Figure 17.1. Plugin Manager Preference Page

If you choose to install a plugin from Sonargraph Plugin Repository, the following dialog is shown. It is possible to install new
plugins, or update existing ones.

Figure 17.2. Sonargraph Plugin Repository

Using Additional Plugins

185

17.1. Plugin Configuration
Configuration of a Sonargraph plugin is system specific, and stored in Sonargraph's system file folder 'Plugins' as file
'<pluginId>.xml'. For every installed plugin there will be an initial default configuration in memory. When this default
configuration is changed, a configuration file is written to disk. A doubleclick on this configuration file opens the configuration
dialog. It is also possible to configure a plugin by using the Sonargraph System Settings.

Newly installed Sonargraph plugins are not enabled by default. Enable them if wanted by setting the configuration value 'Enabled'
to true.

17.2. Spring Microservices Plugin
The 'Spring Microservices' plugin for Java exposes web resources of SpringBoot applications and dependencies between them. It
finds exposed web service end points by looking at annotations like org.springframework.web.bind.annotation.RequestMapping.
If a method is annotated with one of those annotations the web resource will be added as a child to the method in the Navigation
view.

Currently, clients using the Spring FeignClient annotations are detected as 'Web Call' elements. More client frameworks will
be added in the future. For each of those methods, a 'Web Call' child element is created, and a corresponding 'Web Resource'
element is tried to be found in the workspace. The web resources could have been created by another plugin. If no matching 'Web
Resource' is found, an 'External Web Resource' element is created as child element of the plugin's external node.

SpringBoot offers various ways of configuration. The plugin currently expects a standard directory layout for SpringBoot
modules, with configuration files (application.properties, application.yml, bootstrap.properties, bootstrap.yml) contained in the
module's 'src/main/resources/' directory. It can also analyze configuration files contained in SpringBoot applications annotated
with org.springframework.cloud.config.server.EnableConfigServer. Currently, configuration loaded from classpath is supported
(spring.cloud.config.server.native.search-locations = classpath:/shared).

Please contact us if you have a use case and need some support!

The following screenshots have been created for the Piggy Metrics application.

Figure 17.3. Spring Microservices Plugin Web Call (above) and Web Resource (below)

Dependencies between web calls and web resources are treated like any other dependency and can cause architecture violations.

https://github.com/sqshq/PiggyMetrics

Using Additional Plugins

186

Figure 17.4. Architecture Violations for Dependencies between Plugin Elements

Related topics:

• Chapter 18, Investigating Microservice Dependencies

• Section 17.3, “Swagger Plugin”

Using Additional Plugins

187

17.3. Swagger Plugin
The 'Swagger' plugin for Java exposes web resources and dependencies between them. It finds exposed web service end points
by looking at the javax.ws.rs.Path annotation. If a method is annotated with this annotation the web resource will be added as
a child to the method in the Navigation view.

The much more difficult part is to find out who is calling those web end points. Right now the plugin detects calls generated
by Swagger for the OkHttpClient framework. The generated client code and its class files need to be added to the Sonargraph
workspace. The plugin scans the generated Java code for web calls, creates a 'Web Call' element as a child element of the
originating method, and tries to resolve the web resource within the scope of the project. The web resources could have been
created by another plugin. If no web resource is found the called end point will show up under the "External (Web)" node in
the navigation view.

With the help of the plugin you can visualize the dependencies between your web/micro-services and also define an architectural
model that would enforce restrictions on those dependencies. To achieve that just create a big Java project containing the code of
all your web/micro-services. The Swagger plugin will then automatically add web/micro-service dependencies to the Sonargraph
model.

Please contact us if you have a use case and need some support!

Related topics:

• Chapter 18, Investigating Microservice Dependencies

• Section 17.2, “Spring Microservices Plugin”

17.4. SpotBugs Plugin
The second plugin implemented for Sonargraph's plugin infrastructure is the 'SpotBugs' plugin for Java. SpotBugs (successor
of FindBugs) looks for 'bugs' in Java code.

17.5. PMD Plugin
The third plugin implemented for Sonargraph's plugin infrastructure is the 'PMD' plugin for Java. PMD finds 'violations' (common
programming flaws) in Java code.

188

Chapter 18. Investigating Microservice
Dependencies
A lot of applications have been developed around 'Microservices'. One big advantage of Microservices is their loose coupling
via HTTP(S), which can turn into a disadvantage because dependencies between a large number of services are hard to track.

Sonargraph exposes the dependencies via its 'Spring Microservices' and 'Swagger' plugins. All detected 'Web Resources' and 'Web
Calls' can be listed with the script 'Core/FindWebResourcesAndCalls.xml' which can be imported from the built-in quality model.
Executing the script, multi-selecting all found elements in the 'Elements Tab' of the Script View and opening the Exploration
View via the context menu creates a nice dependency overview between microservices as shown in the following screenshot
for the Piggy Metrics application.

Figure 18.1. Exploring Microservice Dependencies

https://github.com/sqshq/PiggyMetrics

Investigating Microservice Dependencies

189

NOTE

With the help of the plugins and the script you cannot only visualize the dependencies between your microservices, but
also define an architectural model that would enforce restrictions on those dependencies. To achieve that just create a
big Java project containing the code of all your microservices.

Currently, calls and resources are detected for the above mentioned Java frameworks (see the detailed sections for
implementation details) as a starting point. Dependencies are resolved between web calls and web resources detected
by a plugin for any of the supported languages.

If you have the need for the support of a specific framework, please get in contact with us via
<support@hello2morrow.com>!

Related topics:

• Chapter 17, Using Additional Plugins

• Section 17.2, “Spring Microservices Plugin”

• Section 17.3, “Swagger Plugin”

• Chapter 16, Extending the Static Analysis

190

Chapter 19. Build Server Integration
Several integrations exist to run the same Sonargraph quality checks on your build server. Sonargraph-Build can be downloaded
from our web site: https://www.hello2morrow.com/products/downloads Integrations are available to start Sonargraph using Ant,
Maven, Gradle or Shell scripts. Plugins are available to visualize the results in SonarQube and Jenkins . More details about
configuration options can be found in the user manual of Sonargraph-Build.

If you want to analyze a Java system with Ant on the build server, chances are high that the workspace definition contains class
root directories of the development environment and that those directories are not available on the build server. The following
section describes how workspace profiles can be used to solve this problem: Section 8.7.3, “Creating Workspace Profiles for
Build Environments”

Related topics:

• Section 8.7.3, “Creating Workspace Profiles for Build Environments”

https://www.hello2morrow.com/products/downloads
http://www.sonarqube.org/
https://jenkins-ci.org/

191

Chapter 20. IDE Integration
The purpose of the IDE integrations of Sonargraph is to run the quality checks continuously during development. This helps
to prevent new problems being introduced into the shared code base: It is not needed to wait for the build server to report any
problems, but instead the IDE integrations of Sonargraph run quality checks in the background, whenever the IDE compiles Java
code. Problem and task markers are created for issues and resolutions and support the developer to fix the problems.

NOTE

The IDE must be started at least with a Java 8 runtime for the integration to work.

To ease navigating between Sonargraph and the Eclipse IDE, a remote selection mechanism has been introduced with version
11.1. This enables quick navigation to the right spot to fix something, when analyzing the code base with Sonargraph. And also
the other way, when the advanced visualization mechanisms of Sonargraph need to be used to get a better understanding while
coding. More details are provided in Section 20.3, “Collaboration between Sonargraph and IDE”.

Currently, the IDE integrations only support Java systems.

20.1. Eclipse Plugin
To install the Sonargraph Eclipse plugin, run Eclipse and open menu "Help" → "Install New Software...". Add this update site
as a new location: http://eclipse.hello2morrow.com/sonargraphEclipse

After successful installation and a restart of Eclipse the additional menu entry "Sonargraph" should be visible. If not, check the
Eclipse "Error View" for any errors related to the plugin and get in contact with <support@hello2morrow.com>.

NOTE

Installing Sonargraph Eclipse plugin on Eclipse Oxygen with an already installed Groovy plugin may lead to some
Eclipse editors or views showing errors after a restart of Eclipse, due to Groovy plugin's compiler resolver being broken
when there are multiple Groovy compiler bundles for the same Groovy compiler version. In this case it may help to
delete the Groovy compiler bundle introduced by Sonargraph Eclipse plugin from plugins folder of your Eclipse Oxygen
installation. If you need further assistance please get in contact with <support@hello2morrow.com>.

TIP

Occasionally, Eclipse gets confused after installing plugins. If Eclipse fails to startup, configure the "-clean" startup
option in the eclipse.ini file within you Eclipse installation. This will clear any cached data. If the slightly longer startup
time bothers you, remove the option again. More details are available here: https://help.eclipse.org/index.jsp?topic=
%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fruntime-options.html

Activation

You need to have a valid license or activation code in order to use the plugin. More details can be found in Chapter 3, Licensing.

Open the dialog via the menu "Sonargraph" → "Manage License..." and supply either the activation code or license file and
hit "Request".

The Sonargraph icon in the Eclipse toolbar indicates the current status of the plugin and its tooltip provides additional information.
This makes it easy to spot, if the plugin is still analyzing, if there are any issues, etc.

http://eclipse.hello2morrow.com/sonargraphEclipse
https://help.eclipse.org/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fruntime-options.html
https://help.eclipse.org/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fruntime-options.html

IDE Integration

192

Figure 20.1. Status Icon

The following sections describe common interactions and usage of the plugin.

NOTE

The IDE must be started with a Java 8 (or higher) runtime for the integration to work.

We tested the plugin successfully with Eclipse 4.7.3 and later versions. If you notice any compatibility problems during
installation, please send us the Eclipse error log or a screenshot of the error and details about your Eclipse installation
to <support@hello2morrow.com>.

20.1.1. Assigning a System
The next step after the successful installation and activation of the plugin is to open a Software System that has been previously

created using Sonargraph. Open the menu "Sonargraph" → "Open System..." and select the Sonargraph system.

Figure 20.2. Open Sonargraph System

The red decorators and black font indicate, which Eclipse projects could be mapped to Sonargraph modules and which source and
class directories are part of the Sonargraph workspace. The mapping is done based on matching source root directories. Projects
and directories that are not part of the Sonargraph analysis are indicated by a gray font.

20.1.2. Displaying Issues and Tasks

NOTE

The plugin currently always applies the default virtual model "Modifiable.vm".

IDE Integration

193

NOTE

The number of Sonargraph issues and resolution markers might differ from the number of issues and resolutions
displayed in the Sonargraph application for the following reasons:

• Individual markers are created and attached to source files for each duplicate code block occurrence and each
component involved in a component cycle group. This makes it easier for the developer to spot a problem while
editing a source file, but results in a higher number of markers.

• No markers are created for ignored issues, because the developer cannot resolve them in the IDE.

• Markers are only generated for elements that are part of the currently monitored workspace. If a Sonargraph module
cannot be mapped to an Eclipse project, no issues and resolutions for elements contained in that module are shown.

Detected issues are shown in the standard Eclipse Problems and Tasks views. The view options allow to group problems by
"Type" as shown in the screenshot.

Figure 20.3. Show Issues in Problems View

It is also possible to configure a new Problems view via the Problems view's view menu and exclusively show the Sonargraph
issues by selecting "Configure Contents..." and filtering for the Sonargraph issues as shown below in the screenshot. This
configuration dialog can be opened via Problems view's view menu "Configure Contents...".

TIP

The same grouping and filtering options are applicable on the standard Eclipse Tasks and Markers views.

IDE Integration

194

Figure 20.4. Problems View Configuration for Sonargraph Issues

Examining Cycle Group Issues

Sonargraph calculates logical namespace cycle groups, i.e. physical namespaces are merged on module or system level. The
Sonargraph Cycle Groups view can be opened via the main Sonargraph menu or via the context menu of a Sonargraph Cycle
Issue marker.

IDE Integration

195

Figure 20.5. Context Menu To Open Sonargraph Cycle Groups View

More detailed cycle group analysis (including possibilities to break them up) should be done with the Sonargraph-Architect
application as described in Section 8.9, “Analyzing Cycles”.

20.1.3. Suspending / Resuming Quality Monitoring
The Sonargraph quality checks are executed as an additional "builder" in the background whenever the project is built. If this
is too time consuming or you are currently not interested in the Sonargraph checks, the plugin can be disabled quickly via the

menu "Sonargraph" → "Suspend Analysis". This is equivalent to closing the system. Once the checks should be resumed, simply

select "Sonargraph" → "Resume Analysis". This is equivalent of opening the system from snapshot and doing a refresh.

NOTE

If the class path of a monitored Eclipse project is modified or a monitored project is closed, the monitoring is
automatically suspended. Resume the monitoring, once you are finished with the workspace modifications.

20.1.4. Setting Analyzer Execution Level

The Sonargraph Analyzer Execution Level can be set via the menu "Sonargraph" → "Analyzer Execution Level".

20.1.5. Getting Back In Sync with Manual Refresh

If you updated Sonargraph system files in parallel using the Sonargraph-Architect application, you can choose "Sonargraph" →
"Refresh System Files" to just update those resources.

If you notice that some markers are not properly updated, or that the Sonargraph analysis has not picked up the latest changes,

please use the menu "Sonargraph" → "Reparse System" to bring the Sonargraph model back in sync with the Eclipse workspace.

Since Eclipse caches resources sometimes, you might see Sonargraph "Class file out of date" issues on Eclipse startup. A "refresh"
of the Eclipse workspace followed by a build should solve it. If the changes are not picked up by Sonargraph, trigger a manual
"reparse" as described above.

TIP

If you notice any problem using the plugin, we a grateful to receive your feedback! The easiest way is to use the menu

"Sonargraph" → "Send Feedback".

IDE Integration

196

TIP

We think assertions are really helpful to ensure proper program execution and we are using them a lot in Sonargraph.
You can enable assertions for Eclipse by adding the -ea VM argument at the end of your eclipse.ini configuration file.

An error dialog will show up if an assertion error happens. Please take the opportunity to let us know about the error!
We will do our best to fix it as soon as possible.

20.1.6. Examining Changes
Similar to Sonargraph application, the Eclipse plugin allows to track changes of issues with respect to a baseline. The Sonargraph
menu allows the following interactions:

• New Baseline: Create and apply a new baseline, i.e. at the beginning of a feature development, to ensure that no new issues
are introduced.

• Open Baseline: Open an existing baseline, i.e. an XML report generated at the end of the previous release.

• Activate System Baseline: Switch to the baseline that is configured in the software system. Obviously, this menu is only
enabled if there is a baseline configured and it is currently not activated.

• Detach Baseline: Disconnect the current Sonargraph system from the baseline to see all existing issues.

• Export HTML Report: Create and open an HTML report focussed on the differences w.r.t the baseline.

Sonargraph issues are converted to Eclipse problem markers. If a baseline is applied, all unmodified issues are assigned the
severity "info". This sets them clearly apart from the added or changed issues which keep their original severity. The following
screenshot shows an Eclipse Problems view that has been configured to focus on Sonargraph issues only:

Figure 20.6. Sonargraph Issues in Eclipse with Baseline Applied

There are no markers created for resolved issues. If you are interested which issues have been resolved, you need to create the
HTML report.

Sonargraph tasks and refactorings are also converted to Eclipse task markers. The change info (Added, Unmodified, etc.) is
prepended to the tasks description.

Current Limitations

Not all functionality related to the system diff has been implemented yet in the Eclipse plugin and the following list summarizes
the current limitations, which will be resolved in future releases:

1. The "Sonargraph Cycle Groups" view does not support the system diff and always shows the complete list of cycle groups.
To see diff information about cycle groups, you currently have to generate the HTML report.

2. The "Sonargraph Refactorings" view does not support the system diff and always shows the complete list of refactorings. To
see diff information about refactorings, you currently have to generate the HTML report.

Related topics:

http://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

IDE Integration

197

• Chapter 14, Examining Changes

20.1.7. Execute Refactorings in Eclipse
The list of Sonargraph refactorings definitions is shown in the Sonargraph Refactorings View. The view can be opened from

the Eclipse main menu "Window" → "Show View" → "Other...". Select the folder "Sonargraph" and select "Sonargraph
Refactorings".

 The "Sonargraph Refactorings" view offers filter options in the top right corner. Refactorings can be filtered by status, priority,
assignee and description.

NOTE

Refactorings defined in Sonargraph might affect a lot of resources. We recommend committing all pending changes to
your version control system before executing the refactorings, so you have a safe fallback.

NOTE

Execute the refactorings in the order of their definition. Otherwise subsequent refactorings might no longer be applicable.

The Sonargraph plugin delegates the refactorings to the refactoring mechanism of Eclipse. Some Sonargraph refactorings cannot
be converted into a single Eclipse refactoring. The following refactorings need to be split:

1. Namespace refactorings that effectively merge two packages by moving or renaming a package into an existing target package.

2. Move refactorings that change the source root of a namespace or compilation unit.

3. Move refactorings of a package containing subpackages.

4. Move+Rename refactorings are not supported as an atomic operation in Eclipse and need to be split.

The following steps are executed for each refactoring:

1. If the Sonargraph refactoring needs to be split, a confirmation dialog will inform you about the necessary actions.

2. The standard Eclipse refactoring dialogs are shown that allow you to control the affected resources (e.g. change names in
non-Java files) and preview the changes.

3. If you chose to deviate from the planned refactoring, a dialog prompts you to add a comment.

NOTE

Subsequent Sonargraph refactorings might become obsolete if you deviate from the planned refactoring!

4. The refactoring log containing the list of changed resources is shown in the end. You can copy&paste these details as a protocol
e.g. into your task management system.

Related topics:

• Chapter 10, Simulating Refactorings

• Section 10.4, “Best Practices”

IDE Integration

198

20.2. IntelliJ Plugin
To install the Sonargraph Intellij plugin run Intellij, open the Intellij Settings dialog, go to "Plugins" → "Browse repositories..."

→ "Manage repositories..." and add a new repository supplying hello2morrow's Intellij plugin repository URL: http://
intellij.hello2morrow.com/sonargraphIntelliJ/updatePlugins.xml

Once the repository is configured, select Sonargraph from the plugin list and click on the green install button in the description
area.

After successful installation and a restart of Intellij, the Sonargraph entry should appear under the "Other Settings" node in
Intellij's setting dialog. If not, check the Event Log view and Intellij's notifications for any errors related to the plugin and get
in contact with <support@hello2morrow.com>.

NOTE

Intellij version 2018.2 or newer is required for Sonargraph Intellij plugin to run.

Activation

You need to have a valid license or activation code in order to use the plugin. More details can be found in Chapter 3, Licensing.

Open the dialog via Intellij's settings, then go to "Other Settings" → "Sonargraph" → "Manage License..." and supply either a
license file or the activation code, hit "Request" and "Install License" before closing the dialog.

The following sections describe common interactions and usage of the plugin.

NOTE

The IDE must be started with a Java 8 (or higher) runtime for the integrations to work.

20.2.1. Assigning a System

The next step after the successful installation and activation of the plugin is to open a Software System that has been previously

created using Sonargraph. On the Intellij settings, go to "Other Settings" → "Sonargraph" and select the Sonargraph system.

http://intellij.hello2morrow.com/sonargraphIntelliJ/updatePlugins.xml
http://intellij.hello2morrow.com/sonargraphIntelliJ/updatePlugins.xml

IDE Integration

199

Figure 20.7. Open Sonargraph System

Sonargraph will match its own modules to Intellij's modules based on source root directories. The "Mapping of modules" table
shown above indicates the result of the matching process.

Once the system is opened and the matching is completed, use the "Activate Sonargraph on Project" to enable Sonargraph's
analysis and user interface components in your Intellij IDE.

The "Analyzer Execution Level" can be set to one of "Full", "Advanced", "Basic", or "Minimal". The tooltip shows which
Analyzers will be run for each of the levels.

20.2.2. Displaying Issues and Tasks

NOTE

As of now, the plugin always applies the default virtual model "Modifiable.vm".

NOTE

The number of Sonargraph issues and resolution markers might differ from the number of issues and resolutions
displayed in the Sonargraph application for the following reasons:

• Individual markers are created and attached to source files for each duplicate code block occurrence. This makes it
easier for the developer to spot a problem while editing a source file, but results in a higher number of markers.

• No markers are created for ignored issues, because the developer cannot resolve them in the IDE.

IDE Integration

200

• Markers are only generated for elements that are part of the currently monitored workspace. If a Sonargraph module
cannot be mapped to an Intellij project, no issues and resolutions for elements contained in that module are shown.

Detected issues are shown in the standard Sonargraph tool window in the Intellij IDE. The tool window has the following tabs:
Architecture Violations, Issues, Cycles, Tasks, and Refactorings.

Figure 20.8. Sonargraph Tool Window

20.2.3. Toolbar
Sonargraph's tool window has a toolbar on the left hand side which has four buttons :

• Make Project : Triggers the source code compilation directly from Sonargraph's tool window.

• Synchronize : Reloads the information that is currently contained in Sonargraph's system files. If changes are detected, the
user interface will be updated accordingly.

• Reset : Recreates graphical the components in Sonargraph's tool window and synchronizes the information contained in
the system files.

• Send Feedback : This button will open Sonargraph's feedback dialog. Any information submitted from this dialog will be
sent to support@hello2morrow.com

• Scroll to Source : When this toggle button is pushed, any click on an architecture violation, issue, task or compilation unit
cycle group whose affected element is a source file will open the java source editor and go to the line containing the marker
associated with the clicked issue.

• Toggle Markers : Shows/hides the different markers that the Sonargraph Intellij plugin will add for issues/tasks in the IDE
source editor.

20.2.4. Getting Back In Sync with Manual Refresh
If you updated Sonargraph system files in parallel using the Sonargraph Architect application, you can use the "Synchronize"
button in the toolbar to get these files in sync.

If you notice that some markers are not properly updated, or that the Sonargraph analysis has not picked up the latest changes,
please compile your code to bring the Sonargraph model back in sync with the Intellij project. You can use the "Make Project"
button in the toolbar.

TIP

If you notice any problem using the plugin, we are grateful to receive your feedback! The easiest way is to use the "Send
Feedback" toolbar button.

TIP

If an exception happens in our plugin, you will get an error notification from Intellij and if you click on it, you will get
the Intellij feedback dialog. Since this dialog only sends feedback to Intellij's bug tracking system, please click on the

IDE Integration

201

"Add Details..." button to get the Sonargraph error feedback dialog, fill in the details and click on the "Ok" button. This
way the information gets to us directly and we can address errors quickly.

20.2.5. Examining Changes
Similar to Sonargraph application, the IntelliJ plugin allows to track changes of issues with respect to a baseline. The Sonargraph
menu allows the following interactions:

• New Baseline: Create and apply a new baseline, i.e. at the beginning of a feature development, to ensure that no new issues
are introduced.

• Open Baseline: Open an existing baseline, i.e. an XML report generated at the end of the previous release.

• Activate System Baseline: Switch to the baseline that is configured in the software system. Obviously, this menu is only
enabled if there is a baseline configured and it is currently not activated.

• Detach Baseline: Disconnect the current Sonargraph system from the baseline to see all existing issues.

• Export HTML Report: Create and open an HTML report focussed on the differences w.r.t the baseline.

Sonargraph issues are converted to IntelliJ markers. If a baseline is applied, all unmodified issues are assigned the severity "info".
This sets them clearly apart from the added or changed issues which keep their original severity. The following screenshot shows
the Sonargraph Tool Window and the possible menu interactions:

Figure 20.9. Sonargraph Issues in IntelliJ with Baseline Applied

There are no markers created for resolved issues. If you are interested which issues have been resolved, you need to create the
HTML report.

Current Limitations

Not all functionality related to the system diff has been implemented yet in the IntelliJ plugin and the following list summarizes
the current limitations, which will be addressed in future releases:

1. The "Sonargraph Cycle Groups" view does not support the system diff and always shows the complete list of cycle groups.
To see diff information about cycle groups, you currently have to generate the HTML report.

Related topics:

• Chapter 14, Examining Changes

20.2.6. Execute Refactorings in IntelliJ
The list of Sonargraph refactorings definitions is shown in the "Refactorings" tab of the Sonargraph tool window. A refactoring
can be executed via right-click.

IDE Integration

202

NOTE

Refactorings defined in Sonargraph might affect a lot of resources. We recommend committing all pending changes to
your version control system before executing the refactorings, so you have a safe fallback.

NOTE

Execute the refactorings in the order of their definition. Otherwise subsequent refactorings might no longer be applicable.

The Sonargraph plugin delegates the refactorings to the refactoring mechanism of IntelliJ. Sonargraph "Move+Rename"
refactorings of compilation units cannot be converted into a single IntelliJ refactoring and therefore needs to be split.

The following steps are executed for each refactoring:

1. If the Sonargraph refactoring needs to be split, a confirmation dialog will inform you about the necessary actions.

2. The standard IntelliJ refactoring dialogs and views are shown that allow you to control the affected resources (e.g. change
names in non-Java files) and preview the changes.

Related topics:

• Chapter 10, Simulating Refactorings

• Section 10.4, “Best Practices”

IDE Integration

203

20.3. Collaboration between Sonargraph and IDE
As of version 11.1, Sonargraph offers a close integration with the Eclipse plugin to make it easier to fix issues right away when
analyzing the code base in Sonargraph. And also vice-versa, making it easy to investigate dependencies using Sonargraph's
advanced visualizations when coding in the IDE.

NOTE

The integration is currently only implemented for the Eclipse plugin!

Interactions

• Connect / Disconnect: If selected, the application listens to incoming selection requests.

• Send Selection Request: Information about the current selection is sent.

• Reveal Selection Request:

Sonargraph -> IDE: The matching element is highlighted in the 'Package Explorer' or 'Project Explorer' in Eclipse and if
the selection has been within a source file in Sonargraph, the editor is opened automatically in Eclipse and the matching
line is selected.

IDE -> Sonargraph: The matching element(s) are selected in the 'Navigation' view. From there the appropriate
visualization can be opened via the context menu.

NOTE

The following preconditions must be fulfilled for the integration to work:

• The same Sonargraph system must be opened in Sonargraph and the IDE.

• The receiving application must be 'connected', i.e. must listen to incoming selection requests.

NOTE

You need to manually trigger a refresh (F5) in Sonargraph after changing code in the IDE.

Configuration

Default ports for listening to selection requests are 42420 (Sonargraph) and 42421 (IDE). This can be changed via a preference

page in Sonargraph or via the menu "Sonargraph" → "Configure Remote Selection..." in Eclipse.

NOTE

The configuration is shared between the two applications, so that ports need to be configured only once. Just re-connect
in the other application to activate the new configuration.

IDE Integration

204

Sample Use Cases

Fixing a Detected Issue in the IDE

Figure 20.10. Fixing a Detected Issue in the IDE

IDE Integration

205

Selecting Elements for Inspection in Sonargraph

Figure 20.11. Selecting Elements for Inspection in Sonargraph

206

Chapter 21. Metric Definitions
This chapter contains definitions for the built-in metrics provided by Sonargraph.

21.1. Language Independent Metrics
Number of Artifacts

Description: Number of architecture artifacts in checked files

Categories: Architecture

Number of Components in Deprecated Artifacts

Description: Number of components that are assigned to deprecated artifact

Categories: Architecture

Number of Components with Violations

Description: Number of components that contain architecture violations

Categories: Architecture

Number of Empty Artifacts

Description: Number of architecture artifacts that are empty in checked files

Categories: Architecture

Number of Ignored Violations (Parser Dependencies)

Description: Number of parser dependencies in ignored architecture violations

Categories: Architecture

Number of Logical Elements in Deprecated Artifacts

Description: Number of logical programming elements that are assigned to deprecated artifact

Categories: Architecture

Number of Unassigned Logical Elements

Description: Number of internal logical elements that are not assigned to any artifact

Categories: Architecture

Number of Unassigned Physical Components

Description: Number of internal physical components that are not assigned to any artifact

Metric Definitions

207

Categories: Architecture

Number of Violations (Component Dependencies)

Description: Number of architecture-violating component dependencies

Categories: Architecture

Number of Violations (Parser Dependencies)

Description: Number of architecture-violating parser dependencies

Categories: Architecture

Average Block Nesting Depth

Description: Weighted average of nesting depth.

Categories: Code Analysis

Component Dependencies to Remove (Components)

Description: Number of component dependencies to remove to break up all component cycles.

Categories: Code Analysis, Cycle

Component Rank (Module)

Description: Component Rank is based on Google's page rank algorithm. The total component rank over all components
in the selected group adds up to 100. The higher the rank, the more 'important' a component is in a system. Having many
incoming dependencies or being referenced by other important components increases rank.

Categories: Code Analysis

Component Rank (System)

Description: Component Rank is based on Google's page rank algorithm. The total component rank over all components
in the selected group adds up to 100. The higher the rank, the more 'important' a component is in a system. Having many
incoming dependencies or being referenced by other important components increases rank.

Categories: Code Analysis

Issue Density

Description: Calculated as the number of unresolved issues (errors, warnings) * 1000, divided by source element count

Categories: Code Analysis

Max Block Nesting Depth

Description: Nesting depth is another good complexity indicator. Minimum value is zero, each nesting level adds 1.

Categories: Code Analysis

Metric Definitions

208

Number of Code Duplicates

Description: Number of duplicated code blocks.

Categories: Code Analysis

Number of Duplicated Code Lines

Description: Number of duplicated lines in duplicated code blocks. The duplicated lines of each code block are calculated
as the sum of involved occurrences excluding the largest, which is treated as the reference.

Categories: Code Analysis

Number of Ignored Code Duplicates

Description: Number of ignored duplicated code blocks.

Categories: Code Analysis

Parser Dependencies to Remove (Components)

Description: Number of code lines to change to break up all component cycles.

Categories: Code Analysis, Cycle

Structural Debt Index (Components)

Description: Cumulative structural debt index of component cycles.

Categories: Code Analysis

Biggest Component Cycle Group

Description: Number of components in biggest cycle.

Categories: Cycle

Cyclicity (Components)

Description: Cumulated cyclicity of component cycles.

Categories: Cycle

Number of Component Cycle Groups

Description: Number of all component cycle groups, warnings and errors.

Categories: Cycle

Number of Critical Component Cycle Groups

Description: Number of component cycle groups marked as errors.

Metric Definitions

209

Categories: Cycle

Number of Cyclic Components

Description: Number of cyclic components.

Categories: Cycle

Number of Cyclic Modules

Description: Number of cyclic modules.

Categories: Cycle

Number of Ignored Cyclic Components

Description: Number of ignored cyclic components.

Categories: Cycle

Relative Cyclicity (Components)

Description: Relative component cyclicity in percent.

Categories: Cycle

ACD

Description: Average component dependency according to John Lakos. Average number of components a component
depends on directly and indirectly. This metric can be used to characterize the overall average coupling of internal
components.

Categories: Cohesion/Coupling, John Lakos

CCD

Description: Cumulative component dependency according to John Lakos. Cumulated depends upon values.

Categories: Cohesion/Coupling, John Lakos

Depends Upon (Module)

Description: Depends upon module level according to DependsOn by John Lakos. Total number of components that a
component directly and indirectly depends upon in containing module.

Categories: Cohesion/Coupling, John Lakos

Depends Upon (System)

Description: Depends upon system level according to DependsOn by John Lakos. Total number of components that a
component directly and indirectly depends upon in system.

Categories: Cohesion/Coupling, John Lakos

Metric Definitions

210

Fan In Maintainability Level (Module)

Description: Percentage of higher-level components in the same module that depend directly or indirectly on this
component.

Categories: Cohesion/Coupling

Fan In Visibility (Module)

Description: Percentage of components in the same module that depend directly or indirectly on this component.

Categories: Cohesion/Coupling, MacCormack, Rusnak, Baldwin

Fan In Visibility (System)

Description: Percentage of internal components in the system that depend directly or indirectly on this component.

Categories: Cohesion/Coupling, MacCormack, Rusnak, Baldwin

Fan Out Visibility (Module)

Description: Percentage of components in the same module that this component depends upon.

Categories: Cohesion/Coupling, MacCormack, Rusnak, Baldwin

Fan Out Visibility (System)

Description: Percentage of internal components in the system that this component depends upon.

Categories: Cohesion/Coupling, MacCormack, Rusnak, Baldwin

Highest ACD

Description: Highest module ACD.

Categories: Cohesion/Coupling, John Lakos

LCOM4

Description: Determines the number of components in a class. A component is composed of fields, methods and
types defined top level including all their nested programming elements. Constructors, destructors, empty, abstract and
overridden methods of classes are not included in the calculation. The metric represents the unrelated portions of code
in a class. A value of 1 indicates the highest cohesion possible - which is normally desirable. High values might indicate
that a class is a candidate for a refactoring. Consider that utility classes by nature have high LCOM4 values.

Categories: Cohesion/Coupling

Logical Cohesion (Module)

Description: Number of dependencies 'to' and 'from' other top-level logical programming elements in the same
namespace on module level.

Categories: Cohesion/Coupling

Metric Definitions

211

Logical Cohesion (System)

Description: Number of dependencies 'to' and 'from' other top-level logical programming elements in the same
namespace on system level.

Categories: Cohesion/Coupling

Logical Coupling (Module)

Description: Number of dependencies 'to' and 'from' other top-level logical programming elements in other namespaces
on module level.

Categories: Cohesion/Coupling

Logical Coupling (System)

Description: Number of dependencies 'to' and 'from' other top-level logical programming elements in other namespaces
on system level.

Categories: Cohesion/Coupling

Maintainability Level

Description: This metric estimates maintainability as a percentage. 100% is the best possible value. To do that it looks
at the dependency structure between components (source files in most languages). Cyclic dependencies and low level
classes with a lot of incoming dependencies have a negative influence on the metric. Keeping good vertical boundaries
and not having too many layers will have a positive influence. It is also recommended to have as many components as
possible that are independent, i.e. have no incoming dependencies and therefore can be changed without influencing
the rest of the system. In Java and C# the metric also considers the value of the relative cyclicity metric for packages/
namespaces. If you have large cycle groups they will have a negative influence on the metric value.

Categories: Cohesion/Coupling

NCCD

Description: Normalized cumulative component dependency according to John Lakos. The ratio between the cumulative
component dependency and the cumulative component dependency of a balanced binary tree of the same size. A value
greater than 1 indicates a more vertical design. A value less than 1 indicates a more horizontal design.

Categories: Cohesion/Coupling, John Lakos

Physical Cohesion

Description: Number of dependencies 'to' and 'from' other components in the same module.

Categories: Cohesion/Coupling

Physical Coupling

Description: Number of dependencies 'to' and 'from' other components in other modules.

Categories: Cohesion/Coupling

Metric Definitions

212

Propagation Cost

Description: Propagation cost metric according to MacCormack, Rusnak and Baldwin. It describes the proportion of
software files that are directly or indirectly linked to each other.

Categories: Cohesion/Coupling, MacCormack, Rusnak, Baldwin

RACD

Description: Relative average component dependency. Average component dependency divided by the number of
internal components multiplied by 100 (in percent).

Categories: Cohesion/Coupling, John Lakos

Used From (Module)

Description: Number of all depending elements (direct and indirect) + 1 (including self) in containing module.

Categories: Cohesion/Coupling, John Lakos

Used From (System)

Description: Number of all depending elements (direct and indirect) + 1 (including self) in system.

Categories: Cohesion/Coupling, John Lakos

Code Comment Lines

Description: Counts all comment lines excluding header comments and blank comment lines.

Categories: Size

Comment Lines

Description: Counts all comment lines excluding blank comment lines.

Categories: Size

Lines of Code

Description: Lines of code excluding blank and comment lines.

Categories: Size

Number of Components

Description: Number of components.

Categories: Size

Number of Components (Ignoring Issues)

Description: Number of components ignoring issues.

Metric Definitions

213

Categories: Size

Number of Methods

Description: Number of member functions.

Categories: Size

Number of Modules

Description: Number of modules.

Categories: Size

Number of Parameters

Description: Number of parameters.

Categories: Size

Number of Statements

Description: Counts all statements.

Categories: Size

Number of Types

Description: Number of types (classes, enums or similar) in container.

Categories: Size

Number of Types (Module)

Description: Number of types (classes, enums or similar) in container on module level.

Categories: Size

Number of Types (System)

Description: Number of types (classes, enums or similar) in container on system level.

Categories: Size

Source Element Count

Description: Number of programming elements (i.e. types, fields, methods, functions, ...) plus number of statements.

Categories: Size

Total Lines

Metric Definitions

214

Description: Counts all lines including empty and comment lines.

Categories: Size

Relational Cohesion (Module)

Description: Relation cohesion according to Craig Larman (adapted). Number of internal namespace dependencies
divided by the number of top-level logical programming elements in the same namespace on module level. Higher
numbers suggest more cohesion.

Categories: Craig Larman, Cohesion/Coupling

Relational Cohesion (System)

Description: Relation cohesion according to Craig Larman (adapted). Number of internal namespace dependencies
divided by the number of top-level logical programming elements in the same namespace on system level. Higher
numbers suggest more cohesion.

Categories: Craig Larman, Cohesion/Coupling

Abstractness (Module)

Description: Abstractness according to Robert C. Martin based on module level dependencies. Total number of abstract
types divided by the total number of concrete types. The metric has a range of [0,1]. 0 means that the container contains
no abstract types. 1 means that the container contains nothing but abstract types.

Categories: Robert C. Martin

Abstractness (System)

Description: Abstractness according to Robert C. Martin based on system level dependencies. Total number of abstract
types divided by the total number of concrete types. The metric has a range of [0,1]. 0 means that the container contains
no abstract types. 1 means that the container contains nothing but abstract types.

Categories: Robert C. Martin

Distance (Module)

Description: Distance according to Robert C. Martin based on module level dependencies. Abstractness + Instability -
1. The metric has a range of [-1,1]. This is a variation of the original metric definition. A negative sign means 'in the
zone of pain' and a positive sign means 'in the zone of uselessness'. A 'good' value should be around 0.

Categories: Robert C. Martin

Distance (System)

Description: Distance according to Robert C. Martin based on system level dependencies. Abstractness + Instability -
1. The metric has a range of [-1,1]. This is a variation of the original metric definition. A negative sign means 'in the
zone of pain' and a positive sign means 'in the zone of uselessness'. A 'good' value should be around 0.

Categories: Robert C. Martin

Instability (Module)

Metric Definitions

215

Description: Instability according to Robert C. Martin based on module level dependencies. The metric has a range of
[0,1]. If there are no outgoing dependencies, then the Instability will be 0 and the measured element is stable. If there
are no incoming dependencies, then the Instability will be 1 and the measured element is instable. Stable means that the
element is not so easy to be changed. Instable means that it is easier to be changed.

Categories: Robert C. Martin

Instability (System)

Description: Instability according to Robert C. Martin based on system level dependencies. The metric has a range of
[0,1]. If there are no outgoing dependencies, then I will be 0 and the measured element is stable. If there are no incoming
dependencies, then I will be 1 and the measured element is instable. Stable means that the element is not so easy to be
changed. Instable means that it is easier to be changed.

Categories: Robert C. Martin

Number of Incoming Dependencies (Module)

Description: Number of incoming dependencies on module level.

Categories: Robert C. Martin

Number of Incoming Dependencies (System)

Description: Number of incoming dependencies on system level.

Categories: Robert C. Martin

Number of Outgoing Dependencies (Module)

Description: Number of outgoing dependencies on module level.

Categories: Robert C. Martin

Number of Outgoing Dependencies (System)

Description: Number of outgoing dependencies on system level.

Categories: Robert C. Martin

Average Complexity

Description: Weighted average modified cyclomatic complexity

Categories: Thomas J. McCabe

Cyclomatic Complexity

Description: Cyclomatic complexity according to Thomas J. McCabe. Number of decision points in a method plus one
for the method entry.

Categories: Thomas J. McCabe

Metric Definitions

216

Extended Cyclomatic Complexity

Description: As cyclomatic complexity adding the number of logical '&&' and '||' operations.

Categories: Thomas J. McCabe

Modified Cyclomatic Complexity

Description: As cyclomatic complexity but switch statements only add 1 independent from the number of cases.

Categories: Thomas J. McCabe

Modified Extended Cyclomatic Complexity

Description: As cyclomatic complexity but switch statements only add 1 independent from the number of cases and
adding the number of logical '&&' and '||' operations.

Categories: Thomas J. McCabe

Code Churn (30d)

Description: Number of lines added or removed in the last 30 days

Categories: Change History

Code Churn (365d)

Description: Number of lines added or removed in the last 365 days

Categories: Change History

Code Churn (90d)

Description: Number of lines added or removed in the last 90 days

Categories: Change History

Code Churn Rate (30d)

Description: Percentage of lines added or removed in the last 30 days based on total lines

Categories: Change History

Code Churn Rate (365d)

Description: Percentage of lines added or removed in the last 365 days based on total lines

Categories: Change History

Code Churn Rate (90d)

Description: Percentage of lines added or removed in the last 90 days based on total lines

Metric Definitions

217

Categories: Change History

File Changes (30d)

Description: Number of committed file changes in the last 30 days

Categories: Change History

File Changes (365d)

Description: Number of committed file changes in the last 365 days

Categories: Change History

File Changes (90d)

Description: Number of committed file changes in the last 90 days

Categories: Change History

Number of Authors (30d)

Description: Number of developers who have worked on this item in the last 30 days

Categories: Change History

Number of Authors (365d)

Description: Number of developers who have worked on this item in the last year

Categories: Change History

Number of Authors (90d)

Description: Number of developers who have worked on this item in the last 90 days

Categories: Change History

Metric Definitions

218

21.2. Java Metrics
Average Java Class Member Visibility (%)

Description: Average of Java class member visibility in a Java package

Categories: Code Analysis

Average Java Public Visibility (%)

Description: Average of Java public visibility for all Java packages in a Java module

Categories: Code Analysis

Component Dependencies to Remove (Java Packages)

Description: Number of component dependencies to remove to break up all Java package cycle groups.

Categories: Code Analysis, Dependency

Java Member Visibility (%)

Description: Percentage of non-private Java members in a class

Categories: Code Analysis

Java Public Visibility (%)

Description: Percentage of public Java types in a Java package

Categories: Code Analysis

Parser Dependencies to Remove (Java Packages)

Description: Number of code lines to change to break up all Java package cycle groups).

Categories: Code Analysis, Dependency

Structural Debt Index (Java Packages)

Description: Cumulative structural debt index of all Java package cycle groups.

Categories: Code Analysis

Biggest Java Package Cycle Group

Description: Biggest Java package cycle group.

Categories: Cycle

Cyclicity (Java Packages)

Metric Definitions

219

Description: Cumulated cyclicity of Java package cycle groups.

Categories: Cycle

Number of Critical Java Package Cycle Groups

Description: Number of Java package cycle groups marked as errors.

Categories: Cycle

Number of Cyclic Java Packages

Description: Number of cyclic Java packages.

Categories: Cycle

Number of Ignored Cyclic Java Packages

Description: Number of ignored cyclic Java packages.

Categories: Cycle

Number of all Java Package Cycle Groups

Description: Number of all Java package cycle groups, errors and warnings

Categories: Cycle

Relative Cyclicity (Java Packages)

Description: Relative Java package cyclicity in percent.

Categories: Cycle

Byte Code Instructions

Description: Number of Java byte code instructions.

Categories: Size

Number of Java Packages

Description: Number of Java packages containing types.

Categories: Size

Metric Definitions

220

21.3. C# Metrics
Component Dependencies to Remove (C# Directories)

Description: Number of component dependencies to remove to break up all C# directory cycle groups.

Categories: Code Analysis, Cycle

Component Dependencies to Remove (C# Namespaces)

Description: Number of component dependencies to remove to break up all C# namespace cycle groups.

Categories: Code Analysis, Dependency

Parser Dependencies to Remove (C# Directories)

Description: Number of code lines to change to break up all C# directory cycle groups.

Categories: Code Analysis, Cycle

Parser Dependencies to Remove (C# Namespaces)

Description: Number of code lines to change to break up all C# namespace cycle groups.

Categories: Code Analysis, Dependency

Structural Debt Index (C# Directories)

Description: Cumulative structural debt index of all C# directory cycle groups.

Categories: Code Analysis

Structural Debt Index (C# Namespaces)

Description: Cumulative structural debt index of all C# namespace cycle groups.

Categories: Code Analysis

Biggest C# Directory Cycle Group

Description: Biggest C# directory cycle group.

Categories: Cycle

Biggest C# Namespace Cycle Group

Description: Biggest C# namespace cycle group.

Categories: Cycle

Cyclicity (C# Directories)

Metric Definitions

221

Description: Cumulated cyclicity of C# directory cycle groups.

Categories: Cycle

Cyclicity (C# Namespaces)

Description: Cumulated cyclicity of C# namespace cycle groups.

Categories: Cycle

Number of Critical C# Directory Cycle Groups

Description: Number of C# directory cycle groups marked as errors.

Categories: Cycle

Number of Critical C# Namespace Cycle Groups

Description: Number of C# namespace cycle groups marked as errors.

Categories: Cycle

Number of Cyclic C# Directories

Description: Number of cyclic C# directories.

Categories: Cycle

Number of Cyclic C# Namespaces

Description: Number of cyclic C# namespaces.

Categories: Cycle

Number of Ignored Cyclic C# Directories

Description: Number of ignored cyclic C# directories.

Categories: Cycle

Number of Ignored Cyclic C# Namespaces

Description: Number of ignored cyclic C# namespaces.

Categories: Cycle

Number of all C# Directory Cycle Groups

Description: Number of all C# directory cycle groups, errors and warnings.

Categories: Cycle

Metric Definitions

222

Number of all C# Namespace Cycle Groups

Description: Number of C# namespace cycle groups, errors and warnings.

Categories: Cycle

Relative Cyclicity (C# Directories)

Description: Relative C# directory cyclicity in percent.

Categories: Cycle

Relative Cyclicity (C# Namespaces)

Description: Relative C# namespace cyclicity in percent.

Categories: Cycle

Number of C# Directories

Description: Number of C# directories containing components.

Categories: Size

Number of C# Namespaces

Description: Number of C# namespaces containing types.

Categories: Size

Metric Definitions

223

21.4. C/C++ Metrics
Component Dependencies to Remove (C++ Namespaces)

Description: Number of component dependencies to remove to break up all C++ namespace cycle groups.

Categories: Code Analysis, Cycle

Component Dependencies to Remove (C,C++ Directories)

Description: Number of component dependencies to remove to break up all C,C++ directory cycle groups.

Categories: Code Analysis, Cycle

Parser Dependencies to Remove (C++ Namespaces)

Description: Number of code lines to change to break up all C++ namespace cycle groups.

Categories: Code Analysis, Cycle

Parser Dependencies to Remove (C,C++ Directories)

Description: Number of code lines to change to break up all C,C++ directory cycle groups.

Categories: Code Analysis, Cycle

Structural Debt Index (C++ Namespaces)

Description: Cumulative structural debt index of all C++ namespace cycle groups.

Categories: Code Analysis

Structural Debt Index (C,C++ Directories)

Description: Cumulative structural debt index of all C,C++ directory cycle groups.

Categories: Code Analysis

Biggest C++ Namespace Cycle Group

Description: Biggest C++ namespace cycle group

Categories: Cycle

Biggest C,C++ Directory Cycle Group

Description: Biggest C,C++ directory cycle group.

Categories: Cycle

Cyclicity (C++ Namespaces)

Metric Definitions

224

Description: Cumulated cyclicity of C++ namespace cycle groups.

Categories: Cycle

Cyclicity (C,C++ Directories)

Description: Cumulated cyclicity of C,C++ directory cycle groups.

Categories: Cycle

Number of Critical C++ Namespace Cycle Groups

Description: Number of C++ namespace cycle groups marked as errors.

Categories: Cycle

Number of Critical C,C++ Directory Cycle Groups

Description: Number of C,C++ directory cycle groups marked as errors.

Categories: Cycle

Number of Cyclic C++ Namespaces

Description: Number of cyclic C++ namespaces.

Categories: Cycle

Number of Cyclic C,C++ Directories

Description: Number of cyclic C,C++ directories.

Categories: Cycle

Number of Ignored Cyclic C++ Namespaces

Description: Number of ignored cyclic C++ namespaces.

Categories: Cycle

Number of Ignored Cyclic C,C++ Directories

Description: Number of ignored cyclic C,C++ directories.

Categories: Cycle

Number of all C++ Namespace Cycle Groups

Description: Number of all C++ namespace cycle groups, errors and warnings.

Categories: Cycle

Metric Definitions

225

Number of all C,C++ Directory Cycle Groups

Description: Number of all C,C++ directory cycle groups, errors and warnings.

Categories: Cycle

Relative Cyclicity (C++ Namespaces)

Description: Relative C++ namespace cyclicity in percent.

Categories: Cycle

Relative Cyclicity (C,C++ Directories)

Description: Relative C,C++ directory cyclicity in percent.

Categories: Cycle

Number of C++ Namespaces

Description: Number of C++ namespaces containing types.

Categories: Size

Number of C,C++ Directories

Description: Number of C,C++ directories containing components.

Categories: Size

Metric Definitions

226

21.5. Python Metrics
Component Dependencies to Remove (Python Packages)

Description: Number of component dependencies to remove to break up all Python package cycle groups.

Categories: Code Analysis, Dependency

Parser Dependencies to Remove (Python Packages)

Description: Number of code lines to change to break up all Python package cycle groups.

Categories: Code Analysis, Dependency

Structural Debt Index (Python Packages)

Description: Cumulative structural debt index of all Python package cycle groups.

Categories: Code Analysis

Biggest Python Package Cycle Group

Description: Biggest Python package cycle group.

Categories: Cycle

Cyclicity (Python Packages)

Description: Cumulated cyclicity of Python package cycle groups.

Categories: Cycle

Number of Critical Python Package Cycle Groups

Description: Number of Python package cycle groups marked as errors.

Categories: Cycle

Number of Cyclic Python Packages

Description: Number of cyclic Python packages.

Categories: Cycle

Number of Ignored Cyclic Python Packages

Description: Number of ignored cyclic Python packages.

Categories: Cycle

Number of all Python Package Cycle Groups

Metric Definitions

227

Description: Number of all Python package cycle groups, errors and warnmings.

Categories: Cycle

Relative Cyclicity (Python Packages)

Description: Relative Python package cyclicity in percent.

Categories: Cycle

Number of Python Packages

Description: Number of Python packages containing types.

Categories: Size

228

Chapter 22. How to Resolve Issues
This section summarizes issues and how they can be resolved.

22.1. Language Independent Issues

Root path does not exist
Indicates that the path supplied for a Root Directory Path cannot be found on disk. A valid path on disk must be supplied.

Duplicate Code
See Section 8.12, “Detecting Duplicate Code” for more information about how to investigate code duplicates and the
configuration of the analyzer.

22.2. Java Specific Issues

Class file is out-of-date
Indicates that the class file is older than the corresponding source file. Source needs to be re-compiled.

22.3. C# Specific Issues

C# Parsing Errors
Indicates that Sonargraph failed to parse a source file. Check that the correct assemblies are resolved. See Section 7.3.4, “C#
Module Configuration” for details.

Report C# Parsing Problems

If you need further support, report the parsing problem to us via the menu "Help" → "Report C# Parsing Problem..." . All files
relevant for the problem analysis will be zipped and sent to us for further inspection. Please consider adding some context info.

NOTE

The diagnostic files contain source code. If your company guidelines do not allow to share this information with us,
deselect the corresponding checkboxes.

Project File (.csproj) Processing Failed
Indicates a fatal error during the processing of a C# project file. Depending on the configuration, Sonargraph can use MSBuild
to extract information about macro definitions, target frameworks, project references, assembly references, source files, etc.
to enable a precise analysis. As Visual Studio and MSBuild are constantly evolving, our integration with MSBuild might be

incomplete. You can help us improve the integration by sending us the log file via "Help" → "Send Feedback..." (don't forget to
tick "Attach log file") or by sending an email to <support@hello2morrow.com>.

22.4. C/C++ Specific Issues

C/C++ Parsing Errors

How to Resolve Issues

229

Indicates that the EDG parser failed to process a source file. Check that the code compiles in your standard IDE or in your build
environment.

Check that the compiler definitions are correct. See Section 4.7, “C/C++ Compiler Definitions” for details.

Report C/C++ Parsing Problems

If you need further support, report the parsing problem to us via the menu "Help" → "Report C/C++ Parsing Problem..." . All files
relevant for the problem analysis will be zipped and sent to us for further inspection. Please consider adding some context info.

NOTE

The diagnostic files contain expanded source code. If your company guidelines do not allow to share this information
with us, deselect the corresponding checkboxes.

230

Chapter 23. FAQ
This section summarizes common problems and their solutions.

23.1. Out Of Memory Exceptions
In case of OutOfMemoryExceptions increase the memory made available to Sonargraph by opening the file Sonargraph.ini and
increase the value for the -Xmx parameter.

23.2. Groovy Template
The configuration of Sonargraph is very flexible due to usage of Groovy Templates. Per default, all environment variables are
available. The following script illustrates the usage of the variable INCLUDE:

<%
def elements = INCLUDE.split(";");
for (element in elements)
{
 println "--sys_include=" + element;
}
%>

23.3. MSBuild Error (MSB4019) during Analysis of
Visual Studio C# Project
Sonargraph uses MSBuild to retrieve configuration info for C# projects. This specific error can be resolved by removing the
following lines from the .csproj file as described on stackoverflow:

<PropertyGroup>
 <VisualStudioVersion Condition="'$(VisualStudioVersion)' == ''">10.0</VisualStudioVersion>
 <VSToolsPath Condition="'$(VSToolsPath)' == ''">
 $(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v$(VisualStudioVersion)</VSToolsPath>
 </PropertyGroup>

http://stackoverflow.com/questions/19718281/external-vs2013-build-error-error-msb4019-the-imported-project-path-was-not

231

Chapter 24. References
Articles about various software quality topics can be found at http://blog.hello2morrow.com/

Our whitepapers and presentations are available at https://www.hello2morrow.com/products/whitepapers

The following list contains books that influenced us a lot prior and during the development of Sonargraph.

[ACM] McCabe, T. J. "A Complexity Measure." IEEE Trans. Software Eng. SE-2, 4, 308-320, Dec. 1976

[ASD] Agile Software Development, Robert C. Martin, Prentice Hall 2003

[AUP] Applying UML And Patterns, Craig Larman, Prentice Hall 2002

[EOT] Erfolgsschlüssel Objekttechnologie, Betrand Meyer, Hanser 1995

[JLS] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, "The Java Language Specification", Addison-Wesley 2005

[LSD] Large-Scale C++ Software Design, John Lakos, Addison-Wesley 1996

[PAP] Robert C. Martin, "Design Principles and Patterns", Objectmentor 2000

[PPR] Jones T.C., "Programming Productivity", New York, McGraw-Hill 1986

[SEE] Boehm, B. W., "Software Engineering Economics", Englewood Cliffs, N. J.: Prentice-Hall 1981

[SOM] Everald E. Mills, "Software Metrics", SEI Curriculum Module SEI-CM-12-1.1 1988

[TOS] Testing Object-Oriented Systems, Beizer, Addison-Wesley 2000

http://blog.hello2morrow.com/
https://www.hello2morrow.com/products/whitepapers

232

Chapter 25. Trademark Attributions,
Library License Texts, and Source Code
Eclipse is a trademark of Eclipse Foundation, Inc.

IntelliJ is a trademark of JetBrains s.r.o.

Java and all Java-based trademarks are trademarks of Oracle Corporation in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft, and Windows are trademarks of Microsoft Corporation in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

233

Chapter 26. Legal Notice
All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

• Neither the name of hello2morrow GmbH nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

234

Glossary
A
Architecture Aspect Describes a part of the architecture. Via the "apply" directive an aspect defined in its own

architecture file can be reused.

Architecture Model Consists of a top-level checked architecture file and all recursively applied architecture files.

C
Component We follow the definition of John Lakos in "Large Scale C++ Software Design": “A

component is the smallest unit of physical design.” This is a source file in Java and C# and
a source file plus included header files in C/C++. For more details, see Chapter 5, Getting
Familiar with the Sonargraph System Model .

L
Logical Namespace Unifies physical namespaces contained in different root directories. More details are given

in Section 5.4, “Logical Models” .

M
Module Represents usually a deployable unit (e.g. an OSGi bundle, JAR file, C# assembly) containing

components.

P
Programming Element The abstract term that represents a type, method, routine, etc. within the different languages.

More details are given in Chapter 5, Getting Familiar with the Sonargraph System Model

S
(Software) System Represents the scope of analysis and contains all required resources, i.e. the workspace

definition, virtual models, analyzer configurations and Groovy scripts and the analyzed
source code.

W
Workspace Profile Transforms the existing root directories. This is useful for the integration of Sonargraph in

the build server. More details are given in Section 8.7.3, “Creating Workspace Profiles for
Build Environments”.

V
Virtual Model Represents a sandbox where virtual sets of resolutions (Fix, Ignore, TODO, Delete

refactoring, Move/Rename refactoring) can be applied to the system.

235

Appendix A. Walk Through Tutorial (Java)
This tutorial provides a very concise introduction about the functionality of Sonargraph-Architect. At least an evaluation license
is required that can be requested via our web site http://www.hello2morrow.com to complete the tutorial.

A little example project is used for illustration - the code itself is by no means meant to be an example for good quality or design.
The example project is available via our website https://www.hello2morrow.com/products/downloads .

You will learn how to create a system in Sonargraph, define a workspace, examine a system, customize the analysis via scripts,
define an architecture and check for compliance in the user interface of the rich client application, use the build integration using
Ant and Maven and the Eclipse IDE integration. At the end of a section (except the basic first setup) the current stage of the
analysis is referenced, that allows to verify that you reached similar results.

This tutorial is intentionally kept as short as possible. For more detailed information about certain functionality, links are provided
that will steer you to the corresponding chapters of the user manual.

A.1. Workspace Definition
The following steps describe the basic setup:

1. Install Sonargraph-Architect.

2. On startup, specify a license file.

3. Create a new System using the menu "File" -> "New" -> "System" -> "New System...". Specify a name and location.

4. Create a new Java module using the menu: "File" -> "New" -> "Module" -> "New Java Module...". Specify a name.

5. Right-click on the created module in the Workspace view and select "Manage Java Root Directories...".

6. Specify the root folder of the crm-domain-example project.

7. Detect the root directories and drag&drop them to the module from right to left.

8. Parse / refresh the software system.

9. Check that there are no issues related to the workspace of the system in the Issues view.

10.If Maven is installed on your machine, build the crm-domain-example project via 'mvn clean compile' and refresh the system
in Sonargraph. Do you understand, why now workspace issues appear? Open the project in Eclipse, build it there and refresh
the system in Sonargraph to remove those issues.

11.Close and re-open the system using the menu "File" -> "Open Recently Used" -> "[System Name]" to see how fast the snapshot
loading works.

Related topics:

• Chapter 4, Initial Configuration

• Chapter 3, Licensing

• Chapter 6, Creating a System

• Section 7.1.5, “Creating a Java Module Manually”

A.2. Basic Analysis
The following steps describe the first analysis of a code base based on the existing dependencies, detected cyclic dependencies,
detected duplicate blocks and further metrics:

http://www.hello2morrow.com
https://www.hello2morrow.com/products/downloads

Walk Through Tutorial (Java)

236

1. Select packages in the Navigation View and open them via the context menu in the Graph view and Exploration view to see/
examine their existing dependencies. Experiment with the different options for creating the representations. Experiment also
with the options provided on the opened views to focus on different dependency types, etc.

2. Examine the detected issues on the Issues view.

3. Customize the duplicate code analyzer via the menu "System" -> "Configure..." -> "Duplicate Code" and specify a smaller
minimum block length (e.g. 20 lines), so that duplicates are detected. Use the Duplicate Blocks view to open a side-by-side
diff for closer inspection.

4. Check the detected package cycles in the Cycle Groups view, open one of them in the Cycle view for closer inspection.

5. Right-click anywhere on the white area in the Cycle view to show the cyclic elements in the Exploration view for further
investigation.

6. Right-click anywhere on the white area in the Cycle view to open the Cycle Breakup view. Compute a break-up set for the
cycle.

7. Right-click on the proposed dependency to remove and create a new "Delete Refactoring" via the context menu. The created
task is now visible in the Tasks and Refactorings views.

8. Create a resolution for another issue in the Issues view. Check the filter options of the view in the top right corner to show
only issues of a certain category.

9. Switch the Virtual Model on the application's tool bar (top right of the application) and select the "Parser" model in the combo
box. Since the resolutions are specific to the Virtual Model, the issues re-appear in the Issues view.

10.Select the Metrics view and examine the values for the system. Use the combo box at the top-left of the view to examine metric
values on other levels (Java Package, Source File, Routine, etc.). Multi-select metrics and see if you can detect a correlation.
Define a threshold and check the value distribution on the histogram and pie charts.

11.Check where JUnit is used: Open the Exploration view for the JUnit package that is contained in the "External [Java]" node
in the Navigation view.

12.Specify an exclude filter on the Workspace view by right-clicking on one of the "Filter" nodes shown above the root directories.
Check the context help (F1) and the related chapter in the user manual to get more information about the different filter types.
Experiment with the wildcards and filter types to exclude test related classes. Check that the number of issues in the Issues
view changes. Use the filter that keeps the test related classes in the Sonargraph model but marks them as "excluded".

13.Irrelevant issues can be either ignored or filtered. Click on the little downwards-pointing white triangle in the top-right corner
of the Issues view and open the filter dialog. Deselect the issue type "Dependency To Excluded Internal Component".

14.Ctrl+H opens the search dialog. Enter **test* to identify test classes (they should all be marked as excluded).

Note: If all internal types are filtered out with references to JUnit, there will be no more dependencies being shown in the
representation views (Exploration view, Graph view) to these external types.

15.Create a new script by selecting the "Scripts" folder on the Files view and opening the context menu.

16.Modify the default content to check for all types being excluded.

End of Step 1 (step1_crm-domain-example.sonargraph).

Related topics:

• Section 8.4, “Navigating through the System Components”

• Section 8.10, “Exploring the System”

• Chapter 9, Handling Detected Issues

• Section 8.9, “Analyzing Cycles”

Walk Through Tutorial (Java)

237

• Section 9.1, “Using Virtual Models for Resolutions”

• Section 8.12, “Detecting Duplicate Code”

• Section 8.14, “Examining Metrics Results”

• Section 8.7.1, “Definition of Filters, Modules and Root Directories”

• Section 8.11, “Searching Elements”

A.3. Advanced Analysis
The following steps describe how the scripting functionality can be used for advanced analysis of a code base:

1. Select menu "File" -> "Import Quality Model" and choose some scripts from the Java quality model, e.g. "Java/DesignPatterns/
Singleton.xml" and "Java/BadSmells/FindDeadCode.xml".

2. Open the Files view and open the scripts in the Script view. Run them and examine the results.

3. Check the script content and examine the usage of the visitor pattern.

4. Click F1 to open the context help. Select the JavaDoc for the Script API. Detach the Help view for better usability and
examine the available functionality.

5. Write a script that finds all "deprecated" methods and classes. Check "Java/BadSmells/FindDeadCode.xml" for the logic to
examine dependencies to annotations.

6. Create issues for the found elements.

7. Use the Exploration view to verify your result.

8. Make the annotation class a script parameter.

9. Add the script to the automatically executed scripts via "System" -> "Configure..." -> "Script Runner".

10.Check that the created issues show up in the Issues view.

11.Modify the issue text in the script. Note that the button "Update Automated Script" is now enabled in the Script view. Transfer
the modified content to the automated script and check in the Issues view that the description is changed.

12.Check the CoreAccess.find*() methods in the JavaDoc. Modify the script to search for the @Deprecated annotation and find
all incoming dependencies. You can copy from the script UsageOfSystemOutPrintln, contained in the Java quality model.

13.Compare the execution times of the two different approaches (visitor vs. search). Think about the pros and cons of each.

14.Open the Sonargraph system "step2_crm-domain-example.sonargraph" and examine the script
"FindMethodWithAnnotationValue". Think about annotation values in your own projects that you want to check.

End of Step 2 (step2_crm-domain-example.sonargraph).

Related topics:

• Chapter 16, Extending the Static Analysis

A.4. Architecture: Artifacts, Aspects Files and
Standard Connections
The following steps describe how a basic architecture check can be implemented using the Domain Specific Language (DSL):

1. Create a new architecture file "layers" by right-clicking on the folder "Architecture" in the Files view. Keep the default options
and make this architecture file "checked".

Walk Through Tutorial (Java)

238

2. Create artifacts "Business", "Integration", "Foundation" with the standard include patterns. Check the context help (F1)
for more information.

3. Right-click on the file in the Architecture Files view and open the Exploration view for the architecture model. You should
see red arcs representing violations.

4. Connect artifact "Business" with "Integration".

5. Make "Foundation" public, so that it is implicitly accessible by the other artifacts.

6. Save the changes and check in the Architecture view that the correct components are matched for the artifacts. Verify that the
architecture-based Exploration view does not show any violations.

7. Create new checked architecture file "application". Create artifacts "Startup", "Application" (**/ddaexample/**), Framework
(**/dda/**) with the standard include patterns. Connect the artifacts as indicated by the existing dependencies (use the
Exploration view).

8. Use the "apply" statement for "Application" and "Framework" to create the layering defined previously in "layers.arc".

9. Add the "optional" keyword to the "Foundation" artifact in layers.arc to get rid of the "Empty artifact" warning.

10.Create the checked architecture file "component". Create artifacts "Controller", "Data", "Domain", etc that correspond with
the packages in the code.

11.Create the connections as the dependencies in the code indicate. Again, use the Exploration view to check for the existing
dependencies.

12.Check for architecture violations in the Issues view. Drill-down to the code and examine the root cause for the violations.

13.Remove "layers.arc" from the list of checked architecture files. It is now implicitly used, since the layering is checked and
applied in the file "application.arc".

14.An architecture can also be interactively modeled using the Architectural view. Create a new "Architectural View" and create
the layering with it.

15.Export the information to an Architecture DSL file and observe the differences to the manually written architecture file.

End of Step 3 (step3_crm-domain-example.sonargraph).

Related topics:

• Chapter 11, Defining an Architecture

• Section 11.1, “Models, Components and Artifacts”

• Section 11.3, “Reusing Architecture Aspects”

• Chapter 13, Interactive Restructuring and Code Organization

A.5. Architecture: Explicit Interfaces and
Connectors
The following steps describe how the access between artifacts can be more sophisticated and restrictive:

1. Create checked architecture file "business".

2. Create artifacts for all domain aspects ("User", "Contact", etc), check the package structure and create the correct number
of artifacts.

3. Create a dummy artifact that contains all code that is not matched by the other artifacts.

Walk Through Tutorial (Java)

239

4. Connect the artifacts with simple "connect" statements.

5. Create default interface for the artifact "Service" in "components.arc" to restrict what is accessible from the outside. Include
all, except "**/*DtoVal" types.

6. In "application.arc", create a default connector for "Startup" to restrict access to the outside. Only SetupFactories should be
allowed to access types outside of its artifact.

7. Check for found architecture violations.

8. Introduce some dummy references in the code (use the Eclipse project) to produce more architecture violations.

9. "Refresh" in Sonargraph-Architect and check that the new violations appear.

End of Step 4 (step4_crm-domain-example.sonargraph).

Related topics:

• Chapter 11, Defining an Architecture

• Section 11.2, “Interfaces and Connectors”

A.6. Architecture: Advanced Connections
The following steps describe how the access between nested artifacts can be more sophisticated and how duplication can be
avoided with connection schemes:

1. Apply the component structure of "component.arc" to all artifacts contained in "business.arc".

2. Create more detailed connections between the different components using the nested artifacts explicitly. Check those
dependencies in the Exploration view. Note that the artifacts in "component.arc" must be "exposed", so that their default
interfaces are visible.

3. Note that the components are always connected in the same way. Create a connection scheme in "component.arc". Check via
the context help for more information about connection schemes.

4. Remove "component.arc" from the checked architecture files.

5. Use the new connection scheme and remove all duplication in "business.arc".

6. Remove the obsolete dummy element in "component.arc".

7. Check that you still see the same architecture violations.

End of Step 5 (step5_crm-domain-example.sonargraph).

Related topics:

• Chapter 11, Defining an Architecture

• Section 11.8, “Connecting Complex Artifacts”

• Section 11.9, “Introducing Connection Schemes”

A.7. Architecture: Advanced Aspect Files
The following steps describe how the information of aspect files can be changed, so that it fits the context where the aspects
are applied:

1. We want to create the structure defined in "business.arc" for the "Business" artifact in application.arc. This can be achieved
by "extending" the Business artifact and applying "business.arc":

Walk Through Tutorial (Java)

240

extend Business
{
 apply "./business.arc"
}

2. Check the context help and modify the architecture.

3. Use the same mechanism in the "Framework" artifact and simply apply the "component.arc" to generate the same structure
there.

4. Remove "business.arc" from the checked architecture files. Only "application.arc" should be left as checked architecture file.

5. Verify in the Architecture View that all artifacts are there and the correct components are matched.

6. Experiment with the workspace filters or include / exclude patterns to adjust the matching.

End of Step 6 (step6_crm-domain-example.sonargraph).

Related topics:

• Chapter 11, Defining an Architecture

• Section 11.4, “Extending Aspect Based Artifacts”

A.8. Architecture: Referencing external Artifacts in
Aspect Files
Aspect files are a good way to apply the same structure to different parts of the architecture. This section demonstrates how to
deal with connections from aspects to artifacts that are outside of the scope of the aspect itself. Let's say, we want to control the
access to java.lang.reflect and only allow access to it from the artifact "DataServiceInterface" defined in "component.arc". It is
shown why a first naive approach is not working, and how the goal can be achieved using the "require" feature.

1. Add the following artifact to this file:

artifact Reflection
{
 strong include "External [Java]/[Unknown]/java/lang/reflect/**"
}

2. Save the changes and check the assigned elements to the generated instances of the artifact "Reflection". Since there is only a
single java.lang.reflect package, the contained types are matched once for the first instance of a "component", and then there
are none left to be matched for further "Reflection" instances in other components. This is clearly not what is needed. We
want only a single instance of the "Reflection" artifact.

"strong include" matchers are disabled in aspects, to avoid accidental misuse and the above mentioned strange matching
results. This is the reason why no matches are shown for any or the created "Reflection" artifacts.

3. We need only a single instance of the "Reflection" artifact in the application architecture. The above approach is not working,
and it is now demonstrated how it can be achieved with the "require" feature. You need to define the "Reflection" artifact in
its own file, let's say "reflectionAccess.arc". You can remove "strong" from the include matcher.

4. Open the architecture file "application.arc" and add the following statement at the bottom:

apply "./reflectionAccess.arc"

This creates a single "Reflection" artifact at the top-level of the architecture check.

5. Go back to "component.arc" and add the following statement at the top of the file:

Walk Through Tutorial (Java)

241

require "./reflectionAccess.arc"

This now allows using artifacts contained in that file, but does not instantiate them again. Do not forget to define the allowed
connection between "DataServiceInterface" and "Reflection".

6. Save the changes and check again for the generated "Reflection" instances in the Architecture view. There is now only a single
instance and when you open the Exploration view for "application.arc" you can check which dependencies to "Reflection"
are allowed and which represent violations.

This concludes the architecture modeling. It is recommended to read the remaining chapters describing the architecture model,
e.g. Section 11.10, “Artifact Classes”, for even faster architecture modeling.

End of Step 7 (step7_crm-domain-example.sonargraph).

Related topics:

• Chapter 11, Defining an Architecture

• Section 11.11, “How to Organize your Code”

A.9. Headless Check with Sonargraph-Build
The following steps describe how Sonargraph-Build can be used on the build server to generate a report and let the build fail
on specific issue types:

1. Download and extract Sonargraph-Build from the web site https://www.hello2morrow.com/products/downloads .

2. If you are interested in Ant: Examine the Ant file "crm-domain-example/build/build.xml" and adjust the properties. Run the
target "dist".

If you are interested in Maven: Examine the Maven file "crm-domain-example/pom.xml" and adjust the properties. Run the
goal "package" to create the JAR.

3. Create a workspace profile that uses the created JAR as a target directory.

4. Open the Sonargraph-Build user manual and check how the workspace profile can be specified as a parameter (only available
for command-line and Ant integration).

5. Run the build and adjust the failset: Check for specific issue types only, specific severities, etc.

6. Let the build fail on architecture violations.

7. Check the details of those architecture violations in the generated HTML report.

End of Step 8 (step8_crm-domain-example.sonargraph). The provided example uses the Maven plugin. Note: Workspace
profiles can be used with the command-line and Ant integrations. Maven and Gradle provide the option to override the Sonargraph
workspace and use the source and class roots as present in the Maven and Gradle build.

Related topics:

• Section 8.7.3, “Creating Workspace Profiles for Build Environments”

• Chapter 19, Build Server Integration

A.10. Check at Development Time with Sonargraph
Eclipse Integration
The following steps describe how to use the Sonargraph Eclipse plugin to execute the quality checks at development time. Start
the Eclipse IDE and import the example project.

https://www.hello2morrow.com/products/downloads

Walk Through Tutorial (Java)

242

1. Install the plugin. Section 20.1, “Eclipse Plugin” provides details about the plugin's update site.

2. Use the "Sonargraph" menu to activate the plugin by assigning a license file or activation code.

3. Assign the Sonargraph system file. Check that the Sonargraph markers appear on the project and root directories.

4. Check that the Sonargraph issues are listed in the problems view. Update the code by introducing / removing violations and
check that the markers get updated after saving the changes. ("Build Automatically" must be enabled in Eclipse.)

5. Create a custom "Problems" view and configure it to only show the Sonargraph issues.

6. Switch back to the Sonargraph-Architect application. Open the package cycle from the Cycle Groups view and open then the
Cycle Breakup view. The dependency to breakup is now much easier to identify, because of the existing architecture definition.

7. Create a delete refactoring for the proposed breakup and save the changes.

8. Create a move/rename refactoring for a compilation unit or package of your choice and save the changes.

9. Refresh the system files in Eclipse using the corresponding Sonargraph menu entry. A new task marker should be visible in
the Tasks view and also at the position within the file. Move the violating line up and down and save frequently. The task
marker moves accordingly. Comment out the offending lines and see the marker disappear.

10.Open the Sonargraph Refactorings view in Eclipse and execute the refactoring via the context menu.

11.Refresh the system in Sonargraph-Architect and notice that the status of the refactoring changed to "Potentially Done". The
architect can now review the changes and delete the task.

Related topics:

• Section 20.1, “Eclipse Plugin”

• Section 20.1.1, “Assigning a System”

• Section 20.1.2, “Displaying Issues and Tasks”

• Chapter 10, Simulating Refactorings

• Section 10.4, “Best Practices”

• Section 20.1.7, “Execute Refactorings in Eclipse”

243

Appendix B. Tutorial - Java
 This is a step-by-step tutorial illustrating the analysis of the Open Source project Apache Cassandra. It will be demonstrated
how to setup the workspace and quickly get an overview of the state of software quality. Some issues are reported by Sonargraph
right away without further configuration and it will be shown how to analyze cyclic dependencies and duplicate code blocks.
Sonargraph also allows to easily analyze the dependency structure in more detail. Next it is illustrated how the GroovyScript
API can be used to monitor virtually anything that can be detected via static code analysis. The last chapter shows how you can
share the results of the analysis.

This tutorial is intentionally kept as short as possible. For more detailed information about certain functionality, links are provided
that will steer you to the corresponding chapters of the user manual.

B.1. Setup the Software System
Apache Cassandra is built using Apache Ant therefore the Sonargraph Workspace needs to be set up manually, i.e. the definition
of modules and the location of source and class files. For systems built with Maven or that are represented by an Eclipse or IntelliJ
Workspace, the Sonargraph Workspace can be set up automatically. For more information, see Chapter 6, Creating a System and
Section 8.7, “Managing the Workspace” .

B.1.1. Create a new Software System

The initial system is created using "File" → "New" . Select the entry "Manual System" and continue. In the following wizard
page, provide the name of the software system and specify where the system's files will be stored. For more information about
the file structure, see Chapter 5, Getting Familiar with the Sonargraph System Model .

Figure B.1. New Manual System Wizard

Using a Quality Model is explained in Section B.6, “Share Results” , leave this option unchecked for now.

B.1.2. Define the Workspace
As a next step, we need to create one or several modules. A module is the container for source and class root directories and usually
represents a Maven module or an Eclipse / IntelliJ project. We will start creating a single module, and refine the workspace later.

A module is created by selecting "File" → "New" and selecting the wizard entry "Manual Java Module". Define the module's
name and optionally provide a description.

As a next step, we let Sonargraph search for directories containing source and class files. Right-click on the created module in
the Navigation view. Select the context menu entry "Manage Java Source/Class Root Directories/Archives..." and specify the
root directory of the Apache Cassandra project on your disk.

http://cassandra.apache.org/
http://cassandra.apache.org/
http://ant.apache.org/

Tutorial - Java

244

Start the detection and wait until it completes. Now you can move the found directories via drag&drop from the right to the left.
We omit directories containing examples or test code.

Figure B.2. Root Directories Dialog

The workspace configuration can be examined on the Workspace view. We can see that it is probably best to create additional
modules "thrift" and "stress" using the same approach as previously. Now you can use drag&drop in the Workspace view to
move directories from the "default" module and rename "default" to "main" using either the context menu or the F2 shortcut.

Figure B.3. Workspace View

Tutorial - Java

245

NOTE

The order of the root directories matters: In case there are classes with the same fully qualified names, the first one found
wins. You can change the order of root directories of manual Java modules within the Workspace view using drag&drop.

B.1.3. Define Module Dependencies
Managing module dependencies is especially important when using frameworks like OSGi where you could have a module X and
a module Y each one of them containing a type with the fully qualified name a.b.c.Type. Such conflicts are resolvable by defining
manual module dependencies. These module dependencies control the type resolution when creating parser dependencies trying
to locate the 'to' (Java) type.

If the modules do not define any dependencies all types are visible in all modules. Once there are type resolution conflicts which
would show up as 'Ambiguous Target Type' issues manual module dependencies can be used to decide which type(s) should
be accessed from which module. If module Z accesses the type a.b.c.Type defined in module X and module Y the conflict is
resolved by simply defining a manual module dependency between module Z and the correct target module.

NOTE

If you know how modules are supposed to use each other, define the workspace dependencies explicitly.

B.1.4. Parse the Workspace

To parse the workspace, either chose the menu item "System" → "Refresh" or use the shortcut F5 . After the parsing has
completed, the detected classes are displayed with their package structure in the Navigation view and the Workspace view shows
how many items are found in a directory.

Figure B.4. Workspace View After Parsing

B.2. Initial Analysis
After having parsed the workspace as described in the previous section, basic information about the number of processed source
and class files is provided on the workspace view. This section explains how the results of the metric calculation can point out
problematic areas.

B.2.1. Detect Problems Using Standard Metrics
The Metrics view is separated into two general areas: The "System Level" and the "Element Level". The "Element Level" tab
allows to focus on different levels, e.g. modules, root directories, packages, types, routines, etc. as shown in the following
screenshot.

Tutorial - Java

246

Figure B.5. Metrics View

B.2.2. Adjust Metric Thresholds

The Metrics view allows defining lower and upper-level thresholds for metrics. Issues are created for those elements violating
these thresholds and they are clearly marked in the table. If metric thresholds are specified, those values will be saved into a file
located at: <Sonargraph System directory>/Analyzers/MetricThresholds.xml . Thresholds are defined

either via the context menu of a metric or the menu entry "Metrics" → "New Threshold..." .

Figure B.6. Metrics View Highlighting Thresholds Violations

B.3. Problem Analysis
Sonargraph lists all problems found in the Issue view. At this stage the view lists issues of type Cycle Group, Duplicate Block and
Threshold Violation. If some issues types should be filtered this can be achieved using the filter option as shown in the screenshot.

Tutorial - Java

247

Figure B.7. Filter Issues

Check Section 9.2, “Examining Issues” for more details about filtering.

B.3.1. Examine Cycles

Cycles between any elements should be avoided as they have a negative impact on various properties of the software system,
e.g. testability, maintainability, understandability, to name a few. Cycles can be examined in more detail by opening the Cycle
Groups view. This view additionally shows the involved source files for component cycle groups.

Figure B.8. Cycle Groups View

To analyze individual cycle groups, open the Cycle Group view via the context menu. This view shows the involved elements
and when selecting an element or a dependency, details to the dependency are shown in the Parser Dependencies views. Drill-
down to the source code is supported via double-click on a dependency.

Tutorial - Java

248

Figure B.9. Cycle View

B.3.2. Examine Duplicate Code

Duplicate code is another type of issue shown in the Issues view. Details of duplicates are shown in the Duplicate Code Blocks
view that can be opened via the context menu. This view shows more details about individual duplicates, i.e. the block length,
tolerance, and involved files.

Figure B.10. Duplicate Code Blocks View

The Duplicate Source view highlights the duplicate block and marks the lines within a block that are different.

Tutorial - Java

249

Figure B.11. Duplicate Source View

For more details about configuring the duplicate code analysis, check out Section 8.12.1, “Configuration of Duplicate Code
Blocks Computation”.

B.3.3. Handle Issues

Sonargraph allows to handle issues in two different ways via the context menu of the Issue view:

• Ignore: Signifies that the issue will be dealt with later.

• Fix: Signifies that the issue needs to be fixed. An assignee can be specified.

Additionally a TODO-resolution can be defined for any element.

Figure B.12. Add TODO Issue

The details about created resolutions are shown in the Resolutions view, including how many elements are matched. The lower
section displays the matched elements and allows the drill-down into a detailed view via the context menu.

Tutorial - Java

250

Figure B.13. Resolutions View

More information about issues, resolutions and quality models can be found in Chapter 9, Handling Detected Issues.

B.4. Detailed Dependency Analysis
Sonargraph provides different views to analyze dependencies between elements. The most important are the Exploration, Graph
and Dependencies views.

B.4.1. Explore Dependencies
The Exploration view can be opened for an arbitrary selection of elements in the Navigation view or via the context menu within
other views.

Figure B.14. Open in Exploration View

The Exploration view orders the displayed elements, with elements on top having more outgoing dependencies and elements
on the bottom having more incoming dependencies. Clicking on the plus-sign of an element opens nested elements, allowing
to drill down to fields. Arcs represent detected dependencies, which can be analyzed in more detail in the Parser Dependencies
views and also in the Source view.

Figure B.15. Exploration View Drilldown

Tutorial - Java

251

This view offers interactions such as focus and unfocus which can be used to explore the dependencies of an arbitrary selection of
elements inside the Exploration view and also provides highlighting, marking and zooming which can be helpful in the analysis
of the content that is being displayed. Further details are explained in Section 8.10.1.2, “Focus Modes” and Section 8.10.1.6,
“Applying Focus”.

Figure B.16. Exploration View Interactions

B.4.2. Check how Elements are Connected via Graph View

The Graph view can also be opened for an arbitrary selection of elements from the context menu. It shows the selected elements
in a levelized graph. For more details about the advantages see Section 8.10.3.1, “Levels”. Again, existing parser dependencies
can be analyzed using the Parser Dependencies Views.

Figure B.17. Graph View

Like the Exploration view, the Graph view also offers focus and unfocus interactions to check the dependencies of an arbitrary
selection of elements inside the view. It also offers highlighting and zooming to help in the analysis of the currently displayed
content. Additionally, it will automatically group elements that form cycles to make the graphs more comprehensible. By right-
clicking on a Cycle Group, it is possible to open the Cycle view to observe the detail of the elements that make part of it. Further
details are explained in Section 8.9.2, “Inspecting Cyclic Elements”.

Tutorial - Java

252

Figure B.18. Graph View Interactions

B.4.3. Check how Elements are Connected via the
Dependencies View

If you rather like tabular representations, existing dependencies of elements can be examined in the Dependencies view which
is again available via the context menu, but only for a single selection. The Dependencies view is separated into three parts,
each allowing to drill down and analyze a specific dependency in more detail. More features of this view are explained in
Section 8.10.5, “Tabular System Exploration”.

Tutorial - Java

253

Figure B.19. Dependencies View

B.4.4. Search for Elements

In case you are interested in seeing the dependencies of a particular type, but want to spare the effort of navigating to it via the
Navigation view, the Search dialog provides this shortcut. See (Section 8.11, “Searching Elements”)

B.5. Advanced Analysis With Scripts
Sonargraph provides an API to access its internal model by Scripts written in Groovy. Sonargraph scripts can introduce and
calculate new metrics, add issues to the model, and build a list or tree of model elements or dependencies.

B.5.1. Create a New Script

You can create a new script either by menu "File" → "New" → "Other" → "Script" , or by selecting an existing script directory
and selecting "Create Script..." from the context menu. The "New Script Wizard" will start, and at least a name for the new script
must be given. After pressing "OK" the new script shows up in a Script view, where you can edit, compile and execute it.

Tutorial - Java

254

Figure B.20. Create a New Script

More details are provided in: Section 16.3, “Creating a new Groovy Script”

B.5.2. Execute Existing Script
To execute an existing script, go to "Files" tab and open directory "Scripts". Double click on a script and a Script view will
open. The Script view consists of three parts: On the top the source of the script, in the middle the "Compile"/"Run" and "Update
automated Script" buttons, and on the bottom five tabs for the result of the script. Press "Execute" and the script will run. Every
tab in the bottom of the Script view that contains some data will show an exclamation mark in its title.

Figure B.21. Execute a Script

More details about how find specific elements or dependencies, create metrics and issues is provided in: Section 16.5, “Producing
Results with Groovy Scripts”

Tutorial - Java

255

B.6. Share Results
Once a system has been analyzed it is important to share the findings with others. This section explains the different types of
export offered by Sonargraph .

B.6.1. Work with Snapshots
Sonargraph offers the capability to create snapshots to preserve the state of a system at any given time. It is available via "File"

→ "Save Snapshot..." and creates an archive file containing all the generated information in compact binary format together with
or without the source files. This snapshot can be archived or passed on to co-workers for further evaluation. No data contained
in a snapshot can be modified.

NOTE: A snapshot can also be created with Sonargraph-Build.

Snapshots can be opened via "File" → "Open From Snapshot..." .

An opened system can also be 'attached/detached' to/from an existing snapshot. This can be helpful in case you have a system
which takes a long time to parse. Create a snapshot (ideally with sources) in your automated build with Sonargraph-Build, attach
to it from Sonargraph using the corresponding system and continue to work on architecture aspects, scripts and others.

NOTE: When attached to a snapshot workspace modifying commands are disabled (e.g. create module, ...).

B.6.2. Define Quality Standards using Quality Models
A Quality Model allows defining a standard configuration that needs to be applied to several systems. It contains analyzer

configuration (e.g. for metric thresholds) and scripts. Menu entries "File" → "Export Quality Model..." and "File" → "Import
Quality Model..." can be used to export and import a Quality Model. Additionally, a Quality Model can be specified during
creation of a system. See Section 6.4, “Quality Model” .

B.6.3. Export to Excel
Many Sonargraph views offer the export of the displayed data to Microsoft Excel . In case you are working on a non-Windows
platform, the exported files can also be opened using Open Office Calc . For example the Metrics view lets you export all Metrics
data (system level and all element levels) into a single Excel file.

Figure B.22. Export Metrics to Excel Context Menu

256

Appendix C. Tutorial - C#
 This is a step-by-step tutorial illustrating the analysis of the Open Source project NHibernate. It will be demonstrated how to
setup the workspace and quickly get an overview of the state of software quality. Some issues are reported by Sonargraph right
away without further configuration. Sonargraph also allows to easily analyze the dependency structure in more detail. As this
functionality is mostly language-independent, we refer you to the appropriate sections within the Java Tutorial.

This tutorial is intentionally kept as short as possible. For more detailed information about certain functionality, links are provided
that will steer you to the corresponding chapters of the user manual.

C.1. Setup the Software System
This section describes how the Sonargrah system is setup for the NHibernate project. As a precondition, ensure that NHibernate
builds successfully in Visual Studio (or whatever you use for C# development). The tutorial is based on NHibernate master
branch, checked out on 2019-02-11.

Sonargraph offers to import Microsoft Visual Studio C# Solution files. Select menu "File" → "New" and select the wizard
"System based on C# Visual Studio Solution file". Specify the name of the directory of the Sonargraph system and where its files
will be stored. It is a best practice to store the system close to the actual source code and place it under version control. Using a
Quality Model is explained in Section B.6, “Share Results” ; you can leave this option unchecked for now.

Figure C.1. System based on C# Visual Studio Solution File

The next wizard page allows to specify the Microsoft Visual Studio Solution file and then shows the modules that will be
imported. Select the configuration and platform combination that you want to apply. A warning will be displayed that one of
the projects referenced in the solution file will be excluded from the analysis. This is expected, since it is a Visual Basic project
that Sonargraph does not analyze.

https://github.com/nhibernate/nhibernate-core

Tutorial - C#

257

Figure C.2. Select C# Solution File, Configuration and Platform

The system creation works best, if the MSBuild executor is configured on the C# preference page. Sonargraph uses MSBuild to
extract information about the referenced assemblies, project references, constants, included source files, etc. from the .csproj files.
As MSBuild is executed for each .csproj file, the creation takes a couple of seconds. After the system creation was successful,
it's now time to execute "refresh" via the left-most icon in the toolbar or via F5 to start the parsing. The whole "refresh" of
the ~740k total lines of code including the parsing of the external assemblies and executing the analyzers to detect cycles and
duplicate code blocks takes around 60 seconds on an Intel(R) Core(TM)i0-8950HK CPU @ 2.9 GHz.

The next step is to open the Issues view and examine the detected cycle groups and duplicate code block issues.

Figure C.3. Select C# Solution File, Configuration and Platform

Related topics:

• Chapter 3, Licensing

Tutorial - C#

258

• Section 4.8.1, “C# Build Executor Configuration”

• Section 4.8, “C# Configuration”

• Chapter 6, Creating a System

• Section 7.3, “Creating or Importing a C# Module”

• Chapter 9, Handling Detected Issues

C.2. Further Steps
After the workspace for a C# system has been defined, the further steps to analyze are the same as for a Java system. Please
check the following sections of the Java tutorial:

• Section B.2, “Initial Analysis”

• Section B.3, “Problem Analysis”

• Section B.4, “Detailed Dependency Analysis”

• Section B.5, “Advanced Analysis With Scripts”

• Section B.6, “Share Results”

259

Appendix D. Tutorial - C++
 This is a step-by-step tutorial illustrating the analysis of the Open Source project POCO. It will be demonstrated how to setup
the workspace using different importers and quickly get an overview of the state of software quality. Some issues are reported by
Sonargraph right away without further configuration. Sonargraph also allows to easily analyze the dependency structure in more
detail. As this functionality is mostly language-independent, we refer you to the appropriate sections within the Java Tutorial.

This tutorial is intentionally kept as short as possible. For more detailed information about certain functionality, links are provided
that will steer you to the corresponding chapters of the user manual.

D.1. Setup the Software System - Compiler
Definitions
Sonargraph internally uses the C/C++ parser of EDG (Edison Design Group, www.edg.com). To successfully parse your code
the parser must be able to emulate your real compiler. To do that we use the concept of compiler definitions. Such a definition
contains information like where to find the implicit system include directories and a list of predefined macros. Sonargraph comes
with a couple of ready to use compiler definitions for the GNU compiler family, CLang and a few others. For Visual C++ you
have to tell Sonargraph where Visual Studio is installed on your computer. You can add Visual Studio installations via the C+
+ preference pages under the Windows/Preferences menu.

There is always one compiler definition that is considered to be active. This is the one that is used for parsing your code. After a
successful parser run Sonargraph will remember the compiler definition used and automatically activate it the next time you open
the same project. When you parse a project for the first time we will use the compiler definition that is currently activated. To
check your available compiler definition and to make sure the right one is activated you can go to the C/C++ preference pages.
From there you can manage the available compiler definitions, modify existing ones or even create new ones.

If there is no compiler definition for your compiler we recommend to use our compiler definition wizard to create one. You start

the wizard by selecting "New..." → "Configuration / New Compiler Definition". If you have used our other tool Sotograph before
you can import Sotograph compiler definitions directly in the first step of the wizard. Otherwise just follow the instructions of
the wizard.

If the C/C++ parser finds issues, they will be recorded in the C/C++ parser log window. You can open the parser log by selecting

"Windows" → "Show View - C/C++ Parser Log". Errors recorded there are usually not a problem for the quality of the analysis.
In the worst case a dependency might be missing if the parser cannot properly resolve a symbol. If there are many problems in
this view this could indicate a problem with your compiler definition. An parser run will only fail if there are too more than 1000
errors in a compilation unit or if referenced include files cannot be found.

D.2. Setup the Software System - Makefile
Capturing
This section describes how to create a new C++ system using command capturing files. Select "New" → "System based on C/
C++ Make command capturing files" . Specify the name of the directory of the Sonargraph software system and where its files
will be stored. It is a best practice to store the software system close to the actual source code and place it under version control.
Using a Quality Model is explained in Section B.6, “Share Results” ; you can leave this option unchecked for now.

You will have to do a complete rebuild of your system while passing a special shell to the 'make' command. The special shell will
create raw files named 'h2m-capture.txt' for each 'Makefile' that executes compile commands during the make process. These
files contain a complete list of the compile commands and are used to extract the right options for the C/C++ parser. Sonargraph
will then translate these files into files named 'h2m-capture-rel.txt' Do not delete the translated capturing files, instead add them
to your version control system. They are used each time Sonargraph opens your system. If you change options or add or remove
files from your build you have to repeat the capturing process. Please note, that your top level 'Makefile' must be either in the
same directory as the software system or in a sub-directory of that directory. Here are the commands you need to execute on
the level of your top-level 'Makefile':

http://pocoproject.org/

Tutorial - C++

260

Example D.1. Command Capturing Process

 SG_DIR=<replace with Sonargraph installation directory>
 $SG_DIR/bin/h2mcs clean
 make clean
 make <optional-targets> SHELL=$SG_DIR/bin/h2mcs

After executing those commands you should find 'h2m-capture.txt' files in the relevant project directories; 'make clean' can be
replaced with another command you use to force a complete rebuild of your system. On Windows platforms the capturing process
currently only works in combination with Cygwin.

Once the 'h2m-capture.txt' files have been generated you can choose which of them you want to use to create the modules.

Figure D.1. Select C++ Modules to Import from Capturing Files

If you want, you can change the name and configuration for each of the modules by editing the corresponding fields.

Figure D.2. Renaming and Configuring C++ Modules to Import from Capturing Files

Each generated 'h2m-capture.txt' results in the creation of one module in the Sonargraph workspace. You can see the created
modules in the Navigation view.

The next step to get started with your analysis is perform a refresh so the required information is picked up from the set-up
modules.

D.3. Setup the Software System - Visual Studio
Import

Tutorial - C++

261

This section describes how to create a new C++ system by importing a Visual Studio Solution file. Select "New" → "System
based on C/C++ Visual Studio 2010 Solution file" . Specify the name of the directory of the Sonargraph system and where its
files will be stored. It is a best practice to store the system close to the actual source code and place it under version control.
Using a Quality Model is explained in Section B.6, “Share Results” ; you can leave this option unchecked for now.

On the next wizard page, select the solution file to import and the configuration and platform combination.

Figure D.3. Specify Visual Studio Solution File

If the system is refreshed and the active compiler definition does not match the imported solution, you might run into the following
two problems which can both usually be fixed by selecting the correct compiler definition on the preference page as described
in Section 4.7, “C/C++ Compiler Definitions” . In this case, the correct compiler definition is "VisualCpp_11.0_x86".

1. MSBuild Exception: Sonargraph uses internally MSBuild to determine the source files to compile and the compiler options
to be used. Usually, if MSBuild fails some built-in variable is not resolved correctly.

Figure D.4. MSBuild Exception

2. Parse Error: The parsing is aborted if a header file cannot be found. Check the folder where the header file can be found on
disk and select a compiler definition that contains this folder as part of its --sys_include options.

Tutorial - C++

262

Figure D.5. Parse Error (Missing Header File)

D.4. Further Steps
After the workspace for a C/C++ system has been defined, the further steps to analyze it are the same as for a Java system. Please
check the following sections of the Java tutorial:

• Section B.2, “Initial Analysis”

• Section B.3, “Problem Analysis”

• Section B.4, “Detailed Dependency Analysis”

• Section B.5, “Advanced Analysis With Scripts”

• Section B.6, “Share Results”

263

Appendix E. Sonargraph Script API
Documentation
 Script API is documented via JavaDoc that is available within the help system of the application and can be accessed using a
standard browser. Different packages exist for the language-independent core functionality and language specific parts.

Link to JavaDoc of Sonargraph Script API.

./html/scriptApi/index.html

264

Index
A
Activation Code, 12, 12
Analyzer Execution Level

Analyzers View,
Analyzing Cycles,
Ant

Build Server Integration, 190
Architecture, 158,

Architecture DSL,
Aspect,
Aspect Extension,
Best Practices,

Investigate Violations, 149
Connection of Complex Artifacts,
Connection Scheme,
Connector Extension,
Dependency Type Restriction,
Interface Extension,
Interfaces and Connectors,
Models, Components and Artifacts,
Templates,
UML Component Diagram,

Architecture DSL
Grammar,

Artifact
Transitive Connection,

Artifact Classes,
Auxiliary Views,

Source View,

B
Build Server Integration

Ant, 190
Gradle, 190
Jenkins, 190
Maven, 190
Shell Script, 190
SonarQube, 190
Workspace Profiles,

C
C# Build Executor, 21
C# Configuration, 20
C# Issues

Parsing Error, 228
Project File (.csproj) Processing Failed, 228

C# Model, 28
C# Module Configuration, 46

C# MSBuild Configuration, 49
C# MSBuild Configuration, 49

Problems and Solutions, 51
MSB4019: Imported Project Not Found, 51
MSB4041: Default XML namespace, 51
NETSDK1005: Assets file doesn't have a target, 51

Index

265

XYZ was unexpected at this time., 51
C++ Include Dependency, 99
C++ Model, 26
C++ Module Configuration, 44
C/C++ Compiler Definitions, 17
C/C++ Issues

Parsing Error, 228
Change Tracking, 163
Code Organization

require,
Collaboration between Sonargraph and IDE, 203
Common Interaction Patterns,
Compiler Definition

C++ Tutorial, 259
Configuration of Duplicate Code Blocks Computation , 93
Configuring Metrics Thresholds,
Context Menu Interactions, , , ,
Core Issues

Duplicate Block, 228
Root path does not exist, 228

Create C/C++ System from Visual Studio 2010 Solution File
C++ Tutorial, 260

Create C/C++ System from Visual Studio Solution File, 43
Creating a C# Module Manually, 46
Creating a Java Module Manually, 42
Creating a System, 33

C# System, 33
C/C++ System, 33
Java System, 33

Creating C++ Modules Manually, 44
Creating or Importing a C# Module, 46
Creating or Importing a C++ Module, 43
Creating or Importing a Java Module, 37
Cycle Breakup,
Cycle Group Analysis

Tutorial, 247

D
Delete Refactoring,
Dependencies View

Tutorial, 252
Dependency Analysis

Tutorial, 250
Drilldown, ,
Duplicate Code,
Duplicate Code Block Analysis

Tutorial, 248

E
Eclipse Plugin

Collaboration with Sonargraph, 203
Examining Changes,
IDE Integration, 191
Issues and Tasks,
Manual Refresh,
Refactoring Execution,
Setting Analyzer Execution Level,

Index

266

Suspend / Resume Monitoring,
System Assignment,

Edit Resolution,
Editor Preferences, 15
Examining Changes

Export to HTML, 165
Examining Metrics Results

Element Metrics View,
Metrics View,

Expand Dependency to Component Level,
Exploration View,

Tutorial, 250
Export to Excel

Tutorial, 255
Exporting a Quality Model, 36
Extending the Focus,

F
FAQ, 230
Files View,
Filter

Issue Filter,
Production Code Filter,
Workspace Filter,

Focus
Focus Dialog,
Home Button, ,
Input Highlighting, ,
Transitive Dependencies, ,

Focus Concept,
Focus Modes,

G
Getting Started, 7
Gradle

Build Server Integration, 190
Graph-Based System Exploration,
Groovy Template, 230

H
Help, 14

I
IDE Integration, 191
Import C# Modules Using a Visual Studio Project File, 46
Import C# Modules Using a Visual Studio Solution File, 46
Import C++ Module Based on Visual Studio Project File, 43
Import C++ Modules Using Make Command Capturing Files, 43
Import Java Modules from IntelliJ, 37
Import Java Modules from Maven POM File, 39
Import Java Modules Using a Bazel Workspace, 40
Import Java Modules Using an Eclipse Workspace, 37
Importing a Quality Model, 36
Inspecting Cyclic Elements,
Installation, 14
IntelliJ Plugin

Examining Changes,

Index

267

IDE Integration, 198
Refactoring Execution,

Intellij Plugin
Issues and Tasks,
Manual Refresh,
System Assignment,
Toolbar,

Interacting with a System,
Interaction with Auxiliary Views, , ,
Issues,

Hotspot,
Ignore,
Ranking,
Treemap,

Issues View,

J
Java Issues

Class file is out-of-date, 228
Java Model

Kotlin Model, 25

L
Language Independent Model, 24
Language Specific Models,
Levels,
License, 12
License Server Preferences, 16
License Server Settings, 13
Logical Models, 29

M
Manage Refactorings,
Maven

Build Server Integration, 190
Metric Definitions, 206

C# Metrics, 220
Biggest C# Directory Cycle Group , 220
Biggest C# Namespace Cycle Group , 220
Component Dependencies to Remove (C# Directories) , 220
Component Dependencies to Remove (C# Namespaces) , 220
Cyclicity (C# Directories) , 220
Cyclicity (C# Namespaces) , 221
Number of all C# Directory Cycle Groups , 221
Number of all C# Namespace Cycle Groups , 222
Number of C# Directories , 222
Number of C# Namespaces , 222
Number of Critical C# Directory Cycle Groups , 221
Number of Critical C# Namespace Cycle Groups , 221
Number of Cyclic C# Directories , 221
Number of Cyclic C# Namespaces , 221
Number of Ignored Cyclic C# Directories , 221
Number of Ignored Cyclic C# Namespaces , 221
Parser Dependencies to Remove (C# Directories) , 220
Parser Dependencies to Remove (C# Namespaces) , 220
Relative Cyclicity (C# Directories) , 222
Relative Cyclicity (C# Namespaces) , 222

Index

268

Structural Debt Index (C# Directories) , 220
Structural Debt Index (C# Namespaces) , 220

C/C++ Metrics, 223
Biggest C++ Namespace Cycle Group , 223
Biggest C,C++ Directory Cycle Group , 223
Component Dependencies to Remove (C++ Namespaces) , 223
Component Dependencies to Remove (C,C++ Directories) , 223
Cyclicity (C++ Namespaces) , 223
Cyclicity (C,C++ Directories) , 224
Number of all C++ Namespace Cycle Groups , 224
Number of all C,C++ Directory Cycle Groups , 225
Number of C++ Namespaces , 225
Number of C,C++ Directories , 225
Number of Critical C++ Namespace Cycle Groups , 224
Number of Critical C,C++ Directory Cycle Groups , 224
Number of Cyclic C++ Namespaces , 224
Number of Cyclic C,C++ Directories , 224
Number of Ignored Cyclic C++ Namespaces , 224
Number of Ignored Cyclic C,C++ Directories , 224
Parser Dependencies to Remove (C++ Namespaces) , 223
Parser Dependencies to Remove (C,C++ Directories) , 223
Relative Cyclicity (C++ Namespaces) , 225
Relative Cyclicity (C,C++ Directories) , 225
Structural Debt Index (C++ Namespaces) , 223
Structural Debt Index (C,C++ Directories) , 223

Java Metrics, 218
Average Java Class Member Visibility (%) , 218
Average Java Public Visibility (%) , 218
Biggest Java Package Cycle Group , 218
Byte Code Instructions , 219
Component Dependencies to Remove (Java Packages) , 218
Cyclicity (Java Packages) , 218
Java Member Visibility (%) , 218
Java Public Visibility (%) , 218
Number of all Java Package Cycle Groups , 219
Number of Critical Java Package Cycle Groups , 219
Number of Cyclic Java Packages , 219
Number of Ignored Cyclic Java Packages , 219
Number of Java Packages , 219
Parser Dependencies to Remove (Java Packages) , 218
Relative Cyclicity (Java Packages) , 219
Structural Debt Index (Java Packages) , 218

Language Independent Metrics, 206
Abstractness (Module) , 214
Abstractness (System) , 214
ACD , 209
Average Block Nesting Depth , 207
Average Complexity , 215
Biggest Component Cycle Group , 208
CCD , 209
Code Churn (30d) , 216
Code Churn (365d) , 216
Code Churn (90d) , 216
Code Churn Rate (30d) , 216
Code Churn Rate (365d) , 216
Code Churn Rate (90d) , 216
Code Comment Lines , 212
Comment Lines , 212

Index

269

Component Dependencies to Remove (Components) , 207
Component Rank (Module) , 207
Component Rank (System) , 207
Cyclicity (Components) , 208
Cyclomatic Complexity , 215
Depends Upon (Module) , 209
Depends Upon (System) , 209
Distance (Module) , 214
Distance (System) , 214
Extended Cyclomatic Complexity , 216
Fan In Maintainability Level (Module) , 210
Fan In Visibility (Module) , 210
Fan In Visibility (System) , 210
Fan Out Visibility (Module) , 210
Fan Out Visibility (System) , 210
File Changes (30d) , 217
File Changes (365d) , 217
File Changes (90d) , 217
Highest ACD , 210
Instability (Module) , 214
Instability (System) , 215
Issue Density , 207
LCOM4 , 210
Lines of Code , 212
Logical Cohesion (Module) , 210
Logical Cohesion (System) , 211
Logical Coupling (Module) , 211
Logical Coupling (System) , 211
Maintainability Level , 211
Max Block Nesting Depth , 207
Modified Cyclomatic Complexity , 216
Modified Extended Cyclomatic Complexity , 216
NCCD , 211
Number of Artifacts , 206
Number of Authors (30d) , 217
Number of Authors (365d) , 217
Number of Authors (90d) , 217
Number of Code Duplicates , 208
Number of Component Cycle Groups , 208
Number of Components , 212
Number of Components (Ignoring Issues) , 212
Number of Components in Deprecated Artifacts , 206
Number of Components with Violations , 206
Number of Critical Component Cycle Groups , 208
Number of Cyclic Components , 209
Number of Cyclic Modules , 209
Number of Duplicated Code Lines , 208
Number of Empty Artifacts , 206
Number of Ignored Code Duplicates , 208
Number of Ignored Cyclic Components , 209
Number of Ignored Violations (Parser Dependencies) , 206
Number of Incoming Dependencies (Module) , 215
Number of Incoming Dependencies (System) , 215
Number of Logical Elements in Deprecated Artifacts , 206
Number of Methods , 213
Number of Modules , 213
Number of Outgoing Dependencies (Module) , 215
Number of Outgoing Dependencies (System) , 215

Index

270

Number of Parameters , 213
Number of Statements , 213
Number of Types , 213
Number of Types (Module) , 213
Number of Types (System) , 213
Number of Unassigned Logical Elements , 206
Number of Unassigned Physical Components , 206
Number of Violations (Component Dependencies) , 207
Number of Violations (Parser Dependencies) , 207
Parser Dependencies to Remove (Components) , 208
Physical Cohesion , 211
Physical Coupling , 211
Propagation Cost , 212
RACD , 212
Relational Cohesion (Module) , 214
Relational Cohesion (System) , 214
Relative Cyclicity (Components) , 209
Source Element Count , 213
Structural Debt Index (Components) , 208
Total Lines , 213
Used From (Module) , 212
Used From (System) , 212

Python Metrics, 226
Biggest Python Package Cycle Group , 226
Component Dependencies to Remove (Python Packages) , 226
Cyclicity (Python Packages) , 226
Number of all Python Package Cycle Groups , 226
Number of Critical Python Package Cycle Groups , 226
Number of Cyclic Python Packages , 226
Number of Ignored Cyclic Python Packages , 226
Number of Python Packages , 227
Parser Dependencies to Remove (Python Packages) , 226
Relative Cyclicity (Python Packages) , 227
Structural Debt Index (Python Packages) , 226

Metrics
Tutorial, 245

Microservice Dependencies, 188
Module-Based Logical Model, 31
Motivation,
Mouse Interactions,
Move/Rename Refactoring,
MSBuild Error, 230

N
Namespaces View,
Navigation View,
New Java Module

Java Tutorial, 243

O
On Demand Cycle Groups,
Out Of Memory Exception, 230

P
Pattern Language,
Physical File Structure, 24
Plugin Configuration, 185

Index

271

PMD Plugin, 187
Problem Analysis

Tutorial, 246
Proxy Preferences, 16
Proxy Settings, 13
Python Configuration, 23
Python Model, 29

Q
Quality Gate

Build Integration,
Creation,

Quality Gates, 167
Quality Model, 35

C# Tutorial, 256
Tutorial, 255

R
Refactorings,

Best Practices,
Delete Refactoring, ,
Move/Rename Refactoring,

Removing Elements From Focus,
Report,
Resolutions,

Fix,
Ignore,
Matching, 109

Revising Cycle Groups,

S
Script

Adding parameters,
API Documentation, 263
Auto Completion,
Best Practices,

Limit Visiting,
Text Search,

Compiling,
Creation,
Default parameter,
Editing,
Extend Static Analysis,
Management,
Producing Results,
Quality Model,
Run Configurations,
Running Automatically,
Script View,
Tutorial, 253

Search Dialog,
Tutorial, 253

Search Path (Installation), 22
Shell Script

Build Integration, 190
Snapshot

Tutorial, 255

Index

272

Sonargraph System Model,
Source code,
Source View,
SpotBugs Plugin, 187
Spring Microservices Plugin, 185
Swagger Plugin, 187
System Diff, 163
System Exploration,
System Setup

C# Tutorial, 256
C++ Tutorial, 259, 259, 260
Java Tutorial, 243

System-Based Logical Model, 30

T
Tabular System Exploration,
Task

Fix,
TODO,

Text Search, 94
Views,

Thresholds
Tutorial, 245

Toolbar Interaction,
Transitive Connection,
Treemap,
Treemap configuration,
Treemap-Based System Exploration,
Tutorial

C#, 256
C++, 259
Java, 243
Walk Through (Java), 235,

Type Based Graph,

U
UML Component Diagram,
Update Site Preferences, 17
Updates, 14
User Interface Components,

V
View Options, ,
Virtual Model

Resolutions,

W
Workspace,

C# Tutorial, 256
C++ Tutorial, 259, 260
Java Tutorial, 243

Workspace Dependencies View,
Workspace Profiles

Build Server Integration, 190
Definition,

Workspace View
File Filter,

Index

273

Issue Filter,
Production Code Filter,

	Sonargraph User Manual
	Table of Contents
	Chapter 1. Motivation for Code Quality
	Chapter 2. Getting Started
	Chapter 3. Licensing
	3.1. Getting an Activation Code or a License
	3.2. Activation Code Based Licensing
	3.3. Proxy Settings
	3.4. License Server Settings

	Chapter 4. Initial Configuration
	4.1. Installation and Updates
	4.2. Help
	4.3. Editor Preferences
	4.4. License Server Preferences
	4.5. Proxy Preferences
	4.6. Update Site Preferences
	4.7. C/C++ Compiler Definitions
	4.8. C# Configuration
	4.8.1. C# Build Executor Configuration

	4.9. Search Path Configuration
	4.10. Python Configuration

	Chapter 5. Getting Familiar with the Sonargraph System Model
	5.1. Physical File Structure
	5.2. Language Independent Model
	5.3. Language Specific Models
	5.3.1. Java/Kotlin Model
	5.3.2. Kotlin Specific Issues
	5.3.3. C++ Model
	5.3.4. C# Model
	5.3.5. Python Model

	5.4. Logical Models
	5.4.1. System-Based Logical Model
	5.4.2. Module-Based Logical Model

	Chapter 6. Creating a System
	6.1. Creating a Java System
	6.2. Creating a C# System
	6.3. Creating C/C++ Systems
	6.4. Quality Model
	6.4.1. Importing a Quality Model
	6.4.2. Exporting a Quality Model

	Chapter 7. Adding Content to a System
	7.1. Creating or Importing a Java Module
	7.1.1. Importing Java Modules Using an Eclipse Workspace
	7.1.2. Importing Java Modules from IntelliJ
	7.1.3. Importing Java Modules from Maven POM File
	7.1.4. Importing Java Modules Using a Bazel Workspace
	7.1.5. Creating a Java Module Manually

	7.2. Creating or Importing a C++ Module
	7.2.1. Importing C++ Modules from Visual Studio Files
	7.2.2. Importing C++ Modules Using Make Command Capturing Files
	7.2.3. Creating a C++ Module Manually
	7.2.4. C/C++ Module Configuration

	7.3. Creating or Importing a C# Module
	7.3.1. Importing C# Modules Using a Visual Studio Project File
	7.3.2. Importing C# Modules Using a Visual Studio Solution File
	7.3.3. Creating a C# Module Manually
	7.3.4. C# Module Configuration
	7.3.5. C# MSBuild Configuration
	7.3.5.1. C# MSBuild Problems and Solutions

	Chapter 8. Interacting with a System
	8.1. User Interface Components
	8.1.1. Menu Bar
	8.1.2. Tool Bar
	8.1.3. Notifications Bar
	8.1.4. Tables

	8.2. Common Interaction Patterns
	8.2.1. Special Graphic Elements Decorations

	8.3. Sonargraph Workbench
	8.4. Navigating through the System Components
	8.5. Exploring the System Namespaces
	8.6. Managing the System Files
	8.7. Managing the Workspace
	8.7.1. Definition of Filters, Modules and Root Directories
	8.7.2. Managing Module Dependencies
	8.7.3. Creating Workspace Profiles for Build Environments

	8.8. Analyzer Execution Level
	8.9. Analyzing Cycles
	8.9.1. Revising Cycle Groups
	8.9.2. Inspecting Cyclic Elements
	8.9.3. Breaking Up Cycles

	8.10. Exploring the System
	8.10.1. Concepts for System Exploration
	8.10.1.1. Focus Concept
	8.10.1.2. Focus Modes
	8.10.1.3. Transitive Dependencies
	8.10.1.4. Exploration and Graph-based Views Properties
	8.10.1.5. Creating Views Exploration and Graph Based views
	8.10.1.6. Applying Focus
	8.10.1.7. Semantics of Colors

	8.10.2. Tree Based System Exploration
	8.10.2.1. Drilldown
	8.10.2.2. Extending the Focus
	8.10.2.3. Removing Elements From Focus
	8.10.2.4. Interaction with Auxiliary Views
	8.10.2.5. Expand Dependency to Component Level
	8.10.2.6. Context Menu Interactions
	8.10.2.7. View Options

	8.10.3. Graph-Based System Exploration
	8.10.3.1. Levels
	8.10.3.2. On Demand Cycle Groups
	8.10.3.3. Interaction with Auxiliary Views
	8.10.3.4. Context Menu Interactions
	8.10.3.5. Type Based Graph
	8.10.3.6. View Options

	8.10.4. Treemap-Based System Exploration
	8.10.4.1. Configuration of a Treemap
	8.10.4.2. Interaction with Auxiliary Views
	8.10.4.3. Context Menu Interactions
	8.10.4.4. Toolbar Interaction
	8.10.4.5. Mouse Interactions

	8.10.5. Tabular System Exploration
	8.10.5.1. Drilldown
	8.10.5.2. Interaction with Auxiliary Views
	8.10.5.3. Context Menu Interactions

	8.11. Searching Elements
	8.11.1. Searching Elements in Views

	8.12. Detecting Duplicate Code
	8.12.1. Configuration of Duplicate Code Blocks Computation

	8.13. Examining the Source Code
	8.13.1. Interaction with Auxiliary Views

	8.14. Examining Metrics Results
	8.15. Analyzing C++ Include Dependencies
	8.16. Creating a Report

	Chapter 9. Handling Detected Issues
	9.1. Using Virtual Models for Resolutions
	9.2. Examining Issues
	9.2.1. Identifying the Most Relevant Issues to Fix
	9.2.2. Identifying Issue Hotspots

	9.3. Ignoring Issues
	9.4. Defining Fix and TODO Tasks
	9.5. Editing Resolutions
	9.6. Details about Sonargraph's Resolution Matching

	Chapter 10. Simulating Refactorings
	10.1. Creating Delete Refactorings
	10.2. Creating Move/Rename Refactorings
	10.3. Managing Refactorings
	10.4. Best Practices

	Chapter 11. Defining an Architecture
	11.1. Models, Components and Artifacts
	11.1.1. Using other criteria to assign components to artifacts
	11.1.2. List of predefined attribute retrievers

	11.2. Interfaces and Connectors
	11.3. Reusing Architecture Aspects
	11.4. Extending Aspect Based Artifacts
	11.5. Extending Interfaces or Connectors
	11.6. Adding Transitive Connections
	11.7. Restricting Dependency Types
	11.8. Connecting Complex Artifacts
	11.9. Introducing Connection Schemes
	11.10. Artifact Classes
	11.11. How to Organize your Code
	11.12. Designing Generic Architectures Using Templates
	11.12.1. Using unrestricted generated artifacts
	11.12.2. Using connection schemes to regulate accessibility

	11.13. Best Practices
	11.14. Architecture DSL Language Specification

	Chapter 12. Visualizing Architecture Aspects
	Chapter 13. Interactive Restructuring and Code Organization
	13.1. Architectural View
	13.2. Assigning Elements to Artifacts

	Chapter 14. Examining Changes
	Chapter 15. Defining Quality Gates
	15.1. Creating Quality Gates
	15.2. Using Quality Gates in the Continuous Integration (CI) Build
	15.3. Current Quality Gate Limitations

	Chapter 16. Extending the Static Analysis
	16.1. Interaction with Auxiliary Views
	16.2. Groovy Scripts from Quality Model
	16.3. Creating a new Groovy Script
	16.3.1. Default Parameters in a Script
	16.3.2. Adding Parameters
	16.3.3. Creating Run Configurations

	16.4. Editing a Groovy Script
	16.4.1. Auto Completion
	16.4.2. Compiling a Groovy Script

	16.5. Producing Results with Groovy Scripts
	16.6. Running a Groovy Script Automatically
	16.7. Managing Groovy Scripts
	16.8. Groovy Script Best Practices
	16.8.1. Only Visit What is Needed
	16.8.2. Find Text in Code

	Chapter 17. Using Additional Plugins
	17.1. Plugin Configuration
	17.2. Spring Microservices Plugin
	17.3. Swagger Plugin
	17.4. SpotBugs Plugin
	17.5. PMD Plugin

	Chapter 18. Investigating Microservice Dependencies
	Chapter 19. Build Server Integration
	Chapter 20. IDE Integration
	20.1. Eclipse Plugin
	20.1.1. Assigning a System
	20.1.2. Displaying Issues and Tasks
	20.1.3. Suspending / Resuming Quality Monitoring
	20.1.4. Setting Analyzer Execution Level
	20.1.5. Getting Back In Sync with Manual Refresh
	20.1.6. Examining Changes
	20.1.7. Execute Refactorings in Eclipse

	20.2. IntelliJ Plugin
	20.2.1. Assigning a System
	20.2.2. Displaying Issues and Tasks
	20.2.3. Toolbar
	20.2.4. Getting Back In Sync with Manual Refresh
	20.2.5. Examining Changes
	20.2.6. Execute Refactorings in IntelliJ

	20.3. Collaboration between Sonargraph and IDE

	Chapter 21. Metric Definitions
	21.1. Language Independent Metrics
	21.2. Java Metrics
	21.3. C# Metrics
	21.4. C/C++ Metrics
	21.5. Python Metrics

	Chapter 22. How to Resolve Issues
	22.1. Language Independent Issues
	22.2. Java Specific Issues
	22.3. C# Specific Issues
	22.4. C/C++ Specific Issues

	Chapter 23. FAQ
	23.1. Out Of Memory Exceptions
	23.2. Groovy Template
	23.3. MSBuild Error (MSB4019) during Analysis of Visual Studio C# Project

	Chapter 24. References
	Chapter 25. Trademark Attributions, Library License Texts, and Source Code
	Chapter 26. Legal Notice
	Glossary
	Appendix A. Walk Through Tutorial (Java)
	A.1. Workspace Definition
	A.2. Basic Analysis
	A.3. Advanced Analysis
	A.4. Architecture: Artifacts, Aspects Files and Standard Connections
	A.5. Architecture: Explicit Interfaces and Connectors
	A.6. Architecture: Advanced Connections
	A.7. Architecture: Advanced Aspect Files
	A.8. Architecture: Referencing external Artifacts in Aspect Files
	A.9. Headless Check with Sonargraph-Build
	A.10. Check at Development Time with Sonargraph Eclipse Integration

	Appendix B. Tutorial - Java
	B.1. Setup the Software System
	B.1.1. Create a new Software System
	B.1.2. Define the Workspace
	B.1.3. Define Module Dependencies
	B.1.4. Parse the Workspace

	B.2. Initial Analysis
	B.2.1. Detect Problems Using Standard Metrics
	B.2.2. Adjust Metric Thresholds

	B.3. Problem Analysis
	B.3.1. Examine Cycles
	B.3.2. Examine Duplicate Code
	B.3.3. Handle Issues

	B.4. Detailed Dependency Analysis
	B.4.1. Explore Dependencies
	B.4.2. Check how Elements are Connected via Graph View
	B.4.3. Check how Elements are Connected via the Dependencies View
	B.4.4. Search for Elements

	B.5. Advanced Analysis With Scripts
	B.5.1. Create a New Script
	B.5.2. Execute Existing Script

	B.6. Share Results
	B.6.1. Work with Snapshots
	B.6.2. Define Quality Standards using Quality Models
	B.6.3. Export to Excel

	Appendix C. Tutorial - C#
	C.1. Setup the Software System
	C.2. Further Steps

	Appendix D. Tutorial - C++
	D.1. Setup the Software System - Compiler Definitions
	D.2. Setup the Software System - Makefile Capturing
	D.3. Setup the Software System - Visual Studio Import
	D.4. Further Steps

	Appendix E. Sonargraph Script API Documentation
	Index

