SonargraphBuild User Manual
Version 9.9.2

SonargraphBuild User Manual: Version 9.9.2
Copyright © 2019 hello2morrow GmbH

Table of Contents

1. Sonargraph's Next Generation - SonargraphBUITTccoouuiiiiiii e e 1
A I [or= 0] o o OSSPSR 2
2.1. Getting an ACtivation COOE OF @ LICENSEiieiiiiieiii ettt et e et e e 2
2.2. Activation Code BaSeU LICENSING .. .cceeruueiiitiieeett ettt e ettt e ettt e et et e e et et e e et et e e e eete e e e eete e eeeetanaeeee 2
2.3, PrOXY SEHINGS .. .vteeeeti ettt ettt e et e ettt e et e e et et e et e e e e e e e e e 3
2.4, LIiCENSE SEIVEL SEIINGS . ettueiiitti ettt ettt ettt ettt ettt et et et ettt e et et s e et et et et e ebe e et e eb e et e at e enaaas 3
R € 1] IS = (= O PP UPPPTRN 4
3.1 INStallation REQUIFEIMENTS ... iieite et ettt ettt ettt e ettt e ettt e et et b e e et et e et ettt e e e estereeeesbn e eeeestnaaaeees 4
A = £ o U] (S PP UPPPTRUPPPIN 4
4. Executing from the COmMMANG-TINEoouuiiiii e et e et ettt e e e et e e e erb e e eentnneeees 5
I = oo R O (= 1 o] [T TSP 5
4.2. Specify Conditions fOr BUIld FallUIecooiiiiiii et 8
I Ta 1= = i g To TNt AN | PSP SPPPPTRUPPPPN 10
6. INtEgration WIth IMBVENottt et e et e et e e et et e e et et e e e et e e e e b s 11
6.1. Maven Tips and BESE PraCliCeScciiiui ittt e e et e e et eeaaa s 11
6.2. Parameters 0f GOal "CrEaE-TEPOM" ettt ettt ettt e ettt e et et e e e e r e e eenb e e eeraaeaees 12
6.3. Configuration for goal "dyNamiC-TEPOM" ceiiii ettt e et e e et e e e e e e e eees 15
6.4. Maven Fail St CONFIGUIBLIONuuiiiiiee ettt ettt ettt et et e e e et e e e et e e eran s 18
B.5. EXAMPIE POM ...ttt ettt e e e 19
7. INtegration WIth Gratleo ettt ettt e et et e et et e et e eera e eeaas 21
7.1. Gradie Tips and BESt PraCtiCeSuuuiiiiiiii ettt eaan s 21
7.2. Parameters of Task "SonargraphREDOI"coouiiiiiiii et e e e e enaas 21
7.3. Configuration for Task "sonargraphDyNamiCREPOI"o.uuiiiiiiieieii et e eeees 24
7.4. Gradle Fail Set CONfIQUIALIONcoeeitei ittt et e e et e ettt e ettt e et et neeeertreeeertaeeene 27
7.5. Example Gradle BUild FIlE oot e e e e e 28
8. REPOIING CRBNGES ... eeeti ettt e et e et et e et e b e e et b e e et e b e e et eb e e e e et e e e nea s 31
9. Integration With SONBIrQUIDEo.uu ettt 33
9.1. Overall Process Of INEEGIELIONuiiietiiee ettt ettt e e et e et e bt e e et e e e e na s 33
9.2. SONArQUIE CONFIGUIBLIONeeetteeeete ettt ettt ettt e et e et e et e et e et e et e et e et e st e e e e eba e e e e nba e e eennnas 33
9.3. SonarQube Maven CONFIGUILIONcieuue ittt ettt ettt e e et e e e et e e e et e e e enna e eennes 34
9.4. SonarQuUbe Gradle CONFIQUIBLIONuuu ittt ettt e e e et et e e et e e e et e e e e aaa s 34
9.5. SonarQube Ant RUNNEr CONFIGUIBITION ... ciiitieeeeit ettt ettt e et e e et eeeeba s 35
10. Integration with SonarQube using Sonargraph Integration plugin 2.1.4 Or [OWEFooviviiiiiiiiiiieeii e 36
10.1. SONArQUDE CONFIGUIBIIONeeett ettt e ettt e ettt e et e ettt e e ettt e e et et e e e e e te e et eete e e e eebe e eeeebanaeaees 36
10.2. SonarQUDbE Maven CONFIGUIBLIONeieeti ettt e et e et e et e e et et e et et e e e e et e e eeeaaaeas 38
10.3. SonarQube Gradle CONfIQUIBLIONuuuiiieii ettt ettt e e et e e e e e e eaa e e e ene e eennans 39
10.4. SonarQube Ant RUNNEr CONFIGUIBLIONcieetteieii ettt ettt e et e e e e e e e eba s 39
11 INtegration WIth JENKINSiiii e ettt e et e e et e e et et e e et et e e et et e e et et e e e e naa s 40
11.1. JenKins SErver CONFIGUIBIIONe.uuu i eieeit ettt ettt ettt ettt et e e e e et e et et e et et e et et e e e e e e e e enaas 40
11.2. JenKins JOD CONFIGQUILIONiieeiiiee ittt ettt et e e et et e et e et e e e enna e e e enaans 40
11.3. Charts CONIGUIALIONeeeitiieeeet ettt ettt ettt e et et e et et e et et e et e s e e e eaan e e e enanns 41
11.4. BUII CONFIQUIBLION ...ttt ettt ettt e e et et e e et et e e e e et e e e e ab e e e e naa s 42
R N O PO ORPPUSUUPPPPRTRN 43
13. Trademark Attributions, Library License Texts, and SOUICE COUEcceuuiiiiuiiiieii e e 44
T4, LEOAI NOICE .. eeeiti ettt ettt ettt ettt ettt e ettt e e et e e e e et e h e et e e et e e et e e e e e naan s 45
A. SonargraphBuild APl DOCUMENTALIONuuuiiiiii ettt ettt e e et e et et e e et et e e e e et e e e e aaa s 46
T 0 (< TP UPPPTTRPPPIN 47

Chapter 1. Sonargraph's Next Generation -
SonargraphBuild

SonargraphBuild integrates quality checks into the continuous integration build and can create XML and HTML reports via an
Ant task or shell scripts. These reports contain all information about quality issues and cal culated metrics. The XML report can be
used for further downstream processing viatransformations. The XML schemafor the report can be found in <sonargraphBuild-
inst>/doc.

SonargraphBuild additionally offers the possibility to mark the build as failed based on issues detected during the analysis. So, if
you have written custom queries via Groovy scripts that check on the proper usage of an external library or detect a code smell,
you can be surethat it is detected immediately.

Chapter 2. Licensing

When you start Sonargraph you will be asked for an activation code or a license file. For additional licensing and pricing
information please contact <sal es@el | o2nor r ow. con® or <support @el | o2nor r ow. con® and check our web
site.

2.1. Getting an Activation Code or a License

When you have purchased a Sonargraph license, an activation code or alicense file will be delivered to you.

There might be aprogram for free Sonargraph licenses which are time-limited and/or size-limited. Please register on our website
and check the available programs.

In order to replace a valid license by a new one, choose "Help" - "Manage License..." from the user menu in the GUI-based
product. Sonargraph licenses are bound to a named user. The usage by a different user is aviolation of the license agreement.

2.2. Activation Code Based Licensing

Activation code based licensing activates Sonargraph licenses via Internet or a local license server by requesting a so-called
ticket. Every activation code is customer specific and represents a pool of Sonargraph user licenses as purchased and licensed
to the specific customer. Activation code based licensing technically requires that Sonargraph has Internet access or that alocal
license server isreachable. There are two types of activation code based licenses available:

1. Flexible User License (if you bought Sonargraph before version 9.0 you have flexible user licenses)
2. Foating License (new with Sonargraph 9.0)

Flexible user licenses support a feature that allows customer-driven transfer of a Sonargraph user license to another user after
some amount of time. Thisworks like this:

» When an activation code based license is requested, Sonargraph automatically requests alicenseticket from the hello2morrow
license server. Thisticket expires after sometime, for example after 30 days. During these 30 days, the use of the Sonargraph
installation that requested the ticket is licensed (by the user who ran Sonargraph when the license ticket was requested).
Sonargraph can be used during this period without any access to the Internet.

 After theticket of a Sonargraph installation has expired (in our example scenario, this happens on the 31st day after the ticket
has been requested), one of two things typically happen:

1. The same Sonargraph installation is started again. Sonargraph then notices that the license ticket has expired and lets the
user know about it by presenting a dialog to manually request a new ticket from the hello2morrow license server, for the
same activation code or a different one if desired. The new ticket again is valid for the same time period. Y ou can toggle

the feature at ' Help — Renew License Ticket Automatically ' to have Sonargraph silently perform license ticket requests
using the current activation code, without further user interaction.

2. Alternatively, the user of the installation might not continue to work with Sonargraph; then the license is now, after the
expiration of the ticket in the Sonargraph installation, available to some other user. The hello2morrow license server will
supply alicense ticket to the next user that requests one for the given activation code.

Note that the number of license tickets that can be supplied by the license server for some activation code might be more than
one. For example, a company might license Sonargraph for 20 users. The same activation code can be used by all of them, but
as soon as the 21st license ticket is requested for this activation code, this request will be denied. A new request for aticket will
only be fulfilled after one of the already supplied tickets has expired, so that at any one moment, at most 20 non-expired license
tickets exist for the activation code.

It is not required that the same user requests a replacement of an expired license ticket; any user that knows the activation code
can reguest one of the free tickets. This mechanism reduces the effort needed for license management in a changing user group.

https://www.hello2morrow.com/products/sonargraph/architect_pricelist
https://www.hello2morrow.com/products/sonargraph/architect_pricelist

Licensing

However, in order to avoid any misuse we strongly encourage you to restrict the information about your activation code to those
persons who are supposed to use Sonargraph.

If you have any suspicion about misuse please inform <support @el | o2nor r ow. con» immediately. We can promptly
deactivate an activation code so that any further misuse is stopped and provide a new activation code to you.

Floating licenses bind aticket to an instance of Sonargraph whileit is running. As soon as Sonargraph is terminated the license
can be used by another user.

Most of our customersare using our Internet based license server, so thereis no need for you to operate your own license server as
long as the machines running Sonargraph have accessto the Internet. If thisis not the case or you want to avoid being dependent
on the availability of hello2morrow's web-based license server you can request the usage of alocal license server by contacting
usvia<sal es@el | o2norr ow. con® or <support @el | o2nor r ow. conr. Once your request has been approved, you
can download hello2morrow'slocal license server and runit on your premises. If you have aflexible user licenseitisalso possible
to run Sonargraph with file based licenses.

2.3. Proxy Settings

If you use hello2morrow's Internet servers and Activation code based licensing, you need Internet access. If your network
configuration does not allow direct Internet access, but provides access through an HT TP proxy instead, you can specify the host
name and port of the proxy server. If the proxy server accessis password protected, you can supply a user name and a password
in order to authenticate.

For the GUI-based product, the proxy settings can be changed via"Preferences..." — "Proxy Settings' .

Check the user manual of SonargraphBuild for proxy configuration options of the build server integrations.

2.4. License Server Settings

| you use your own license server you need to configure the access to it. Y ou must specify the host name and port of the license
server.

For the GUI-based product, the proxy settings can be changed via "Preferences..." — "License Server Settings' .

Chapter 3. Getting Started

This chapter summarizes what is heeded for SonargraphBuild to run.

3.1. Installation Requirements

The following prerequisites must be fulfilled for SonargraphBuild :

1.

2.

3.

Microsoft™ Windows™ , Mac OS-X or Linux® operating system.
Java Runtime Environment 1.8 or higher

At least 2048 MB RAM (Win32: 1400 MB)

NOTE

Sonargraph keeps all information in main memory. For very large systems, you need to increase the memory for the
JVM in case you run into out of memory exceptions.

3.2. Prerequisites

1.

If you plan to run SonargraphBuild via ANT or the command line you need to download it from our web site: https:/
www.hello2morrow.convproducts/downloads and extract the Zip file to a convenient location. If you are using Maven for
your build process you only need to install SonargraphBuild if your build server has no Internet connectivity.

. If the machine that executes SonargraphBuild has internet access, use an activation code parameter to obtain a ticket from

your pool of licenses. If the machine does not have internet access, you need to obtain a license file and pass the location of
thisfile as a parameter to your build.

. For integration with Shell script or Ant a "software system" must have been created via Sonargraph containing a valid

workspace configuration including modules and root directories.

Integrations with Maven and Gradle alow to dynamically create a "software system™" on the fly and create a report for it.
Those integrations can be used to create an initial software system that is refined using Sonargraph rich-client application.

https://www.hello2morrow.com/products/downloads
https://www.hello2morrow.com/products/downloads

Chapter 4. Executing from the Command-
line

SonargraphBuild can be executed as a standalone Java application which enables the integration in any kind of continuous
integration environment. The necessary configuration is straight-forward and an example shell script is provided in the directory
<inst-dir>/example/bin. The batch script starts SonargraphBuild and specifies an XML file for the detailed configuration.

NOTE

SonargraphBuild returns an exit code indicating the execution status:

» 0: Successful execution

« 1: Execution failed because of failset properties

» 2: Execution failed because of handled exception, e.g. configuration error, license error, etc.

» 3: Execution failed because of unexpected exception. Please check the log file for details.

NOTE

Theattribute "logL evel" affectsthe logging after the SonargraphBuild engine has been started. Setting it to "debug" and
below will generate additional debug information into the report.

WARNING

Setting the attribute "reportType" to "standard" only generates metric values for "system" and "module” levels. "full"
generates values for all element levels, but resultsin asignificant larger report!

The splitting of the HTML report into different files is controlled by the attribute "elementCountToSplitHtml Report".
The resulting detail pages contain tables of issues/ resolutions of a specific issue type. The maximum number of items
shown is limited by the parameter "maxElementCountForHtmlDetail sPage".

WARNING

Theattribute "qualityModel File" can be used to apply afixed set of scripts, architecture filesand analyzer configurations
across several systems.

The reported issues are most likely very different from the results of analyzing the system with the Sonargraph
application. If you specify a"qualityModelFile", it is advisable to specify the "Parser" virtual model, since resolutions
e.g. for architecture violations probably will not match.

4.1. Report Creation

Thefollowing table lists al parameters that are available to create areport for an existing Sonargraph system:

Attribute Mandatory |Description Default
install ationDirectory Yes Installation directory of SonargraphBuild No default
activationCode No Sonargraph license activation code. If this parameter | No default

is not specified, you must specify alicensefile
parameter (see below).

licenseServerPort No Port of license server to be used. This parameter is {8080
ignored if licenseServerHost is not set.
licenseServerHost No Host name or |P address of license server. If No default

this parameter is not specified, the web-based

Executing from the Command-line

Attribute Mandatory |Description Default
hello2morrow license server will be used for
activation code based licenses.
licenseFile No Sonargraph license file location. If this parameter is | No default
not specified, you must specify the activation code
parameter (see above).
languages No The languages that should be initialized, separated | Java, CSharp, CPlusPlus
by ",". The fewer languages are specified the faster
the startup of SonargraphBuild. If no valueis
specified, all languages will be initialized.
logFile No Path of the log file to be used for SonargraphBuild. |${currentDir}/
sonargraph_build.log
logLevel No Leve of logging detail. One of: off, error, warn, info
info, debug, trace, al
compilerDefinitionPath No The path to the active compiler definition fileto If empty, the default
be used for parsing a C/C++ system. If abuilt-in compiler definition
or automatically generated definition should be for the build server's
used, prefix the definition with "CPlusPlus:”, e.g. operating system s
CPlusPlus:GhuCpp.cdef. used: GhuCpp.cdef
(Linux), CLang.cdef
NOTE: If the standalone Sonargraph application | (Mac), Visual Cpp* .cdef
is used on the same machine with the same user (Windows, generated
and this parameter is empty, the active definition definition for the
specified with the standal one application will be latest Visual Studio
used. installation)
systemDirectory Yes Directory of the Sonargraph System No default
(xyz.sonargraph)
virtualModel No The virtual model to be used when checking for No default
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is"Modifiablevm", if virtual
models are licensed, "Parser” if not licensed.
Parameter can only be used with Sonar graph
Architect license.
workspaceProfile No The profile file name (e.g. "BuildProfilexml™) for | No default
transforming the workspace paths to match the build
environment.
qualityModelFile No The path to the quality model file (xyz.sggm) No default
that should be applied for the report creation.
Built-in quality models are the language-
independent " Sonargraph:Default.sggm"* and
language-specific " Sonargraph: Java.sggm”,
"Sonargraph: CSharp.sggm" and
"Sonargraph:CPlusPlus.sggm”. NOTE: All scripts,
analyzer configurations and ar chitecturefiles
present in the system areignored!
snapshotDirectory No Target directory for the created snapshot. Only Current directory
if either this parameter or snapshotFileNameis
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.
snapshotFileName No The target file name (without extension). Only <system-

if either this parameter or snapshotDirectory is

name>_<timestamp>

Executing from the Command-line

Attribute Mandatory |Description Default

provided, a snapshot will be generated. Parameter

can only be used with Sonargraph Architect license.
reportDirectory No Target directory for the created report Current directory
reportFileName No The target file name (without extension) <system-

name>_<timestamp>

reportType No "standard" only creates metric information of system|standard

and module level. "full" creates metric information

of dl levels.
reportFormat No “xml", "html" or "xml, html" html
elementCountToSplit No I ssue and resolution tables might contain too many | 1000
HtmlReport items making it impossible to open the HTML

report in abrowser. This parameter controls the

lower limit of items that will cause separate files

being generated per issue type. Possible values are:

-1 (never split), O (use default value), 1 (always

split), positive number > 1 (threshold for split)
maxElementCountFor No If HTML report is split because of too many issues |2000
Html Detail sPage and/or resolutions, detail tables might contain too

many items making it impossible to open the pagein

abrowser. This parameter controls the upper limit of

elements shown in the table. Possible values are: -1

(no limit), O (use default limit), positive number > 1

(maximum number of elements contained in page)
splitByModule No If set to 'true, individual HTML reports are created | false

per module.
baselineReportPath No Path of the baseline XML report that the current No default

report is compared against
deltaReportPath No Path of the output file that the deltainfois <reportDirectory>/

written to. Thislog fileis only generated if a <reportFileName>

baselineReportPath has been specified. _ddtalog
proxyHost No Proxy host No default
proxyPort No Proxy port No default
proxyUsername No Proxy user name No default
proxyPassword No Proxy password No default
pythoninterpreterPath No The path to avalid Python 3 interpreter tobeused |PATH issearched

for the build.

NOTE: If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the Python interpreter
specified with the standal one application will be
used.

for avalid Python 3
interpreter. If none
can befound in this
parameter is not set the
build will fail.

Table4.1. Configuration for Element " sonar graphBuild"

Example

Thisis an example configuration for creating an XML and HTML report:

Executing from the Command-line

<sonar gr aphBui | d
activationCode="_your activation code_"
| anguages="Java"
installationDirectory="../.."
systenDi rectory="../javaProject/ A arnC ock. sonar graph"
reportDirectory="./_tenp/report"
report Fi | eNane=""
report Type="ful Il "
report Format ="xm , htm "
snapshot Fi | eNanme="./ _t enp/ Al ar nCl ock. snapshot "
proxyHost =""
proxyPort=""
proxyUser name=
proxyPasswor d=""
| ogLevel ="warn" >
</ sonar gr aphBui | d>

4.2. Specify Conditions for Build Failure

SonargraphBuild can check for the existence of specific issues and mark the build as failed. The nested "fail Set" element of the
"sonargraphBuild" element can include any number of "include" and "exclude" definitions based on the issues that are either
built-in (like duplicate warnings, cycle group warnings, €tc.) or custom issues created via Groovy scripts.

TIP

The issue type that must be specified for include/exclude definitions can be determined via the Properties View of
Sonargraph .

TIP

If you want the build to fail only for newly introduced issues, apply resolutions like "Ignore" or "Fix" to the aready
know issuesin Sonargraph and only filter for resolution value "none".

TIP

If you want the build to fail because of certain metric values (e.g. Lines of Code per Source File), define athreshold for
that metric in Sonargraph to create issues if files grow too large.

TIP

The include/exclude definitions are applied in the following sequence, regardless of their definition order:

nn

1. First al include definitions are matched against the set of existing issues.

2. Then the exclude definitions are applied and the set of previously matched issuesis reduced accordingly.

Element Par ameter Mandatory Description Default

fail Set failOnEmptyWorkspace No Marks the build as failed if modules true
and root directories are detected but no
components are found. Possible values
are"true" or "false".

include/exclude issueType Yes Name of the issue type or "any" for No default
wildcard matching.

include/exclude severity No Severity of the issue. Possible values any
are: error, warning, info, none, any

include/exclude resolution No Theissue's resolution type. Possible none
values are: task, ignore, any, none

Table 4.2. Configuration Parametersfor Build Failure

Executing from the Command-line

Example

Thisis an example fail Set definition:
<sonar gr aphBui | d

<fail Set fail OnEnpt yWor kspace="fal se">
<i ncl ude issueType="any" severity="error" resol ution="none"/>
<excl ude issueType="Scri pt Conpil ationError"/>
<incl ude issueType="Supertype uses subtype"/>
<i ncl ude issueType="any" severity="warning"/>
<excl ude i ssueType="Threshol dVi ol ati on"/ >

</fail Set>

</ sonar gr aphBui | d>

The console output provides some basic information about the number of issues matched by either "include" and "exclude":

Failed:

Sonargraph: Start creating report...

Sonargraph: Opening system...

Sonargraph: Refreshing system...

Sonargraph: Creating report...

Sonargraph: Check if build should be marked asfailed...

Include filter [issueType=any, severity=error, resolution=none] matches O issue(s).

Include filter [issueType=Supertype uses subtype, severity=any, resolution=none] matches 0 issue(s).

Includefilter [issueType=any, severity=warning, resolution=none] matches 2 issue(s).

Exclude filter [issueType=ScriptCompilationError, severity=any, resolution=none] removes 0 previously matched issue(s).
Exclude filter [issueType=ThresholdViolation, severity=any, resolution=none] removes 0 previously matched issue(s).
Summary: Build failed as 2 issue(s) match the specified failset on virtual model '‘Modifiablevm'.

Sonargraph: Finished.

Chapter 5. Integrating with Ant

The provided SonargraphReportTask makes it easy to integrate SonargraphBuild into Apache Ant based builds and generate
HTML or XML reports containing info about metrics and issues of a software system. Additionally, using the optional "fail Set"
element, the Ant build can be marked asfailed if certain issues exist.

Prerequisites:

1. You need at least Ant 1.8.3 installed.

2. Set the environment variable ANT_HOME.

3. Include ANT_HOME/bin in your PATH environment variable.

The following shows the SonargraphReportTask definition:

<t askdef nane="sonar graphBuil d"
cl assnane="com hel | o2norrow. sonar gr aph. bui I d. cl i ent. ant. Sonar gr aphReport Task" >
<cl asspat h>
<fileset dir="${sonargraph.build.installation}/plugins">
<i ncl ude nane="org. eclipse.osgi _3.1*.jar" />
<i ncl ude nane="com hel | o2norrow. sonargraph. build.client*.jar"/>
</fileset>
<fileset dir="${sonargraph.build.installation}/client" includes="*.jar" />
</ cl asspat h>
</ t askdef >

An example Ant build.xml is provided in the directory <inst-dir>/example/ant. The parameters are the same as for the shell
integration described in Chapter 4, Executing from the Command-line

10

Chapter 6. Integration with Maven

The SonargraphBuild Maven plugin makes it easy to check the quality of your projects. The plugin is able to automatically
download and install SonargraphBuild if your build server has Internet connectivity. Y ou can make the build fail depending on
issues detected by SonargraphBuild.

There are two different goals available:

1. create-report: Creates areport for an existing system.

2. dynamic-report: Creates a system on-the-fly and creates areport for it. Thisis currently only available for Java systems.
3. help: Displays information about the other two goals and can be parameterized to show more details.

Prerequisites:

1. You need at least Maven 3.0.5 installed.

2. The plugin requires at least a Java 8 runtime.

3. The plugin cannot be used together with Tycho.

6.1. Maven Tips and Best Practices
TIP

Add the following repository to your Maven settings.xml, so you do not need to repeat it in your project's pom.xml:

<pluginRepository>
<id>hello2morrow.maven.repository</id>
<url>http://maven.hello2morrow.com/repository</url>
</pluginRepository>

TIP

The goals are not configured to be executed within any default Maven lifecycle phase. Typically you would run the
plugin with a command-line like the following to ensure that everything is compiled from scratch before the report is
created. The first command-line explicitly specifies a version, the second one uses the Maven prefix resolution (check
Maven Prefix Resolution for details):

nmvn cl ean conpil e com hel |l o2norrow. sonar gr aph- maven- pl ugi n: 9. 9. 2: create-report

nmvn cl ean conpil e sonargraph: create-report

All parametersof thetop-level goals(i.e. not thefail Set) can equally be set viathe command-line using system properties
of theform

- Dsonar gr aph. <par anet er - nane>=<val ue>

TIP

To enforce certain rules, specify a failSet that lets the build fail based on detected issues. See Section 6.4, “Maven
FailSet Configuration”

NOTE

The plugin cannot be used together with Tycho.

You need to use another option to execute Sonargraph. See Chapter 4, Executing from the Command-line,
Chapter 5, Integrating with Ant. If the class root paths of the Sonargraph workspace do not match the Maven target

11

https://maven.apache.org/guides/introduction/introduction-to-plugin-prefix-mapping.html

Integration with Maven

directories, check the section about "Workspace Profiles' in the user manual of the standalone application: http://
eclipse.hello2mor row.com/doc/standal one/content/workspace _profiles.html

NOTE

Theattribute "logL evel" affectsthe logging after the SonargraphBuild engine has been started. Setting it to "debug" and
below will generate additional debug information into the XML report.

WARNING

Setting the attribute "reportType" to "standard" only generates metric values for "system” and "module” levels. "full"
generates values for all element levels, but resultsin asignificant larger report!

The splitting of the HTML report into different files is controlled by the attribute "elementCountToSplitHtml Report".
The resulting detail pages contain tables of issues/ resolutions of a specific issue type. The maximum number of items
shown is limited by the parameter "maxElementCountForHtml DetailsPage”.

WARNING

Theattribute "qualityModel File" can be used to apply afixed set of scripts, architecturefilesand analyzer configurations
across several systems.

The reported issues are most likely very different from the results of analyzing the system with the Sonargraph
application. If you specify a"qualityModelFile", it is advisable to specify the "Parser" virtual model, since resolutions
e.g. for architecture violations probably will not match.

6.2. Parameters of Goal "create-report”

The following table lists all parameters that are available to create a report for an existing Sonargraph system. The class root
directories are replaced by the output directories known to Maven.

NOTE

If Maven generates additional output directories dynamically that must be part of the Sonargraph workspace, the
Sonargraph plugin must be executed within the same process as the plugins that generate the additional directories.
The build can be marked as failed based on afail Set. See Section 6.4, “Maven Fail Set Configuration”.

Attribute Mandatory |Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of |same
SonargraphBuild. Can be used in combination with
‘autoUpdate’. Asan example, if you specify '8.7' the
newest available version starting with '8.7' will be
used. If you specify '8.7.0.361' you are locked on
that specific version of SonargraphBuild. There are
two special values: "same" and "newest". If "same"
is defined the version of SonargraphBuild must

be the same as the version of the Maven plugin. If
"newest" is defined the plugin will alwaystry to use
the newest version of SonargraphBuild.

skip No Skip SonargraphBuild. fase

autoUpdate No If the plugin is configured to download fase
SonargraphBuild automatically, this parameter
decidesif it also should be updated automaticaly if
anew version becomes available.

useHttpProxyHost No Theid of aproxy entry in the Maven settings. If No default
defined the plugin will use this proxy for all HTTP
communication.

12

http://eclipse.hello2morrow.com/doc/standalone/content/workspace_profiles.html
http://eclipse.hello2morrow.com/doc/standalone/content/workspace_profiles.html

Integration with Maven

Attribute Mandatory |Description Default
repository No URL of Json file containing information about
available Sonargraph Build versions with their
download locations.
installationDirectory No Installation directory of SonargraphBuild. No default
If unspecified the plugin will automatically
download SonargraphBuild. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.
activationCode No Sonargraph license activation code. If this parameter | No default
is not specified, you must specify alicensefile
parameter (see below).
licenseServerPort No Port of license server to be used. This parameter is {8080
ignored if licenseServerHost is not set.
licenseServerHost No Host name or I P address of license server. If No default
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.
licenseFile No Sonargraph license file location. If this parameter is | No default
not specified, you must specify the activation code
parameter (see above).
languages No The languages that should be initialized, separated | Java
by ",". The fewer languages are specified the faster
the startup of SonargraphBuild. Possible values:
Java, CSharp, CPlusPlus.
logFile No Path of the log file to be used for SonargraphBuild. |${baseDir}/${target}/
sonargraph_build.log
logLevel No Level of logging detail. One of: off, error, warn, info
info, debug, trace, al
compilerDefinitionPath No The path to the active compiler definition fileto If empty, the default
be used for parsing a C/C++ system. If abuilt-in compiler definition
or automatically generated definition should be for the build server's
used, prefix the definition with "CPlusPlus.", e.g. operating system is
CPlusPlus.GnuCpp.cdef. used: GnuCpp.cdef
(Linux), CLang.cdef
NOTE: If the standalone Sonargraph application | (Mac), Visual Cpp* .cdef
is used on the same machine with the same user (Windows, generated
and this parameter is empty, the active definition definition for the
specified with the standal one application will be latest Visual Studio
used. installation)
systemDirectory No Directory of the Sonargraph System ${ baseDir}/
(xyz.sonargraph) H artifact.id} .sonargraph
overrideSonargraphWorkspace | No If true the output directories defined in the true
Sonargraph system will be overridden by the ones
provided by the client.
includeTestCode No If true the workspace will also contain the test fase
source and test classfile directories.
includeEmptyModules No If true the workspace will also contain empty fase
modules (without any source and classfile
directories).
virtualModel No The virtual model to be used when checking for No default

issues. This parameter overrides the default virtual

13

Integration with Maven

Attribute

Mandatory

Description

Default

model that is set when the system is opened. The
default virtual model is"Maodifiablevm®, if virtual
models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph
Architect license.

qualityModelFile

No

The path to the quality model file (xyz.sggm)

that should be applied for the report creation.
Built-in quality models are the language-
independent " Sonargraph: Default.sggm™ and
language-specific " Sonargraph: Java.sggm”,
"Sonargraph: CSharp.sggm" and

"Sonargraph: CPlusPlus.sggm”. NOTE: All scripts,
analyzer configurations and ar chitecturefiles
present in the system areignored!

No default

snapshotDirectory

No

Target directory for the created snapshot. Only

if either this parameter or snapshotFileNameis
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

${ basedir}/${ target}

snapshotFileName

No

The target file name (without extension). Only

if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

<system-
name>_<timestamp>

reportDirectory

No

Target directory for the created report

${ basedir} /${ target}/
sonargraph

reportFileName

No

The target file name (without extension)

<system-
name>_<timestamp>

reportType

No

"standard" only creates metric information of system
and module level. "full" creates metric information
of dl levels.

standard

reportFormat

No

"xml"”, "html" or "xml, html"

html

elementCountToSplit
Html Report

No

Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in abrowser. This parameter controlsthe
lower limit of itemsthat will cause separate files
being generated per issue type. Possible values are:
-1 (never split), O (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
Html DetailsPage

No

If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
abrowser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), O (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule

No

If set to 'true’, individual HTML reports are created
per module.

false

baselineReportPath

No

Path of the baseline XML report that the current
report is compared against

No default

deltaReportPath

No

Path of the output file that the deltainfois
written to. Thislog fileis only generated if a
baselineReportPath has been specified.

<reportDirectory>/
<reportFileName>
_deltalog

14

Integration with Maven

Attribute

Mandatory

Description

Default

prepareFor SonarQube

No

Creates an XML report and stores it at ${ basedir}/
${ target} /sonargraph/sonargraph-sonarqube-
report.xml, where the SonarQube Sonargraph plugin
expectsit.

false

pythoninterpreterPath

No

The path to avalid Python 3 interpreter to be used
for the build.

NOTE: If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the Python interpreter
specified with the standal one application will be
used.

PATH is searched

for avalid Python 3
interpreter. If none
can befound in this
parameter is not set the
build will fail.

Table 6.1. Configuration for goal " create-report”

Related topics:

» Section 6.1, “Maven Tips and Best Practices’
 Section 6.4, “Maven Fail Set Configuration”
* Section 6.5, “ Example POM”

6.3. Configuration for goal "dynamic-report"

Thefollowing tablelistsall parametersthat are avail ableto create areport for aJavaproject where no Sonargraph system has been
defined. A Sonargraph system is created on the fly based on the workspace information contained in the Maven project setup.

NOTE

If your Maven build generates source and class roots dynamically, the "dynamic-report" goal should be caled in the
same process as those pluginsthat generate the additional roots. The following Maven execution also makesthe dynamic
roots available to Sonargraph:

mvn conpi | e sonar graph: dynam c-report

Whereas using the following two separate Maven invocations, the dynamic roots will NOT be visible to Sonargraph:

mvn conpil e

nmvn sonar gr aph: dynam c-report

The build can be marked as failed based on afail Set. See Section 6.4, “Maven Fail Set Configuration”.

Attribute

Mandatory

Description

Default

sonargraphBuildVersion

No

Allows you to use a specific or restricted version of
SonargraphBuild. Can be used in combination with
‘autoUpdate’. As an example, if you specify '8.7' the
newest available version starting with 8.7 will be
used. If you specify '8.7.0.361' you are locked on
that specific version of SonargraphBuild. There are
two special values: "same" and "newest". If "same"
is defined the version of SonargraphBuild must

be the same as the version of the Maven plugin. If
"newest" is defined the plugin will alwaystry to use
the newest version of SonargraphBuild.

same

skip

No

Skip SonargraphBuild.

false

autoUpdate

No

If the plugin is configured to download
SonargraphBuild automatically, this parameter

false

15

Integration with Maven

Attribute

Mandatory

Description

Default

decidesif it also should be updated automaticaly if
anew version becomes available.

useHttpProxyHost

No

Theid of aproxy entry in the Maven settings. If
defined the plugin will use this proxy for all HTTP
communication.

No default

repository

No

URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

installationDirectory

No

Installation directory of SonargraphBuild.

If unspecified the plugin will automatically
download SonargraphBuild. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode

No

Sonargraph license activation code. If this parameter
is not specified, you must specify alicensefile
parameter (see below).

No default

licenseServerPort

No

Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost

No

Host name or | P address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile

No

Sonargraph licensefile location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages

No

The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of SonargraphBuild. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile

No

Path of the log file to be used for SonargraphBuild.

${ baseDir} /${ target}/
sonargraph_build.log

logLevel

No

Level of logging detail. One of: off, error, warn,
info, debug, trace, al

info

systemBaseDirectory

No

The directory where the Sonargraph System
(${ artifactld} .sonargraph) is created.

${ baseDir} /¥{ target}

systemld

No

A system id should stay constant over the lifetime
of a software system and should be also unique with
respect to other systems. If you anticipate that the
the group id or artifact id of the root pom might
change you should assign a value to this parameter.

${groupdid}
${ artifactld}

useGroupldinM oduleName

No

If true the module names will use group id and
artifact id as their name, separated by an underscore.
By default only the artifact id is used as the module
name.

false

includeTestCode

No

If true the workspace will also contain the test
source and test classfile directories.

false

includeEmptyModules

No

If true the workspace will also contain empty
modules (without any source and classfile
directories).

false

16

Integration with Maven

Attribute

Mandatory

Description

Default

virtualM odel

No

The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is"Modifiablevm", if virtual
models are licensed, "Parser” if not licensed.
Parameter can only be used with Sonar graph
Architect license.

No default

qualityModelFile

No

The path to the quality model file (xyz.sggm)

that should be applied for the report creation.
Built-in quality models are the language-
independent " Sonargraph: Default.sggm™ and
language-specific " Sonargraph: Java.sggm”,
"Sonargraph; CSharp.sggm" and

"Sonargraph: CPlusPlus.sggm". NOTE: All scripts,
analyzer configurations and ar chitecturefiles
present in the system areignored!

No default

snapshotDirectory

No

Target directory for the created snapshot. Only

if either this parameter or snapshotFileNameis
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

${ basedir}/${ target}

snapshotFileName

No

The target file name (without extension). Only

if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

<system-
name>_<timestamp>

reportDirectory

No

Target directory for the created report

${ basedir}/${ target}/
sonargraph

reportFileName

No

The target file name (without extension)

<system-
name>_<timestamp>

reportType

No

"standard" only creates metric information of system
and module level. "full" creates metric information
of al levels.

standard

reportFormat

No

"xml", "html" or "xml, html"

html

elementCountToSplit
HtmlReport

No

I ssue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), O (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
Html Detail sPage

No

If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the pagein
abrowser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), O (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule

No

If set to 'true’, individual HTML reports are created
per module.

false

baselineReportPath

No

Path of the baseline XML report that the current
report is compared against

No default

17

Integration with Maven

Attribute Mandatory |Description Default
deltaReportPath No Path of the output file that the deltainfois <reportDirectory>/
written to. Thislog fileis only generated if a <reportFileName>
baselineReportPath has been specified. _deltalog
prepareForSonarQube No Createsan XML report and storesit at ${ basedir}/ |false
${ target} /sonargraph/sonargraph-sonarqube-
report.xml, where the SonarQube Sonargraph plugin
expectsit.

Table 6.2. Configuration for goal " dynamic-report"
Related topics:

» Section 6.1, “Maven Tips and Best Practices’

 Section 6.4, “Maven Fail Set Configuration”

» Section 6.5, “Example POM”

6.4. Maven FailSet Configuration

The following elements allow to mark a build as failed. An example is shown in the next section Section 6.5, “Example POM”.

TIP

The issue type that must be specified for include/exclude definitions can be determined via the Properties View of
Sonargraph .

TIP

If you want the build to fail only for newly introduced issues, apply resolutions like "Ignore" or "Fix" to the already
know issues in Sonargraph and only filter for resolution value "none".

TIP

If you want the build to fail because of certain metric values (e.g. Lines of Code per Source Fil€), define athreshold for
that metric in Sonargraph to create issues if files grow too large.

TIP

The include/exclude definitions are applied in the following sequence, regardless of their definition order:
1. First al include definitions are matched against the set of existing issues.

2. Then the exclude definitions are applied and the set of previously matched issuesis reduced accordingly.

Element Parameter Mandatory Description Default

fail Set failOnEmptyWorkspace No Marks the build as failed if modules true
and root directories are detected but no
components are found. Possible values
are"true" or "false".

include/exclude issueType Yes Name of the issue type or "any" for No default
wildcard matching.

include/exclude severity No Severity of the issue. Possible values any
are: error, warning, info, none, any

18

Integration with Maven

Element Parameter Mandatory Description Default

include/exclude resolution No Theissue's resolution type. Possible none
values are: task, ignore, any, none

Table 6.3. Configuration Parametersfor Build Failure

6.5. Example POM

The following example shows how to integrate the Sonargraph Maven plugin into your project specific pom file. For multi-
module projects it is sufficient to only add the plugin to the pom of the root project. It runs as an aggregator after all modules
have been compiled. The example project in the installation contains a complete pom.xml. Typically you would run the plugin
with acommand-line like the following to ensure that everything is compiled from scratch before the report is created. The first
command-line explicitly specifies aversion, the second one uses the Maven prefix resolution (check Maven Prefix Resolution
for details):

mvn cl ean conpil e com hel | o2norrow. sonar gr aph- maven- pl ugi n: 9. 9. 2: create-report

mvn cl ean conpil e sonargraph: create-report

The following shows the relevant section of a pom.xml file that demonstrates the configuration of the Sonargraph functionality:

19

https://maven.apache.org/guides/introduction/introduction-to-plugin-prefix-mapping.html

Integration with Maven

<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>hel | o2ror r ow. maven. r eposi tory</i d>
<url>http:// maven. hel | o2norr ow. com reposi tory</url >
</ pl ugi nReposi tory>
</ pl ugi nReposi tori es>

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>com hel | o2nor r ow</ gr oupl d>
<artifactl d>sonargraph-maven- pl ugi n</artifactl!d>
<versi on>9. 9. 2</ versi on>
<confi guration>
<systenDi rect ory>${ basedi r}/ crm donai n- exanpl e. sonar gr aph</ syst enDi r ect ory>
<activationCode>...</activationCode>
<aut oUpdat e>t r ue</ aut oUpdat e>
<fail Set>
<f ai | OnEnpt yWor kspace>t rue</ f ai | OnEnpt yWor kspace>
<i ncl udes>
<i ncl ude>
<i ssueType>Archi tectureVi ol ati on</i ssueType>
</incl ude>
<i ncl ude>
<i ssueType>any</i ssueType>
<severity>error</severity>
</incl ude>
</incl udes>
<excl udes>
<excl ude>
<i ssueType>Scri pt Conpi | ati onError</issueType>
<resol uti on>none</resol ution>
</ excl ude>
</ excl udes>
</fail Set>
</ configuration>
<executions>
<execution>
<goal s>
<goal >cr eat e-report </ goal >
<goal >dynami c-report </ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

In this example the build will fail if the project contains a package cycle or an architecture violation without a resolution.
Since the parameter 'installationDirectory' is not defined, the Maven plugin will automatically download the newest rel ease of
SonargraphBuild and alsowill keep it updated automatically. Of coursethisrequiresthat thebuild server hasaccesstothe Internet.

20

Chapter 7. Integration with Gradle

The SonargraphBuild Gradle plugin makes it easy to check the quality of your projects. The plugin is able to automatically
download and install SonargraphBuild if your build server has Internet connectivity. Y ou can make the build fail depending on
issues detected by SonargraphBuild.

Therearetwo different Gradle "tasks" availablefor which parameters can be defined in Gradle "extensions" with the same names:
1. sonargraphReport: Creates areport for an existing system.

2. sonar graphDynamicReport: Creates a system on-the-fly and creates areport for it. Thisis currently only available for Java
systems.

Prerequisites:
1. You need at least Gradle 2.9 installed.

2. The plugin requires at least a Java 8 runtime.

7.1. Gradle Tips and Best Practices
TIP

To enforce certain rules, specify a failSet that lets the build fail based on detected issues. See Section 7.4, “Gradle
FailSet Configuration”

NOTE

The attribute "logLevel" affectsthelogging after the SonargraphBuild engine has been started. Setting it to "debug" and
below will generate additional debug information into the XML report.

WARNING

Setting the attribute "reportType" to "standard" only generates metric values for "system” and "module” levels. "full"
generates values for all element levels, but resultsin asignificant larger report!

The splitting of the HTML report into different files is controlled by the attribute "elementCountToSplitHtml Report".
The resulting detail pages contain tables of issues/ resolutions of a specific issue type. The maximum number of items
shown is limited by the parameter "maxElementCountForHtmlDetail sPage".

WARNING

Theattribute "qualityModel Fil€" can be used to apply afixed set of scripts, architecture filesand analyzer configurations
across several systems.

The reported issues are most likely very different from the results of analyzing the system with the Sonargraph
application. If you specify a"qualityModelFile", it is advisable to specify the "Parser" virtual model, since resolutions
e.g. for architecture violations probably will not match.

7.2. Parameters of Task "sonargraphReport"

The following table lists all parameters that are available to create areport for an existing Sonargraph system. The build can be
marked as failed based on afail Set. See Section 7.4, “Gradle Fail Set Configuration”.

Attribute Mandatory |Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of |same
SonargraphBuild. Can be used in combination with
‘autoUpdate’. As an example, if you specify '8.7' the
newest available version starting with '8.7' will be

21

Integration with Gradle

Attribute

Mandatory

Description

Default

used. If you specify '8.7.0.361' you are locked on
that specific version of SonargraphBuild. There are
two special values: "same" and "newest". If "same"
is defined the version of SonargraphBuild must

be the same as the version of the Maven plugin. If
"newest" is defined the plugin will alwaystry to use
the newest version of SonargraphBuild.

skip

No

Skip SonargraphBuild.

false

autoUpdate

No

If the plugin is configured to download
SonargraphBuild automatically, this parameter
decidesif it also should be updated automatically if
anew version becomes available.

false

useHttpProxyHost

No

If true, the proxy configuration of the Gradle
settings is used. The plugin will use this proxy for
all HTTP communication. Check the Gradle online
documentation for details.

false

repository

No

URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

installationDirectory

No

Installation directory of SonargraphBuild.

If unspecified the plugin will automatically
download SonargraphBuild. The version to be
downloaded can be controlled by the parameter
‘sonargraphBuildVersion'.

No default

activationCode

No

Sonargraph license activation code. If this parameter
is not specified, you must specify alicensefile
parameter (see below).

No default

licenseServerPort

No

Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost

No

Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile

No

Sonargraph licensefile location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages

No

The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of SonargraphBuild. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile

No

Path of the log file to be used for SonargraphBuild.

${ project.buildDir}/
sonargraph_build.log

logLevel

No

Leve of logging detail. One of: off, error, warn,
info, debug, trace, al

info

compilerDefinitionPath

No

The path to the active compiler definition file to
be used for parsing a C/C++ system. If abuilt-in
or automatically generated definition should be
used, prefix the definition with "CPlusPlus:”, e.g.
CPlusPlus:GhuCpp.cdef.

NOTE: If the standalone Sonargraph application
is used on the same machine with the same user

If empty, the default
compiler definition

for the build server's
operating systemis
used: GhuCpp.cdef
(Linux), CLang.cdef
(Mac), Visua Cpp*.cdef

22

https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy

Integration with Gradle

Attribute Mandatory |Description Default
and this parameter is empty, the active definition (Windows, generated
specified with the standal one application will be definition for the
used. latest Visual Studio
installation)
systemDirectory No Directory of the Sonargraph System ${ project.buildDir}/
(xyz.sonargraph) ${ project.group}
.sonargraph
overrideSonargraphWorkspace | No If true the output directories defined in the true
Sonargraph system will be overridden by the ones
provided by the client.
includeTestCode No If true the workspace will also contain the test fase
source and test classfile directories.
includeEmptyModules No If true the workspace will also contain empty fase
modules (without any source and classfile
directories).
productionSourceSets No Comma separated list of source set names that main
contain production code. This parameter is only
needed when you are not using the gradle default
"main".
testSourceSets No Comma separated list of source set names that test
contain test code. This parameter is only needed
when you are not using the gradle default "test".
virtualModel No The virtual model to be used when checking for No default
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is"Modifiablevm", if virtual
models are licensed, "Parser” if not licensed.
Parameter can only be used with Sonar graph
Architect license.
qualityModelFile No The path to the quality model file (xyz.sggm) No default
that should be applied for the report creation.
Built-in quality models are the language-
independent " Sonargraph: Default.sggm™ and
language-specific " Sonargraph: Java.sggm”,
"Sonargraph: CSharp.sggm" and
"Sonargraph: CPlusPlus.sggm". NOTE: All scripts,
analyzer configurations and ar chitecturefiles
present in the system areignored!
snapshotDirectory No Target directory for the created snapshot. Only ¥ project.buildDir}
if either this parameter or snapshotFileNameis
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.
snapshotFileName No The target file name (without extension). Only <system-
if either this parameter or snapshotDirectory is name>_<timestamp>
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.
reportDirectory No Target directory for the created report ${ project.buildDir}/
sonargraph
reportFileName No The target file name (without extension) <system-

name>_<timestamp>

23

Integration with Gradle

Attribute

Mandatory

Description

Default

reportType

No

"standard" only creates metric information of system
and module level. "full" creates metric information
of dl levels.

standard

reportFormat

No

"xml", "html" or "xml, html"

html

elementCountToSplit
HtmlReport

No

Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in abrowser. This parameter controlsthe
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), O (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
Html Detail sPage

No

If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
abrowser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), O (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule

No

If set to 'true, individual HTML reports are created
per module.

false

baselineReportPath

No

Path of the baseline XML report that the current
report is compared against

No default

deltaReportPath

No

Path of the output file that the deltainfois
written to. Thislog fileis only generated if a
baselineReportPath has been specified.

<reportDirectory>/
<reportFileName>
_deltalog

prepareForSonarQube

No

Creates an XML report and stores it at ${ basedir}/
${ target} /sonargraph/sonargraph-sonarqube-
report.xml, where the SonarQube Sonargraph plugin
expectsit.

false

pythoninterpreterPath

No

The path to avalid Python 3 interpreter to be used
for the build.

NOTE: If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the Python interpreter
specified with the standal one application will be
used.

PATH is searched

for avalid Python 3
interpreter. If none
can be found in this
parameter is not set the
build will falil.

Table 7.1. Configuration for Task/Extension " sonar graphReport"

Related topics:

» Section 7.1, “Gradle Tips and Best Practices”

» Section 7.4, “Gradle Fail Set Configuration”

» Section 7.5, “Example Gradle Build File”

7.3. Configuration for Task
"sonargraphDynamicReport"

24

Integration with Gradle

The following table lists all parameters that are available to create a report for a Java project where no Sonargraph system has
been defined. A Sonargraph system is created on the fly based on the workspace information contained in the Gradle project

setup. The build can be marked as failed based on afail Set. See Section 7.4, “ Gradle Fail Set Configuration”.

Attribute

Mandatory

Description

Default

sonargraphBuildVersion

No

Allows you to use a specific or restricted version of
SonargraphBuild. Can be used in combination with
‘autoUpdate’. As an example, if you specify '8.7' the
newest available version starting with '8.7 will be
used. If you specify '8.7.0.361' you are locked on
that specific version of SonargraphBuild. There are
two special values: "same" and "newest". If "same"
is defined the version of SonargraphBuild must

be the same as the version of the Maven plugin. If
"newest" is defined the plugin will alwaystry to use
the newest version of SonargraphBuild.

same

skip

No

Skip SonargraphBuild.

false

autoUpdate

No

If the plugin is configured to download
SonargraphBuild automatically, this parameter
decidesif it also should be updated automatically if
anew version becomes available.

false

useHttpProxyHost

No

If true, the proxy configuration of the Gradle
settings is used. The plugin will use this proxy for
all HTTP communication. Check the Gradle online
documentation for details.

false

repository

No

URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

install ationDirectory

No

Installation directory of SonargraphBuild.

If unspecified the plugin will automatically
download SonargraphBuild. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode

No

Sonargraph license activation code. If this parameter
is not specified, you must specify alicensefile
parameter (see below).

No default

licenseServerPort

No

Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost

No

Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile

No

Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages

No

The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of SonargraphBuild. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile

No

Path of the log file to be used for SonargraphBuild.

${ project.buildDir}/
sonargraph_build.log

logLevel

No

Level of logging detail. One of: off, error, warn,
info, debug, trace, al

info

25

https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy

Integration with Gradle

Attribute

Mandatory

Description

Default

systemBaseDirectory

No

The directory where the Sonargraph System
(${ artifactld} .sonargraph) is created.

${ project.buildDir}

systemld

No

A system id should stay constant over the lifetime
of a software system and should be also unique with
respect to other systems. If you anticipate that the
the group id or artifact id of the root pom might
change you should assign avalue to this parameter.

${ project.group} _
${ project.name}

useGroupldinM oduleName

No

If true the module names will use group id and
artifact id as their name, separated by an underscore.
By default only the artifact id is used as the module
name.

false

includeTestCode

No

If true the workspace will also contain the test
source and test classfile directories.

false

includeEmptyModules

No

If true the workspace will aso contain empty
modules (without any source and classfile
directories).

false

producti onSourceSets

No

Comma separated list of source set names that
contain production code. This parameter is only
needed when you are not using the gradle default
"main".

main

testSourceSets

No

Comma separated list of source set names that
contain test code. This parameter is only needed
when you are not using the gradle default "test".

test

virtualM odel

No

The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is"Modifiablevm®, if virtua
models are licensed, "Parser” if not licensed.
Parameter can only be used with Sonar graph
Architect license.

No default

qualityModelFile

No

The path to the quality model file (xyz.sggm)

that should be applied for the report creation.
Built-in quality models are the language-
independent " Sonargraph: Default.sggm™ and
language-specific " Sonargraph:Java.sggm”,

" Sonargraph:CSharp.sggm"* and
"Sonargraph:CPlusPlus.sggm”. NOTE: All scripts,
analyzer configurations and ar chitecturefiles
present in the system areignored!

No default

snapshotDirectory

No

Target directory for the created snapshot. Only

if either this parameter or snapshotFileNameis
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

${ project.buildDir}

snapshotFileName

No

The target file name (without extension). Only

if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

<system-
name>_<timestamp>

reportDirectory

No

Target directory for the created report

${ project.buildDir}/
sonargraph

reportFileName

No

The target file name (without extension)

<system-
name>_<timestamp>

26

Integration with Gradle

Attribute

Mandatory

Description

Default

reportType

No

"standard" only creates metric information of system
and module level. "full" creates metric information
of dl levels.

standard

reportFormat

No

"xml", "html" or "xml, html"

html

elementCountToSplit
HtmlReport

No

Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in abrowser. This parameter controlsthe
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), O (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
Html Detail sPage

No

If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
abrowser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), O (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule

No

If set to 'true, individual HTML reports are created
per module.

false

baselineReportPath

No

Path of the baseline XML report that the current
report is compared against

No default

deltaReportPath

No

Path of the output file that the deltainfois
written to. Thislog fileis only generated if a
baselineReportPath has been specified.

<reportDirectory>/
<reportFileName>
_deltalog

prepareForSonarQube

No

Creates an XML report and stores it at ${ basedir}/
${ target} /sonargraph/sonargraph-sonarqube-
report.xml, where the SonarQube Sonargraph plugin
expectsit.

false

Table 7.2. Configuration for Task/Extension " sonar graphDynamicReport"

Related topics:

» Section 7.1, “Gradle Tips and Best Practices”

» Section 7.4, “Gradle Fail Set Configuration”

» Section 7.5, “Example Gradle Build File”

7.4. Gradle FailSet Configuration

The following elements allow to mark a build as failed. An example is shown in the next section Section 7.5, “Example Gradle

Build File".

TIP

The issue type that must be specified for include/exclude definitions can be determined via the Properties View of

Sonargraph .
TIP

If you want the build to fail only for newly introduced issues, apply resolutions like "Ignore" or "Fix" to the already
know issues in Sonargraph and only filter for resolution value "none".

27

Integration with Gradle

TIP

If you want the build to fail because of certain metric values (e.g. Lines of Code per Source File), define athreshold for
that metric in Sonargraph to create issues if files grow too large.

TIP

The include/exclude definitions are applied in the following sequence, regardless of their definition order:
1. First al include definitions are matched against the set of existing issues.

2. Then the exclude definitions are applied and the set of previously matched issues is reduced accordingly.

Element Parameter Mandatory Description Default

fail Set failOnEmptyWorkspace No Marks the build as failed if modules true
and root directories are detected but no
components are found. Possible values
are"true" or "false".

include/exclude issueType Yes Name of the issue type or "any" for No default
wildcard matching.

include/exclude severity No Severity of theissue. Possible values any
are: error, warning, info, none, any

include/exclude resolution No Theissue's resolution type. Possible none
values are: task, ignore, any, none

Table 7.3. Configuration Parametersfor Build Failure

7.5. Example Gradle Build File

The following example shows how to integrate the SonargraphBuild Gradle plugin into your project. For multi-project builds it
issufficient to only add the plugin to the root project. It runs as an aggregator after all modules have been compiled. The example
project in the installation contains a complete build.gradlefile. Typically you would run the plugin with acommand-line like the
following to ensure that everything is compiled from scratch before the report is created:

gradl ew cl ean build sonargraphReport

Thefollowing showsthe relevant section of abuild.gradlefilethat demonstratesthe configuration of the Sonargraph functionality:

28

Integration with Gradle

apply plugin: 'com hel |l o2norrow. sonar gr aph'
task wrapper(type: Wapper)

gradl eVersion = '2. 11"

}
bui I dscri pt
{
repositories
{
mavenLocal ()
mavenCentral ()
maven
{
url "http://maven. hel | o2norr ow. com reposi tory'
}
maven
{
url " http://maven. hel | o2norr ow. com snapshot s’
}
}
dependenci es
{
cl asspat h(' com hel | o2nor r ow: sonar gr aph- gradl e-pl ugin: 9. 9. 2")
}
}
sonar gr aphReport
{
/1 This is a activation code for Sonargraph-Explorer Build which you can use for testing.
/1 Replace with your own if you have one.
activati onCode = "36E2- OF3E- 643F- B4F2"
fail Set
{
fai |l OnEnpt yWor kspace = true
i nclude(i ssueType: "any", severity: "error", resolution: "none")
include(issueType: "ArchitectureViolation")
i nclude(i ssueType: "any", severity: "warning")
excl ude(i ssueType: "ScriptConpilationError", resolution: "none")
excl ude(i ssueType: "Threshol dVi ol ati on")
}
}
sonar gr aphDynam cReport
{
activati onCode = "36E2- OF3E- 643F- B4F2"
qual i tyModel Fi |l e = "Sonar graph: Java. sggnt' //default Java quality nodel
fail Set
{
fai | OnEnpt yWor kspace = true
include(issueType: "any", severity: "error", resolution: "none")
i ncl ude(i ssueType: "ArchitectureViol ation")
i nclude(issueType: "any", severity: "warning")
excl ude(i ssueType: "ScriptConpilationError", resolution: "none")
excl ude(i ssueType: "Threshol dVi ol ati on")
}
}

In this example the build will fail if the project contains a package cycle or an architecture violation without a resolution.
Since the parameter ‘'installationDirectory' is not defined, the Gradle plugin will automatically download the newest release of
SonargraphBuild and alsowill keep it updated automatically. Of coursethisrequiresthat thebuild server hasaccesstothelnternet.

NOTE

The boolean parameters must be set without any quotes.

29

Integration with Gradle

NOTE

Variable substitution in parameters does not work with single quotes, use double quotes instead.

30

Chapter 8. Reporting Changes

Reports for large systems provide an overwhelming amount of information. Most of the times a report containing the changes
compared to a baseline is enough - similar to a newspaper versus a whole encyclopedia. This delta feature is currently
implemented in our Open Source project "Sonargraph Integration Access' that is hosted on GitHub at https://github.com/
sonargraph/sonargraph-integration-access.

This functionality is available in SonargraphBuild version 9.4.2 and newer.

The deltareport can be generated by specifying a previously generated XML report file as abaseline. The deltareport isaplain
text file. An example report is shown below (lines have been truncated) that shows differences in issues:

Delta of System Reports:
Report1l (baseline): D:\00_repos\sonargraph-integration-access\src\test\diff\Al arnmC ockMai n_01. xm
Report 2 : D:\00_repos\sonargraph-integration-access\src\test\diff\Al armd ockMai n_02. xm

System I nf o:
Nane: Al armC ockMai n
I D 6db0a52df a66892be8a4bc2bb7cf 1720
Pat h: D:\ 00 _repos\sonar-sonargraph-integration\src\test\Al arnCl ockMai n\ Al ar nCl ockMai n. sonar gr aph

Delta of Systens
System 1 (Baseline): Al arnC ockMain from Nov 30, 2016 5:01:13 PM
System 2 : AlarnCl ockMain from Dec 30, 2016 5:01:13 PM

- |ssue delta:
Reroved (13):
Enpt yAr chi t ect ur eEl enent, generated by Core: Artifact 'Foundation', line 1, resolved 'false'
Potentially dead nethod, generated by ./Java/BadSnel | s/ Fi ndDeadCode. scr: Method has ...
Potentially dead type, generated by ./Java/BadSnel | s/ Fi ndDeadCode. scr: Type has no ...
Duplicate Code Block with 2 occurrences, block size '52', resolved 'fal se'
Cccurrence in ./com h2ni al ar m nodel / Al ar nCl ock. java, start '52', block size '52',
Cccurrence in ./com h2nf al arm presentation/ Main.java, start '34', block size '52",
JavaFi | ed assFi | eM ssi ng, generated by JavalLanguageProvider: Mssing class file for
I mproved (1):
Previ ous: Threshol dViol ati on, generated by ./Javal/BadSnel | s/ Fi ndDeadCode. scr: Potentially ...
Worsened (1):
Previ ous: Threshol dViol ati on, generated by Core: Total Lines = 106 (allowed range: 0 to ...
Added (6):
Supertype uses subtype, generated by ./ Core/ Super TypeUsesSubType. scr: Reference to ...
ArchitectureViol ation, generated by ./Layers.arc: [Local Variable] 'Mdel' cannot access ...

If present, the report also shows differences in the core system configuration (i.e. licensed features, active analyzers, metric
provider, metric ids, etc.), workspace configuration and resolutions.

Current Limitations

The following changes only indirectly affect the Sonargraph issues, but will be treated as changes by the delta detector. The
issues in the baseline report will be reported as removed and the issues from the new report as added, despite the fact that the
issues are logically the same:

1. Cycle groupsissues and duplicate code block issues consist of several partsthat contribute to their unique IDs. If one of these
parts changes (for example a source file has been renamed) then the issue's ID is changed.

2. If ascript or an architecture file is renamed, the origin of the issues generated by those resources is changed.

3. For some issues the originating line within a source file is stored and used for comparison. Changing unrelated lines in the
source file before the issue's origin therefore will cause the issue to be treated as changed.

NOTE

As with every modification: Frequent and small changes are easier to review than big-bang refactorings.

31

https://github.com/sonargraph/sonargraph-integration-access
https://github.com/sonargraph/sonargraph-integration-access

Reporting Changes

Ideas for feature improvements are to include the baseline report as filter in Sonargraph Architect/Explorer to let the user focus
on changed issues.

32

Chapter 9. Integration with SonarQube

For Java projectsthe findings of Sonargraph can be stored and visualized in SonarQube using the Sonargraph Integration plugin.
The plugin is compatible with SonarQube versions 6.7.3 and higher.

The plugin is available here:

1. The SonarQube Marketplace accessible from within the SonarQube server's web interface.

2. GitHub https://github.com/sonargraph/sonar-sonargraph-integration/rel eases.

3. hello2morrow's web site https://mwww.hello2mor row.com/products/downl oads.

9.1. Overall Process of Integration

We assume you have aready a SonarQube server running and see the project of interest in the server's web interface. To add
Sonargraph's analysis results you need to:

1. Install the Sonargraph Integration plugin in your SonarQube server.

2. Use the built-in Sonargraph quality profile or add individual Sonargraph Integration rules to the profile you want to use.
Assign your project to this profile.

3. Defineand analyzethe project with Sonargraph, either using the Explorer or Architect version. Y ou need the system definition.
Alternatively the system definition could be obtained dynamically with our support for dynamic system creation.

4. Create an XML report with Sonargraph Build of that project using either Maven, Gradle, Ant or the Shell support prior to
the SonarQube analysis with one of the scanners. Make sure the that the XML report is in the right spot so the Sonargraph
Integration plugin can find it .

9.2. SonarQube Configuration

Localizing the Sonargraph XML Report
The default location of the xml report file is 'target/sonargraph/sonargraph-sonarqube-report.xml' relative to every module.
In amulti-module system the xml report file must be stored in every module and the top-level project.

Sonargraph calculates metrics and provides issues on module and system level. The system level is equivalent to SonarQube's
Project in amulti module system. In a single-modul e system the module/project will contain both classes of information.

NOTE

Using Maven or Gradle with the prepareForSonarQube flag will copy the produced xml report automatically into all
modules.

NOTE

If you want to avoid having a copy of the xml report filein all modules you can alternatively use one absolute location.

Sonargraph Script Metrics and Issues
I ssues created from an automated script are activated (or deactivated) with the single rule 'Sonargraph Integration: Script Issue'.

Metrics created from an automated script are now stored in a properties file and are automatically considered after a restart of
the SonarQube server. The propertiesfile is stored at *.sonargraphintegration/metrics.properties.

33

http://www.sonarqube.org/
https://github.com/sonargraph/sonar-sonargraph-integration
https://www.hello2morrow.com/products/downloads

Integration with SonarQube

NOTE

When introducing script metrics for the first time awarning message is created in the console of the SonarQube server
when arestart is required because of a modified metrics.propertiesfile.

Related topics:

 See the section about "Workspace Profiles' in the user manual of the standalone application, if the root directories on your
build server do not match the workspace definition.

» Chapter 6, Integration with Maven
e Chapter 7, Integration with Gradle

» Chapter 5, Integrating with Ant

9.3. SonarQube Maven Configuration

If you use the SonarQube Maven plugin, you must set the following parameter in the configuration of the SonargraphBuild
Maven plugin in your project's pom.xmil:

<confi guration>
<pr epar eFor Sonar Qube>t r ue</ pr epar eFor Sonar Qube>

</ confi guration>

The SonargraphBuild Maven plugin will automatically create an XML report (if not already configured) and will copy the report
to ${ target} /sonargraph/sonargraph-sonarqube-report.xml for the root project and all modules (excluding those with packaging
"pom™).

The example project contains an example pom.xml and also a batch file that demonstrates how the check can be called from
the command-line.

Related topics:
» Chapter 6, Integration with Maven

* Section 6.5, “Example POM”

NOTE

An example command-line using only one xml report location (added line-breaks for readability):

mvn cl ean package
sonar gr aph: creat e-report -Dsonar graph. report For mat =xm
- Dsonar graph. reportDirectory=D:/tenp/report -Dsonargraph.reportFil eName=My/Report
sonar: sonar -Dsonar.sonargraph.integration:report. path=D:/tenp/report/WReport.xmn

9.4. SonarQube Gradle Configuration

If you use the SonarQube Gradle plugin, you must set the following parameter in the configuration of the SonargraphBuild tasks
in your project's build.gradle:

sonar gr aphRepor t

{
activationCode = "36E2- OF3E- 643F- B4F2"

pr epar eFor Sonar Qube = "true"
}

The SonargraphBuild Gradle plugin will automatically create an XML report (if not already configured) and will copy the report
to ${ target} /sonargraph/sonargraph-sonarqube-report.xml for the root project and all modules.

Integration with SonarQube

Related topics:
» Chapter 7, Integration with Gradle

» Section 6.5, “Example POM”

9.5. SonarQube Ant Runner Configuration

If you use the SonarQube Ant Runner the Sonargraph XML report must have been created and this report must be configured
for the Sonargraph SonarQube plugin using the following parameter:

<property nane="sonar.sonargraph.integration:report.path" value="${path.target.report}"” />
Related topics:

» Chapter 5, Integrating with Ant

35

Chapter 10. Integration with SonarQube
using Sonargraph Integration plugin 2.1.4
or lower

For Java projects the findings of Sonargraph can be stored and visualized in SonarQube using the SonarQube Sonargraph
Integration Plugin. The pluginisavailableviathe SonarQube update center and on the plugin's GitHub page at https://github.conv
sonargraph/sonar-sonar graph-integration/releases. The plugin is compatible with SonarQube versions 5.3 and higher.

NOTE

The plugin reads the information of the XML report that has been generated using SonargraphBuild. Y ou need to
configure your build pipeline accordingly.

NOTE

The number of reported Sonargraph issues might be different in SonarQube for thefollowing reasons: Asfar asweknow,
SonarQube requires a physical resource to attach an issue. There is no equivalent SonarQube resource for "logical"
Sonargraph elements like "logical namespaces', so there are no SonarQube issues created for package cycles, for
example. If you want to track package cycles, configure relevant metrics like "Number of cyclic packages', "Biggest
Package Cycle Group", etc. to be shown in a dashboard widget or make them part of your Quality Gate.

Ontheother hand anindividual SonarQubeissueisattached to the sourcefile of each duplicate code block occurrence of
a Sonargraph duplicate code issue. The same appliesto all sourcefilesinvolved in Sonargraph component cycle groups.

Our recommendation: Use SonarQube only as a reporting dashboard and use Sonargraph Architect/Explorer for
detailed analysis. The usability and interactions for Sonargraph issues is much better in the rich-client application!

NOTE

The plugin is currently only available for Java systems.

10.1. SonarQube Configuration

Thefollowing list describes the necessary stepsto get Sonargraph issues and metricsintegrated in SonarQube. Additional details
are given below.

1.

Download the latest SonarQube LTS version. SonarQube's APl changes fast, so we don't guarantee that everything works
flawless with the latest and greatest SonarQube version. If you spot a problem, please let us know!

. Download the latest Sonargraph plugin and copy it into <sonarqube-inst>/extensions/plugins (or use the Update Center, once

it isavailable there).

. Start the SonarQube server.

. Change the current quality profile or create a new one that include at least one of the "Sonargraph Integration” rules. Assign

your project to this profile. Details about SonarQube Quality Profiles can be found here: https://docs.sonarqube.org/display/
SONAR/Quiality+ Profiles

If no Sonargraph rulesare activated, the plugin will skip thisproject. Y ou can either search for rulesusing theterm " Sonargraph
Integration”, or the tag "sonargraph-integration™.

. Change the dashboard configuration to include the " Sonargraph Integration” widgets (for details, see below). NOTE: Project

dashboards have been dropped since SonarQube version 6.1.

. For the full functionality of Sonargraph, you need an "Architect" license. If you don't have one, just register on our

hello2morrow web site and request atrial license. Alternatively, use afree Sonargraph Explorer license with reduced feature
set (no architecture checks, no scripts execution, etc.)

36

http://www.sonarqube.org/
https://github.com/sonargraph/sonar-sonargraph-integration
https://github.com/sonargraph/sonar-sonargraph-integration
https://docs.sonarqube.org/display/SONAR/Quality+Profiles
https://docs.sonarqube.org/display/SONAR/Quality+Profiles

Integration with SonarQube
using Sonargraph Integration
plugin 2.1.4 or lower

. Configure your build to run SonargraphBuild prior to the SonarQube scanner. Check the previous chapters for details and
don't forget to configure the "prepareForSonarQube" flag!

The Sonargraph SonarQube Plugin repository at https://github.com/sonargraph/sonar-sonargraph-integration contains an
example multi-module Maven project in src/test/AlarmClockMain. There are various build files and batch files avail able that
demonstrate how the analysis can be executed.

. Execute the build and check in the console log that the Sonargraph Integration plugin has been executed. In SonarQube
the Sonargraph Integration widgets should now display metrics determined by Sonargraph and if your projects contains
architecture violations or cyclic dependencies, these should be visible as issues.

Configure your dashboard widgets to show relevant Sonargraph metrics. The Quality Gate can be adjusted to contain those
metrics as well.

. If you have difficulties setting up the integration, check the console log first for any errors reported by the SonargraphBuild

execution or the Sonargraph SonarQube Plugin.

If your system isreally big and contains alot of modules, check the info below about how to "Handling Large Systems'.

Configuration of Dashboard Widgets

The following screenshot shows the available Sonargraph widgets that can be included in your SonarQube dashboard.

NOTE

The Sonargraph widgets are no longer available for SonarQube versions 6.1 and newer, since SonarQube project
dashboards have been dropped.

Technical Debt Coverage

Custom

Duplications

Structure Dashboards =

Components

Issues Administration =

Time changes...

Category: Any Filters History Hotspots Issues Sonargraph Sonargraph Integration Technical Debt Tests

Sonargraph Integration Architecture
Reports metrics on the architectural quality

of the project.
Add widget

b Sonargraph Integration Architecture
Architecture

2 violating component dependencies

1 violating components

2 violating parser dependencies

0 ignored violations

3 artifacts

6 unassigned components (60.0%)

< Sonargraph Integration Structure
Relative Package Cyclicity

471 %

2 biggest package cycle group size

4 cyclic packages (66.7%)
3 type dependencies to cut (approx.)
4 references to remove (approx.)

Sonargraph Integration Structural Debt
Reports metrics on the structural debt of

the project.
Add widget

Delete

A

Unresolved Issues

24 total issues (warnings and errors)
2 package cycle groups

3 duplicate code blocks

2 threshold violations

2 workspace warnings

0 ignored critical issues

Delete

Highest Module ACD (John Lakos) A

2.4

1.0 Highest Module NCCD (John
Lakos)

23.0 rACD (John Lakos)

576 byte code instr.

156 source element count

the project.
Add widget

< Sonargraph Integration Structural Debt

Structural Debt Index

34

Current virtual model: Modifiable.vm
2 resolutions

2 tasks

1 refactorings

(with 8 parser dependencies)

 Metric Hotspot

Hotspots by Lines of code

AlarmClock.java
Main.java
Observable.java
AlarmHandler.java

AlarmToFile.java

Sonargraph Integration Structure
Reports metrics on the structural quality of

v Back to dashboard

Search:

Delete
Estimated Cost of Structural Debt A

238.0 Euro

0 non-applicable resolutions
0 non-applicable tasks
0 non-applicable refactorings

Edit Delete

Mare
g2
a7
40
26
24

Figure 10.1. Sonar Qube Dashboard Configuration

37

https://github.com/sonargraph/sonar-sonargraph-integration

Integration with SonarQube
using Sonargraph Integration
plugin 2.1.4 or lower

Include Custom Sonargraph Metrics and Issues

Core metrics and rules of Sonargraph are pre-defined in the plugin. If you want to track custom metrics that are generated via

scripts, you first need to export the report meta-data via the standal one application's menu "File" — "Export Meta-Data...". The
directory of this meta-data file needs to be specified in the plugin's configuration page. The additional metrics will be available
after arestart of the SonarQube server and an additional execution of the SonarQube checks.

NOTE

This configuration is affecting all projects that use the Sonargraph plugin. If you have several projects with different
metrics, store the separate meta-data files in the same directory. The plugin will merge the info of the different
configuration files.

Related topics:

* See the section about "Workspace Profiles' in the user manual of the standalone application, if the root directories on your
build server do not match the workspace definition.

» Chapter 6, Integration with Maven
» Chapter 7, Integration with Gradle

» Chapter 5, Integrating with Ant

10.2. SonarQube Maven Configuration

If you use the SonarQube Maven plugin, you must set the following parameter in the configuration of the SonargraphBuild
Maven plugin in your project's pom.xmil:

<confi guration>
<pr epar eFor Sonar Qube>t r ue</ pr epar eFor Sonar Qube>

</ confi guration>

The SonargraphBuild Maven plugin will automatically create an XML report (if not already configured) and will copy the report
to ${ target} /sonargraph/sonargraph-sonarqube-report.xml for the root project and all modules (excluding those with packaging
n p()mll).

The example project contains an example pom.xml and also a batch file that demonstrates how the check can be called from
the command-line.

Related topics:
 Chapter 6, Integration with Maven

* Section 6.5, “Example POM”

NOTE

For very large systems with a high number of modules, do not use the prepareForSonarQube flag. This causes the
generated report to be copied into each project's target folder.

Instead, use the parameters to specify the report format ("xml"), the report's target directory and file name and
use the parameter "sonar.sonargraph_integration.report.path” as explained in Section 9.5, “SonarQube Ant Runner
Configuration”. This causes the same report instance to be re-used for every module being analyzed by SonarQube.

An example command-line with the aforementioned parameters (added line-breaks for readability):

m/n cl ean package
sonar gr aph: creat e-report -Dsonar graph. report For mat =xm
- Dsonargraph. reportDirectory=D:/tenp/report -Dsonargraph.reportFil eName=M/Report
sonar: sonar -Dsonar.sonargraph_integration.report. path=D:/tenp/report/WReport.xmn

38

Integration with SonarQube
using Sonargraph Integration
plugin 2.1.4 or lower

10.3. SonarQube Gradle Configuration

If you use the SonarQube Gradle plugin, you must set the following parameter in the configuration of the SonargraphBuild tasks
inyour project's build.gradle:

sonar gr aphReport

{
activati onCode = "36E2- OF3E- 643F- B4F2"

pr epar eFor Sonar Qube = "true"
}

The SonargraphBuild Gradle plugin will automatically create an XML report (if not already configured) and will copy the report
to ${ target} /sonargraph/sonargraph-sonarqube-report.xml for the root project and all modules.

Related topics:

e Chapter 7, Integration with Gradle

* Section 6.5, “Example POM”

10.4. SonarQube Ant Runner Configuration

If you use the SonarQube Ant Runner the Sonargraph XML report must have been created and this report must be configured
for the Sonargraph SonarQube plugin using the following parameter:

<property nane="sonar.sonargraph_i ntegration.report.path" value="${path.target.report}"” />

The example project contains this configuration in the Ant build file.

Related topics:

» Chapter 5, Integrating with Ant

39

Chapter 11. Integration with Jenkins

With Jenkins Sonargraph Integration Plugin for Jenkins jobs the findings of Sonargraph can be used to let buildsfail, or mark
them unstable. Additionally Sonargraph metric values are stored for every build and can be visualized as charts.

11.1. Jenkins Server Configuration

The first step is to configure one or more versions of Sonargraph Build in "Manage Jenkins' — "Configure System"”. Click
"Sonargraph Build installations..."

Sonargraph Build

Sonargraph Build installations...

Figure 11.1. Jenkins - Sonar graph Build Configuration
and select aname, aversion and an installer.

Sonargraph Build

Sonargraph Build installations Sonargraph Build
Name newest

Install automatically ®

Install from hello2morrow
Versio| v newest |
8.6.3
8.6.2

Delete Installer
8.6.1

Add Installer ~

Figure 11.2. Jenkins - New Sonar graph Build

11.2. Jenkins Job Configuration

Add post build action " Sonargraph I ntegration Report Generation & Analysis' to your job.

Archive the artifacts
Record fingerprints of files to track usage
Publish Javadoc

Aggregate downstream test results

ion Report ion & Analysis
1 Publish JUnit test result report
Build other projects
SonarQube

I E-mail Notification

Add post-build action ¥

Figure 11.3. Job - Post Build Action

First decide if Sonargraph Build is used to create the report,

40

https://jenkins-ci.org/

Integration with Jenkins

© Generate with Sonargraph Build ®
Sonargraph System File spring-petclinic/PetClinic.sonargraph @)
Sonargraph License File ®
Sonargraph Activation Code (requires Internet access) ®

= Advanced...
Figure 11.4. Report - Generate With Sonar graph Build
or there already exists areport generated by an upstream build action.

© Pre-Generated ()

Sonargraph XML Report .target/sonargraph-report/sonargraph-report @.
Figure 11.5. Report - Pre Generated
When Sonargraph Build is used to create the report fill out all required information:

© Generate with Sonargraph Build If_i):}
Sonargraph System Directory ®
Sonargraph License File ®
Sonargraph Activation Code (requires Internet access) ®

Advanced...
Figure 11.6. Report - Standard Options
By pressing "Advanced..." some more options pop up:

Workspace Profile @)
Quality Model ®
Virtual Model Modifiable.vm (2)
Snapshot Directory ®
Snapshot File Name ®
Sonargraph Build Version newest v
JDK JDK8u74 v
Java (2)
C# ®
C++ ®

Figure 11.7. Report - Advanced Options

11.3. Charts Configuration

To see some charts, a meta-data file must be configured, and either all contained charts/metrics are shown, or alist of charts/
metrics to be shown can be given. If you want to track custom metrics that are generated via scripts, you first need to export the

report meta-data via the standalone application's menu "File" - "Export Meta-Data...".

41

Integration with Jenkins

Chart Configuration

Meta Data File spring-petclinic/MetaData.xml (2

© All charts taken from Meta Data File ()}
Figure 11.8. Job - Chart Configuration

© Select Charts ®

Sonargraph Metric
Category | Architecture i

Name Number of Components with Violations v

Delete

Figure 11.9. Job - Select Charts

11.4. Build Configuration

Finally the reasons for marking the build as failed or unstable can be set:

Mark Build

If architecture violations exist, mark build as ' Build unstable

«

If unassigned types exist, mark build as Build unstable v
If cyclic elements exist, mark build as Build unstable v
If threshold violations exist, mark build as Build unstable :

If architecture warnings exist, mark build as = Build unstable

«

If workspace warnings exist, mark build as = Build unstable

«

If work items exist, mark build as Build unstable

«

If the workspace is empty, mark build as Build unstable

«

Figure 11.10. Mark build failed or instable
Related topics:

* See the section about "Workspace Profiles' in the user manual of the standalone application, if the root directories on your
build server do not match the workspace definition.

» Chapter 6, Integration with Maven

42

Chapter 12. FAQ

This section summarizes common problems and their solutions.

Different Results in Sonargraph and SonargraphBuild

If you notice differences in the number of issues or metrics reported by SonargraphBuild, this might be due to the following
reasons:

1. The SonargraphBuild integrations for Maven and Gradle use as default the workspace information about root directories as
provided by Maven or Gradle. Thus the number of root directories might be different, if the Sonargraph workspace does not
contain all available root directories. If you know that al root directories contained in the Sonargraph workspace are present
at build-time, deactivate this dynamic workspace configuration by setting the parameter " overrideSonargraphWorkspace" to
"false".

2. Check if test code should be part of the workspace. As default it is excluded in SonargraphBuild, because the default value
of the parameter "includeTestCode" is"false".

3. If the above points did not provide an answer, check chapter Chapter 8, Reporting Changes on how to create a detailed report
about differences.

43

Chapter 13. Trademark Attributions,
Library License Texts, and Source Code

Eclipseis atrademark of Eclipse Foundation, Inc.

IntelliJis atrademark of JetBrainss.r.o.

Javaand all Java-based trademarks are trademarks of Oracle Corporation in the United States and other countries.
Linux® isthe registered trademark of Linus Torvaldsin the U.S. and other countries.

Microsoft, and Windows are trademarks of Microsoft Corporation in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Chapter 14. Legal Notice

All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

 Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer.

* Redistributionsin binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

 Neither the name of hello2morrow GmbH nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORSBE LIABLE FORANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;, OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

45

Appendix A. SonargraphBuild API
Documentation

SonargraphBuild API is documented via JavaDoc that is available within the installation of the product.

Link to JavaDaoc of SonargraphBuild API.

46

./javadoc/index.html

Index

A

Activation Code, 2, 2
Ant Integration, 10

B

Build Server Integration
Jenkins, 40
SonarQube, 33, 36

C

Command-line Interface, 5
Configuration

Build Failure, 8

Report Creation, 5

F
FAQ, 43

G
Gradle
FailSet Configuration, 27
sonargraphDynamicReport, 24
Gradle Configuration
sonargraphReport, 21
Tips, 21
Gradle Integration, 21

Installation Requirements, 4

J

Jenkins Integration, 40
Build Configuration, 42
Charts Configuration, 41
Job Configuration, 40
Server Configuration, 40

L

License, 2
License Server Settings, 3

M

Maven
dynamic-report, 15
Fail Set Configuration, 18
Maven Configuration
create-report, 12
Tips, 11
Maven Integration, 11

P

Prerequisites, 4

47

Index

Proxy Settings, 3

R
Reporting Changes, 31

S

SonargraphBuild API, 46
SonarQube Integration, 33, 36
Ant Runner Configuration, 35, 39
Configuration, 33, 36
Gradle Configuration, 34, 39
Maven Configuration, 34, 38
Overall Process of Integration, 33

48

	SonargraphBuild User Manual
	Table of Contents
	Chapter 1. Sonargraph's Next Generation - SonargraphBuild
	Chapter 2. Licensing
	2.1. Getting an Activation Code or a License
	2.2. Activation Code Based Licensing
	2.3. Proxy Settings
	2.4. License Server Settings

	Chapter 3. Getting Started
	3.1. Installation Requirements
	3.2. Prerequisites

	Chapter 4. Executing from the Command-line
	4.1. Report Creation
	4.2. Specify Conditions for Build Failure

	Chapter 5. Integrating with Ant
	Chapter 6. Integration with Maven
	6.1. Maven Tips and Best Practices
	6.2. Parameters of Goal "create-report"
	6.3. Configuration for goal "dynamic-report"
	6.4. Maven FailSet Configuration
	6.5. Example POM

	Chapter 7. Integration with Gradle
	7.1. Gradle Tips and Best Practices
	7.2. Parameters of Task "sonargraphReport"
	7.3. Configuration for Task "sonargraphDynamicReport"
	7.4. Gradle FailSet Configuration
	7.5. Example Gradle Build File

	Chapter 8. Reporting Changes
	Chapter 9. Integration with SonarQube
	9.1. Overall Process of Integration
	9.2. SonarQube Configuration
	9.3. SonarQube Maven Configuration
	9.4. SonarQube Gradle Configuration
	9.5. SonarQube Ant Runner Configuration

	Chapter 10. Integration with SonarQube using Sonargraph Integration plugin 2.1.4 or lower
	10.1. SonarQube Configuration
	10.2. SonarQube Maven Configuration
	10.3. SonarQube Gradle Configuration
	10.4. SonarQube Ant Runner Configuration

	Chapter 11. Integration with Jenkins
	11.1. Jenkins Server Configuration
	11.2. Jenkins Job Configuration
	11.3. Charts Configuration
	11.4. Build Configuration

	Chapter 12. FAQ
	Chapter 13. Trademark Attributions, Library License Texts, and Source Code
	Chapter 14. Legal Notice
	Appendix A. SonargraphBuild API Documentation
	Index

