
SonargraphBuild User Manual

Version 9.8.1



SonargraphBuild User Manual: Version 9.8.1
Copyright © 2018 hello2morrow GmbH



iii

Table of Contents
1. Sonargraph's Next Generation - SonargraphBuild ...............................................................................................  1
2. Licensing .....................................................................................................................................................  2

2.1. Getting an Activation Code or a License ................................................................................................  2
2.2. Activation Code Based Licensing ..........................................................................................................  2
2.3. Proxy Settings ...................................................................................................................................  3
2.4. License Server Settings .......................................................................................................................  3

3. Getting Started .............................................................................................................................................  4
3.1. Installation Requirements .....................................................................................................................  4
3.2. Prerequisites ......................................................................................................................................  4

4. Executing from the Command-line ...................................................................................................................  5
4.1. Report Creation ..................................................................................................................................  5
4.2. Specify Conditions for Build Failure ......................................................................................................  8

5. Integrating with Ant ....................................................................................................................................  10
6. Integration with Maven ................................................................................................................................  11

6.1. Maven Tips and Best Practices ...........................................................................................................  11
6.2. Parameters of Goal "create-report" .......................................................................................................  12
6.3. Configuration for goal "dynamic-report" ...............................................................................................  15
6.4. Maven FailSet Configuration ..............................................................................................................  18
6.5. Example POM .................................................................................................................................  19

7. Integration with Gradle ................................................................................................................................  20
7.1. Gradle Tips and Best Practices ............................................................................................................  20
7.2. Parameters of Task "sonargraphReport" ................................................................................................  20
7.3. Configuration for Task "sonargraphDynamicReport" ...............................................................................  23
7.4. Gradle FailSet Configuration ..............................................................................................................  26
7.5. Example Gradle Build File .................................................................................................................  27

8. Reporting Changes ......................................................................................................................................  30
9. Integration with SonarQube ..........................................................................................................................  32

9.1. Overall Process of Integration .............................................................................................................  32
9.2. SonarQube Configuration ...................................................................................................................  32
9.3. SonarQube Maven Configuration .........................................................................................................  33
9.4. SonarQube Gradle Configuration .........................................................................................................  33
9.5. SonarQube Ant Runner Configuration ..................................................................................................  34

10. Integration with SonarQube using Sonargraph Integration plugin 2.1.4 or lower ....................................................  35
10.1. SonarQube Configuration .................................................................................................................  35
10.2. SonarQube Maven Configuration .......................................................................................................  37
10.3. SonarQube Gradle Configuration .......................................................................................................  38
10.4. SonarQube Ant Runner Configuration ................................................................................................. 38

11. Integration with Jenkins ..............................................................................................................................  39
11.1. Jenkins Server Configuration ............................................................................................................. 39
11.2. Jenkins Job Configuration ................................................................................................................. 39
11.3. Charts Configuration ........................................................................................................................ 40
11.4. Build Configuration .........................................................................................................................  41

12. FAQ ........................................................................................................................................................  42
13. Trademark Attributions, Library License Texts, and Source Code .......................................................................  43
14. Legal Notice .............................................................................................................................................  44
A. SonargraphBuild API Documentation .............................................................................................................  45
Index ............................................................................................................................................................  46



1

Chapter 1. Sonargraph's Next Generation -
SonargraphBuild
SonargraphBuild integrates quality checks into the continuous integration build and can create XML and HTML reports via an
Ant task or shell scripts. These reports contain all information about quality issues and calculated metrics. The XML report can be
used for further downstream processing via transformations. The XML schema for the report can be found in <sonargraphBuild-
inst>/doc.

SonargraphBuild additionally offers the possibility to mark the build as failed based on issues detected during the analysis. So, if
you have written custom queries via Groovy scripts that check on the proper usage of an external library or detect a code smell,
you can be sure that it is detected immediately.



2

Chapter 2.  Licensing
When you start Sonargraph you will be asked for an activation code or a license file. For additional licensing and pricing
information please contact <sales@hello2morrow.com> or <support@hello2morrow.com> and check our  web
site .

2.1. Getting an Activation Code or a License
When you have purchased a Sonargraph license, an activation code or a license file will be delivered to you.

There might be a program for free Sonargraph licenses which are time-limited and/or size-limited. Please register on our website
and check the available programs.

In order to replace a valid license by a new one, choose "Help" → "Manage License..." from the user menu in the GUI-based
product. Sonargraph licenses are bound to a named user. The usage by a different user is a violation of the license agreement.

2.2. Activation Code Based Licensing
Activation code based licensing activates Sonargraph licenses via Internet or a local license server by requesting a so-called
ticket. Every activation code is customer specific and represents a pool of Sonargraph user licenses as purchased and licensed
to the specific customer. Activation code based licensing technically requires that Sonargraph has Internet access or that a local
license server is reachable. There are two types of activation code based licenses available:

1. Flexible User License (if you bought Sonargraph before version 9.0 you have flexible user licenses)

2. Floating License (new with Sonargraph 9.0)

Flexible user licenses support a feature that allows customer-driven transfer of a Sonargraph user license to another user after
some amount of time. This works like this:

• When an activation code based license is requested, Sonargraph automatically requests a license ticket from the hello2morrow
license server. This ticket expires after some time, for example after 30 days. During these 30 days, the use of the Sonargraph
installation that requested the ticket is licensed (by the user who ran Sonargraph when the license ticket was requested).
Sonargraph can be used during this period without any access to the Internet.

• After the ticket of a Sonargraph installation has expired (in our example scenario, this happens on the 31st day after the ticket
has been requested), one of two things typically happen:

1. The same Sonargraph installation is started again. Sonargraph then notices that the license ticket has expired and lets the
user know about it by presenting a dialog to manually request a new ticket from the hello2morrow license server, for the
same activation code or a different one if desired. The new ticket again is valid for the same time period. You can toggle

the feature at ' Help → Renew License Ticket Automatically ' to have Sonargraph silently perform license ticket requests
using the current activation code, without further user interaction.

2. Alternatively, the user of the installation might not continue to work with Sonargraph; then the license is now, after the
expiration of the ticket in the Sonargraph installation, available to some other user. The hello2morrow license server will
supply a license ticket to the next user that requests one for the given activation code.

Note that the number of license tickets that can be supplied by the license server for some activation code might be more than
one. For example, a company might license Sonargraph for 20 users. The same activation code can be used by all of them, but
as soon as the 21st license ticket is requested for this activation code, this request will be denied. A new request for a ticket will
only be fulfilled after one of the already supplied tickets has expired, so that at any one moment, at most 20 non-expired license
tickets exist for the activation code.

It is not required that the same user requests a replacement of an expired license ticket; any user that knows the activation code
can request one of the free tickets. This mechanism reduces the effort needed for license management in a changing user group.

https://www.hello2morrow.com/products/sonargraph/architect_pricelist
https://www.hello2morrow.com/products/sonargraph/architect_pricelist


Licensing

3

However, in order to avoid any misuse we strongly encourage you to restrict the information about your activation code to those
persons who are supposed to use Sonargraph.

If you have any suspicion about misuse please inform <support@hello2morrow.com> immediately. We can promptly
deactivate an activation code so that any further misuse is stopped and provide a new activation code to you.

Floating licenses bind a ticket to an instance of Sonargraph while it is running. As soon as Sonargraph is terminated the license
can be used by another user.

Most of our customers are using our Internet based license server, so there is no need for you to operate your own license server as
long as the machines running Sonargraph have access to the Internet. If this is not the case or you want to avoid being dependent
on the availability of hello2morrow's web-based license server you can request the usage of a local license server by contacting
us via <sales@hello2morrow.com> or <support@hello2morrow.com>. Once your request has been approved, you
can download hello2morrow's local license server and run it on your premises. If you have a flexible user license it is also possible
to run Sonargraph with file based licenses.

2.3. Proxy Settings
I you use hello2morrow's Internet servers and Activation code based licensing, you need Internet access. If your network
configuration does not allow direct Internet access, but provides access through an HTTP proxy instead, you can specify the host
name and port of the proxy server. If the proxy server access is password protected, you can supply a user name and a password
in order to authenticate.

For the GUI-based product, the proxy settings can be changed via "Preferences…" → "Proxy Settings" .

Check the user manual of SonargraphBuild for proxy configuration options of the build server integrations.

2.4. License Server Settings
I you use your own license server you need to configure the access to it. You must specify the host name and port of the license
server.

For the GUI-based product, the proxy settings can be changed via "Preferences…" → "License Server Settings" .



4

Chapter 3.  Getting Started
This chapter summarizes what is needed for SonargraphBuild to run.

3.1. Installation Requirements
The following prerequisites must be fulfilled for SonargraphBuild :

1. Microsoft™ Windows™ , Mac OS-X or Linux® operating system.

2. Java Runtime Environment 1.8 or higher

3. At least 2048 MB RAM (Win32: 1400 MB)

NOTE

Sonargraph keeps all information in main memory. For very large systems, you need to increase the memory for the
JVM in case you run into out of memory exceptions.

3.2. Prerequisites
1. If you plan to run SonargraphBuild via ANT or the command line you need to download it from our web site:  https://

www.hello2morrow.com/products/downloads  and extract the Zip file to a convenient location. If you are using Maven for
your build process you only need to install SonargraphBuild if your build server has no Internet connectivity.

2. If the machine that executes SonargraphBuild has internet access, use an activation code parameter to obtain a ticket from
your pool of licenses. If the machine does not have internet access, you need to obtain a license file and pass the location of
this file as a parameter to your build.

3. For integration with Shell script or Ant a "software system" must have been created via Sonargraph containing a valid
workspace configuration including modules and root directories.

Integrations with Maven and Gradle allow to dynamically create a "software system" on the fly and create a report for it.
Those integrations can be used to create an initial software system that is refined using Sonargraph rich-client application.

https://www.hello2morrow.com/products/downloads
https://www.hello2morrow.com/products/downloads


5

Chapter 4. Executing from the Command-
line
SonargraphBuild can be executed as a standalone Java application which enables the integration in any kind of continuous
integration environment. The necessary configuration is straight-forward and an example shell script is provided in the directory
<inst-dir>/example/bin. The batch script starts SonargraphBuild and specifies an XML file for the detailed configuration.

NOTE

SonargraphBuild returns an exit code indicating the execution status:

• 0 : Successful execution

• 1 : Execution failed because of failset properties

• 2 : Execution failed because of handled exception, e.g. configuration error, license error, etc.

• 3 : Execution failed because of unexpected exception. Please check the log file for details.

NOTE

The attribute "logLevel" affects the logging after the SonargraphBuild engine has been started. Setting it to "debug" and
below will generate additional debug information into the report.

WARNING

Setting the attribute "reportType" to "standard" only generates metric values for "system" and "module" levels. "full"
generates values for all element levels, but results in a significant larger report!

The splitting of the HTML report into different files is controlled by the attribute "elementCountToSplitHtmlReport".
The resulting detail pages contain tables of issues / resolutions of a specific issue type. The maximum number of items
shown is limited by the parameter "maxElementCountForHtmlDetailsPage".

WARNING

The attribute "qualityModelFile" can be used to apply a fixed set of scripts, architecture files and analyzer configurations
across several systems.

The reported issues are most likely very different from the results of analyzing the system with the Sonargraph
application. If you specify a "qualityModelFile", it is advisable to specify the "Parser" virtual model, since resolutions
e.g. for architecture violations probably will not match.

4.1. Report Creation
The following table lists all parameters that are available to create a report for an existing Sonargraph system:

Attribute Mandatory Description Default

installationDirectory Yes Installation directory of SonargraphBuild No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based

No default



Executing from the Command-line

6

Attribute Mandatory Description Default

hello2morrow license server will be used for
activation code based licenses.

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of SonargraphBuild. If no value is
specified, all languages will be initialized.

Java, CSharp, CPlusPlus

logFile No Path of the log file to be used for SonargraphBuild. ${currentDir}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

compilerDefinitionPath No The path to the active compiler definition file to
be used for parsing a C/C++ system. If a built-in
or automatically generated definition should be
used, prefix the definition with "CPlusPlus:", e.g.
CPlusPlus:GnuCpp.cdef.

NOTE:  If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the active definition
specified with the standalone application will be
used.

If empty, the default
compiler definition
for the build server's
operating system is
used: GnuCpp.cdef
(Linux), CLang.cdef
(Mac), VisualCpp*.cdef
(Windows, generated
definition for the
latest Visual Studio
installation)

systemDirectory Yes Directory of the Sonargraph System
(xyz.sonargraph)

No default

virtualModel No The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is "Modifiable.vm", if virtual
models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph
Architect license.

No default

workspaceProfile No The profile file name (e.g. "BuildProfile.xml") for
transforming the workspace paths to match the build
environment.

No default

qualityModelFile No The path to the quality model file (xyz.sgqm)
that should be applied for the report creation.
Built-in quality models are the language-
independent "Sonargraph:Default.sgqm" and
language-specific "Sonargraph:Java.sgqm",
"Sonargraph:CSharp.sgqm" and
"Sonargraph:CPlusPlus.sgqm". NOTE: All scripts,
analyzer configurations and architecture files
present in the system are ignored!

No default

snapshotDirectory No Target directory for the created snapshot. Only
if either this parameter or snapshotFileName is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

Current directory

snapshotFileName No The target file name (without extension). Only
if either this parameter or snapshotDirectory is

<system-
name>_<timestamp>



Executing from the Command-line

7

Attribute Mandatory Description Default

provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

reportDirectory No Target directory for the created report Current directory

reportFileName No The target file name (without extension) <system-
name>_<timestamp>

reportType No "standard" only creates metric information of system
and module level. "full" creates metric information
of all levels.

standard

reportFormat No "xml", "html" or "xml, html" html

elementCountToSplit
HtmlReport

No Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), 0 (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
HtmlDetailsPage

No If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
a browser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), 0 (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule No If set to 'true', individual HTML reports are created
per module.

false

baselineReportPath No Path of the baseline XML report that the current
report is compared against

No default

deltaReportPath No Path of the output file that the delta info is
written to. This log file is only generated if a
baselineReportPath has been specified.

<reportDirectory>/
<reportFileName>
_delta.log

proxyHost No Proxy host No default

proxyPort No Proxy port No default

proxyUsername No Proxy user name No default

proxyPassword No Proxy password No default

Table 4.1. Configuration for Element "sonargraphBuild"

Example

This is an example configuration for creating an XML and HTML report:



Executing from the Command-line

8

<sonargraphBuild 
    activationCode="_your activation code_"
    languages="Java" 
    installationDirectory="../.."
    systemDirectory="../javaProject/AlarmClock.sonargraph" 
    reportDirectory="./_temp/report"
    reportFileName=""
    reportType="full"
    reportFormat="xml,html"
    snapshotFileName="./_temp/AlarmClock.snapshot" 
    proxyHost="" 
    proxyPort="" 
    proxyUsername=""
    proxyPassword="" 
    logLevel="warn">
</sonargraphBuild>

4.2. Specify Conditions for Build Failure
SonargraphBuild can check for the existence of specific issues and mark the build as failed. The nested "failSet" element of the
"sonargraphBuild" element can include any number of "include" and "exclude" definitions based on the issues that are either
built-in (like duplicate warnings, cycle group warnings, etc.) or custom issues created via Groovy scripts.

TIP

The issue type that must be specified for include/exclude definitions can be determined via the Properties View of
Sonargraph .

TIP

If you want the build to fail only for newly introduced issues, apply resolutions like "Ignore" or "Fix" to the already
know issues in Sonargraph and only filter for resolution value "none".

TIP

If you want the build to fail because of certain metric values (e.g. Lines of Code per Source File), define a threshold for
that metric in Sonargraph to create issues if files grow too large.

TIP

The include/exclude definitions are applied in the following sequence, regardless of their definition order:

1. First all include definitions are matched against the set of existing issues.

2. Then the exclude definitions are applied and the set of previously matched issues is reduced accordingly.

Element Parameter Mandatory Description Default

failSet failOnEmptyWorkspace No Marks the build as failed if modules
and root directories are detected but no
components are found. Possible values
are "true" or "false".

true

include/exclude issueType Yes Name of the issue type or "any" for
wildcard matching.

No default

include/exclude severity No Severity of the issue. Possible values
are: error, warning, info, none, any

any

include/exclude resolution No The issue's resolution type. Possible
values are: task, ignore, any, none

none

Table 4.2. Configuration Parameters for Build Failure



Executing from the Command-line

9

Example

This is an example failSet definition:

<sonargraphBuild
...            
  <failSet failOnEmptyWorkspace="false">
    <include issueType="any" severity="error" resolution="none"/> 
    <exclude issueType="ScriptCompilationError"/>
    <include issueType="Supertype uses subtype"/>
    <include issueType="any" severity="warning"/>
    <exclude issueType="ThresholdViolation"/>
  </failSet>
</sonargraphBuild>

The console output provides some basic information about the number of issues matched by either "include" and "exclude":

Failed:
Sonargraph: Start creating report...
Sonargraph: Opening system...
Sonargraph: Refreshing system...
Sonargraph: Creating report...
Sonargraph: Check if build should be marked as failed...
Include filter [issueType=any, severity=error, resolution=none] matches 0 issue(s).
Include filter [issueType=Supertype uses subtype, severity=any, resolution=none] matches 0 issue(s).
Include filter [issueType=any, severity=warning, resolution=none] matches 2 issue(s).
Exclude filter [issueType=ScriptCompilationError, severity=any, resolution=none] removes 0 previously matched issue(s).
Exclude filter [issueType=ThresholdViolation, severity=any, resolution=none] removes 0 previously matched issue(s).
Summary: Build failed as 2 issue(s) match the specified failset on virtual model 'Modifiable.vm'.
Sonargraph: Finished.



10

Chapter 5. Integrating with Ant
The provided SonargraphReportTask makes it easy to integrate SonargraphBuild into Apache Ant based builds and generate
HTML or XML reports containing info about metrics and issues of a software system. Additionally, using the optional "failSet"
element, the Ant build can be marked as failed if certain issues exist.

Prerequisites:

1. You need at least Ant 1.8.3 installed.

2. Set the environment variable ANT_HOME.

3. Include ANT_HOME/bin in your PATH environment variable.

The following shows the SonargraphReportTask definition:

<taskdef name="sonargraphBuild" 
     classname="com.hello2morrow.sonargraph.build.client.ant.SonargraphReportTask">
  <classpath>
    <fileset dir="${sonargraph.build.installation}/plugins">
      <include name="org.eclipse.osgi_3.1*.jar" />
      <include name="com.hello2morrow.sonargraph.build.client*.jar"/>
    </fileset>
    <fileset dir="${sonargraph.build.installation}/client" includes="*.jar" />
  </classpath>
</taskdef>

An example Ant build.xml is provided in the directory <inst-dir>/example/ant. The parameters are the same as for the shell
integration described in Chapter 4, Executing from the Command-line



11

Chapter 6. Integration with Maven
The SonargraphBuild Maven plugin makes it easy to check the quality of your projects. The plugin is able to automatically
download and install SonargraphBuild if your build server has Internet connectivity. You can make the build fail depending on
issues detected by SonargraphBuild.

There are two different goals available:

1. create-report: Creates a report for an existing system.

2. dynamic-report: Creates a system on-the-fly and creates a report for it. This is currently only available for Java systems.

3. help: Displays information about the other two goals and can be parameterized to show more details.

Prerequisites:

1. You need at least Maven 3.0.5 installed.

2. The plugin requires at least a Java 8 runtime.

3. The plugin cannot be used together with Tycho.

6.1. Maven Tips and Best Practices
TIP

Add the following repository to your Maven settings.xml, so you do not need to repeat it in your project's pom.xml:

<pluginRepository>
    <id>hello2morrow.maven.repository</id>
    <url>http://maven.hello2morrow.com/repository</url>
</pluginRepository>

TIP

The goals are not configured to be executed within any default Maven lifecycle phase. Typically you would run the
plugin with a command-line like the following to ensure that everything is compiled from scratch before the report is
created. The first command-line explicitly specifies a version, the second one uses the Maven prefix resolution (check
Maven Prefix Resolution for details):

mvn clean compile com.hello2morrow:sonargraph-maven-plugin:9.8.1:create-report

mvn clean compile sonargraph:create-report

TIP

All parameters of the top-level goals (i.e. not the failSet) can equally be set via the command-line using system properties
of the form

-Dsonargraph.<parameter-name>=<value>

TIP

To enforce certain rules, specify a failSet that lets the build fail based on detected issues. See Section 6.4, “Maven
FailSet Configuration”

NOTE

The plugin cannot be used together with Tycho.

You need to use another option to execute Sonargraph. See Chapter 4, Executing from the Command-line,
Chapter 5, Integrating with Ant. If the class root paths of the Sonargraph workspace do not match the Maven target

https://maven.apache.org/guides/introduction/introduction-to-plugin-prefix-mapping.html


Integration with Maven

12

directories, check the section about "Workspace Profiles" in the user manual of the standalone application:  http://
eclipse.hello2morrow.com/doc/standalone/content/workspace_profiles.html

NOTE

The attribute "logLevel" affects the logging after the SonargraphBuild engine has been started. Setting it to "debug" and
below will generate additional debug information into the XML report.

WARNING

Setting the attribute "reportType" to "standard" only generates metric values for "system" and "module" levels. "full"
generates values for all element levels, but results in a significant larger report!

The splitting of the HTML report into different files is controlled by the attribute "elementCountToSplitHtmlReport".
The resulting detail pages contain tables of issues / resolutions of a specific issue type. The maximum number of items
shown is limited by the parameter "maxElementCountForHtmlDetailsPage".

WARNING

The attribute "qualityModelFile" can be used to apply a fixed set of scripts, architecture files and analyzer configurations
across several systems.

The reported issues are most likely very different from the results of analyzing the system with the Sonargraph
application. If you specify a "qualityModelFile", it is advisable to specify the "Parser" virtual model, since resolutions
e.g. for architecture violations probably will not match.

6.2. Parameters of Goal "create-report"
The following table lists all parameters that are available to create a report for an existing Sonargraph system. The class root
directories are replaced by the output directories known to Maven.

NOTE

If Maven generates additional output directories dynamically that must be part of the Sonargraph workspace, the
Sonargraph plugin must be executed within the same process as the plugins that generate the additional directories.

The build can be marked as failed based on a failSet. See Section 6.4, “Maven FailSet Configuration”.

Attribute Mandatory Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of
SonargraphBuild. Can be used in combination with
'autoUpdate'. As an example, if you specify '8.7' the
newest available version starting with '8.7' will be
used. If you specify '8.7.0.361' you are locked on
that specific version of SonargraphBuild. There are
two special values: "same" and "newest". If "same"
is defined the version of SonargraphBuild must
be the same as the version of the Maven plugin. If
"newest" is defined the plugin will always try to use
the newest version of SonargraphBuild.

same

skip No Skip SonargraphBuild. false

autoUpdate No If the plugin is configured to download
SonargraphBuild automatically, this parameter
decides if it also should be updated automatically if
a new version becomes available.

false

useHttpProxyHost No The id of a proxy entry in the Maven settings. If
defined the plugin will use this proxy for all HTTP
communication.

No default

http://eclipse.hello2morrow.com/doc/standalone/content/workspace_profiles.html
http://eclipse.hello2morrow.com/doc/standalone/content/workspace_profiles.html


Integration with Maven

13

Attribute Mandatory Description Default

repository No URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

 

installationDirectory No Installation directory of SonargraphBuild.
If unspecified the plugin will automatically
download SonargraphBuild. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of SonargraphBuild. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile No Path of the log file to be used for SonargraphBuild. ${baseDir}/${target}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

compilerDefinitionPath No The path to the active compiler definition file to
be used for parsing a C/C++ system. If a built-in
or automatically generated definition should be
used, prefix the definition with "CPlusPlus:", e.g.
CPlusPlus:GnuCpp.cdef.

NOTE:  If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the active definition
specified with the standalone application will be
used.

If empty, the default
compiler definition
for the build server's
operating system is
used: GnuCpp.cdef
(Linux), CLang.cdef
(Mac), VisualCpp*.cdef
(Windows, generated
definition for the
latest Visual Studio
installation)

systemDirectory No Directory of the Sonargraph System
(xyz.sonargraph)

${baseDir}/
${artifact.id}.sonargraph

overrideSonargraphWorkspace No If true the output directories defined in the
Sonargraph system will be overridden by the ones
provided by the client.

true

includeTestCode No If true the workspace will also contain the test
source and test class file directories.

false

includeEmptyModules No If true the workspace will also contain empty
modules (without any source and class file
directories).

false

virtualModel No The virtual model to be used when checking for
issues. This parameter overrides the default virtual

No default



Integration with Maven

14

Attribute Mandatory Description Default

model that is set when the system is opened. The
default virtual model is "Modifiable.vm", if virtual
models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph
Architect license.

qualityModelFile No The path to the quality model file (xyz.sgqm)
that should be applied for the report creation.
Built-in quality models are the language-
independent "Sonargraph:Default.sgqm" and
language-specific "Sonargraph:Java.sgqm",
"Sonargraph:CSharp.sgqm" and
"Sonargraph:CPlusPlus.sgqm". NOTE: All scripts,
analyzer configurations and architecture files
present in the system are ignored!

No default

snapshotDirectory No Target directory for the created snapshot. Only
if either this parameter or snapshotFileName is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

${basedir}/${target}

snapshotFileName No The target file name (without extension). Only
if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

<system-
name>_<timestamp>

reportDirectory No Target directory for the created report ${basedir}/${target}/
sonargraph

reportFileName No The target file name (without extension) <system-
name>_<timestamp>

reportType No "standard" only creates metric information of system
and module level. "full" creates metric information
of all levels.

standard

reportFormat No "xml", "html" or "xml, html" html

elementCountToSplit
HtmlReport

No Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), 0 (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
HtmlDetailsPage

No If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
a browser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), 0 (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule No If set to 'true', individual HTML reports are created
per module.

false

baselineReportPath No Path of the baseline XML report that the current
report is compared against

No default

deltaReportPath No Path of the output file that the delta info is
written to. This log file is only generated if a
baselineReportPath has been specified.

<reportDirectory>/
<reportFileName>
_delta.log



Integration with Maven

15

Attribute Mandatory Description Default

prepareForSonarQube No Creates an XML report and stores it at ${basedir}/
${target}/sonargraph/sonargraph-sonarqube-
report.xml, where the SonarQube Sonargraph plugin
expects it.

false

Table 6.1. Configuration for goal "create-report"

Related topics:

• Section 6.1, “Maven Tips and Best Practices”

• Section 6.4, “Maven FailSet Configuration”

• Section 6.5, “Example POM”

6.3. Configuration for goal "dynamic-report"
The following table lists all parameters that are available to create a report for a Java project where no Sonargraph system has been
defined. A Sonargraph system is created on the fly based on the workspace information contained in the Maven project setup.

NOTE

If your Maven build generates source and class roots dynamically, the "dynamic-report" goal should be called in the
same process as those plugins that generate the additional roots. The following Maven execution also makes the dynamic
roots available to Sonargraph:

mvn compile sonargraph:dynamic-report

Whereas using the following two separate Maven invocations, the dynamic roots will NOT be visible to Sonargraph:

mvn compile
mvn sonargraph:dynamic-report

The build can be marked as failed based on a failSet. See Section 6.4, “Maven FailSet Configuration”.

Attribute Mandatory Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of
SonargraphBuild. Can be used in combination with
'autoUpdate'. As an example, if you specify '8.7' the
newest available version starting with '8.7' will be
used. If you specify '8.7.0.361' you are locked on
that specific version of SonargraphBuild. There are
two special values: "same" and "newest". If "same"
is defined the version of SonargraphBuild must
be the same as the version of the Maven plugin. If
"newest" is defined the plugin will always try to use
the newest version of SonargraphBuild.

same

skip No Skip SonargraphBuild. false

autoUpdate No If the plugin is configured to download
SonargraphBuild automatically, this parameter
decides if it also should be updated automatically if
a new version becomes available.

false

useHttpProxyHost No The id of a proxy entry in the Maven settings. If
defined the plugin will use this proxy for all HTTP
communication.

No default



Integration with Maven

16

Attribute Mandatory Description Default

repository No URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

 

installationDirectory No Installation directory of SonargraphBuild.
If unspecified the plugin will automatically
download SonargraphBuild. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of SonargraphBuild. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile No Path of the log file to be used for SonargraphBuild. ${baseDir}/${target}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

systemBaseDirectory No The directory where the Sonargraph System
(${artifactId}.sonargraph) is created.

${baseDir}/${target}

systemId No A system id should stay constant over the lifetime
of a software system and should be also unique with
respect to other systems. If you anticipate that the
the group id or artifact id of the root pom might
change you should assign a value to this parameter.

${groupdId}_
${artifactId}

useGroupIdInModuleName No If true the module names will use group id and
artifact id as their name, separated by an underscore.
By default only the artifact id is used as the module
name.

false

includeTestCode No If true the workspace will also contain the test
source and test class file directories.

false

includeEmptyModules No If true the workspace will also contain empty
modules (without any source and class file
directories).

false

virtualModel No The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is "Modifiable.vm", if virtual
models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph
Architect license.

No default



Integration with Maven

17

Attribute Mandatory Description Default

qualityModelFile No The path to the quality model file (xyz.sgqm)
that should be applied for the report creation.
Built-in quality models are the language-
independent "Sonargraph:Default.sgqm" and
language-specific "Sonargraph:Java.sgqm",
"Sonargraph:CSharp.sgqm" and
"Sonargraph:CPlusPlus.sgqm". NOTE: All scripts,
analyzer configurations and architecture files
present in the system are ignored!

No default

snapshotDirectory No Target directory for the created snapshot. Only
if either this parameter or snapshotFileName is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

${basedir}/${target}

snapshotFileName No The target file name (without extension). Only
if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

<system-
name>_<timestamp>

reportDirectory No Target directory for the created report ${basedir}/${target}/
sonargraph

reportFileName No The target file name (without extension) <system-
name>_<timestamp>

reportType No "standard" only creates metric information of system
and module level. "full" creates metric information
of all levels.

standard

reportFormat No "xml", "html" or "xml, html" html

elementCountToSplit
HtmlReport

No Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), 0 (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
HtmlDetailsPage

No If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
a browser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), 0 (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule No If set to 'true', individual HTML reports are created
per module.

false

baselineReportPath No Path of the baseline XML report that the current
report is compared against

No default

deltaReportPath No Path of the output file that the delta info is
written to. This log file is only generated if a
baselineReportPath has been specified.

<reportDirectory>/
<reportFileName>
_delta.log

prepareForSonarQube No Creates an XML report and stores it at ${basedir}/
${target}/sonargraph/sonargraph-sonarqube-

false



Integration with Maven

18

Attribute Mandatory Description Default

report.xml, where the SonarQube Sonargraph plugin
expects it.

Table 6.2. Configuration for goal "dynamic-report"

Related topics:

• Section 6.1, “Maven Tips and Best Practices”

• Section 6.4, “Maven FailSet Configuration”

• Section 6.5, “Example POM”

6.4. Maven FailSet Configuration
The following elements allow to mark a build as failed. An example is shown in the next section Section 6.5, “Example POM”.

TIP

The issue type that must be specified for include/exclude definitions can be determined via the Properties View of
Sonargraph .

TIP

If you want the build to fail only for newly introduced issues, apply resolutions like "Ignore" or "Fix" to the already
know issues in Sonargraph and only filter for resolution value "none".

TIP

If you want the build to fail because of certain metric values (e.g. Lines of Code per Source File), define a threshold for
that metric in Sonargraph to create issues if files grow too large.

TIP

The include/exclude definitions are applied in the following sequence, regardless of their definition order:

1. First all include definitions are matched against the set of existing issues.

2. Then the exclude definitions are applied and the set of previously matched issues is reduced accordingly.

Element Parameter Mandatory Description Default

failSet failOnEmptyWorkspace No Marks the build as failed if modules
and root directories are detected but no
components are found. Possible values
are "true" or "false".

true

include/exclude issueType Yes Name of the issue type or "any" for
wildcard matching.

No default

include/exclude severity No Severity of the issue. Possible values
are: error, warning, info, none, any

any

include/exclude resolution No The issue's resolution type. Possible
values are: task, ignore, any, none

none

Table 6.3. Configuration Parameters for Build Failure



Integration with Maven

19

6.5. Example POM
The following example shows how to integrate the Sonargraph Maven plugin into your project specific pom file. For multi-
module projects it is sufficient to only add the plugin to the pom of the root project. It runs as an aggregator after all modules
have been compiled. The example project in the installation contains a complete pom.xml. Typically you would run the plugin
with a command-line like the following to ensure that everything is compiled from scratch before the report is created. The first
command-line explicitly specifies a version, the second one uses the Maven prefix resolution (check  Maven Prefix Resolution
for details):

mvn clean compile com.hello2morrow:sonargraph-maven-plugin:9.8.1:create-report

mvn clean compile sonargraph:create-report

The following shows the relevant section of a pom.xml file that demonstrates the configuration of the Sonargraph functionality:

  <pluginRepositories>
    <pluginRepository>
        <id>hello2morrow.maven.repository</id>
        <url>http://maven.hello2morrow.com/repository</url>
    </pluginRepository>
  </pluginRepositories>
  <build>
    <plugins>
        <plugin>
            <groupId>com.hello2morrow</groupId>
            <artifactId>sonargraph-maven-plugin</artifactId>
            <version>9.8.1</version>
            <configuration>
                <systemDirectory>${basedir}/crm-domain-example.sonargraph</systemDirectory>
                <activationCode>...</activationCode>
                <autoUpdate>true</autoUpdate>
                <failSet>
                    <failOnEmptyWorkspace>true</failOnEmptyWorkspace>
                    <includes>
                        <include>
                            <issueType>ArchitectureViolation</issueType>
                        </include>
                        <include>
                            <issueType>any</issueType>
                            <severity>error</severity>
                        </include>
                    </includes>
                    <excludes>
                        <exclude>
                            <issueType>ScriptCompilationError</issueType>
                            <resolution>none</resolution>
                        </exclude>
                    </excludes>
                </failSet>
            </configuration>
            <executions>
                <execution>
                    <goals>
                        <goal>create-report</goal>
                        <goal>dynamic-report</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

In this example the build will fail if the project contains a package cycle or an architecture violation without a resolution.
Since the parameter 'installationDirectory' is not defined, the Maven plugin will automatically download the newest release of
SonargraphBuild and also will keep it updated automatically. Of course this requires that the build server has access to the Internet.

https://maven.apache.org/guides/introduction/introduction-to-plugin-prefix-mapping.html


20

Chapter 7. Integration with Gradle
The SonargraphBuild Gradle plugin makes it easy to check the quality of your projects. The plugin is able to automatically
download and install SonargraphBuild if your build server has Internet connectivity. You can make the build fail depending on
issues detected by SonargraphBuild.

There are two different Gradle "tasks" available for which parameters can be defined in Gradle "extensions" with the same names:

1. sonargraphReport: Creates a report for an existing system.

2. sonargraphDynamicReport: Creates a system on-the-fly and creates a report for it. This is currently only available for Java
systems.

Prerequisites:

1. You need at least Gradle 2.9 installed.

2. The plugin requires at least a Java 8 runtime.

7.1. Gradle Tips and Best Practices
TIP

To enforce certain rules, specify a failSet that lets the build fail based on detected issues. See Section 7.4, “Gradle
FailSet Configuration”

NOTE

The attribute "logLevel" affects the logging after the SonargraphBuild engine has been started. Setting it to "debug" and
below will generate additional debug information into the XML report.

WARNING

Setting the attribute "reportType" to "standard" only generates metric values for "system" and "module" levels. "full"
generates values for all element levels, but results in a significant larger report!

The splitting of the HTML report into different files is controlled by the attribute "elementCountToSplitHtmlReport".
The resulting detail pages contain tables of issues / resolutions of a specific issue type. The maximum number of items
shown is limited by the parameter "maxElementCountForHtmlDetailsPage".

WARNING

The attribute "qualityModelFile" can be used to apply a fixed set of scripts, architecture files and analyzer configurations
across several systems.

The reported issues are most likely very different from the results of analyzing the system with the Sonargraph
application. If you specify a "qualityModelFile", it is advisable to specify the "Parser" virtual model, since resolutions
e.g. for architecture violations probably will not match.

7.2. Parameters of Task "sonargraphReport"
The following table lists all parameters that are available to create a report for an existing Sonargraph system. The build can be
marked as failed based on a failSet. See Section 7.4, “Gradle FailSet Configuration”.

Attribute Mandatory Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of
SonargraphBuild. Can be used in combination with
'autoUpdate'. As an example, if you specify '8.7' the
newest available version starting with '8.7' will be

same



Integration with Gradle

21

Attribute Mandatory Description Default

used. If you specify '8.7.0.361' you are locked on
that specific version of SonargraphBuild. There are
two special values: "same" and "newest". If "same"
is defined the version of SonargraphBuild must
be the same as the version of the Maven plugin. If
"newest" is defined the plugin will always try to use
the newest version of SonargraphBuild.

skip No Skip SonargraphBuild. false

autoUpdate No If the plugin is configured to download
SonargraphBuild automatically, this parameter
decides if it also should be updated automatically if
a new version becomes available.

false

useHttpProxyHost No If true, the proxy configuration of the Gradle
settings is used. The plugin will use this proxy for
all HTTP communication. Check the  Gradle online
documentation  for details.

false

repository No URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

 

installationDirectory No Installation directory of SonargraphBuild.
If unspecified the plugin will automatically
download SonargraphBuild. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of SonargraphBuild. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile No Path of the log file to be used for SonargraphBuild. ${project.buildDir}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

compilerDefinitionPath No The path to the active compiler definition file to
be used for parsing a C/C++ system. If a built-in
or automatically generated definition should be
used, prefix the definition with "CPlusPlus:", e.g.
CPlusPlus:GnuCpp.cdef.

NOTE:  If the standalone Sonargraph application
is used on the same machine with the same user

If empty, the default
compiler definition
for the build server's
operating system is
used: GnuCpp.cdef
(Linux), CLang.cdef
(Mac), VisualCpp*.cdef

https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy


Integration with Gradle

22

Attribute Mandatory Description Default

and this parameter is empty, the active definition
specified with the standalone application will be
used.

(Windows, generated
definition for the
latest Visual Studio
installation)

systemDirectory No Directory of the Sonargraph System
(xyz.sonargraph)

${project.buildDir}/
${project.group}
.sonargraph

overrideSonargraphWorkspace No If true the output directories defined in the
Sonargraph system will be overridden by the ones
provided by the client.

true

includeTestCode No If true the workspace will also contain the test
source and test class file directories.

false

includeEmptyModules No If true the workspace will also contain empty
modules (without any source and class file
directories).

false

productionSourceSets No Comma separated list of source set names that
contain production code. This parameter is only
needed when you are not using the gradle default
"main".

main

testSourceSets No Comma separated list of source set names that
contain test code. This parameter is only needed
when you are not using the gradle default "test".

test

virtualModel No The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is "Modifiable.vm", if virtual
models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph
Architect license.

No default

qualityModelFile No The path to the quality model file (xyz.sgqm)
that should be applied for the report creation.
Built-in quality models are the language-
independent "Sonargraph:Default.sgqm" and
language-specific "Sonargraph:Java.sgqm",
"Sonargraph:CSharp.sgqm" and
"Sonargraph:CPlusPlus.sgqm". NOTE: All scripts,
analyzer configurations and architecture files
present in the system are ignored!

No default

snapshotDirectory No Target directory for the created snapshot. Only
if either this parameter or snapshotFileName is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

${project.buildDir}

snapshotFileName No The target file name (without extension). Only
if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

<system-
name>_<timestamp>

reportDirectory No Target directory for the created report ${project.buildDir}/
sonargraph

reportFileName No The target file name (without extension) <system-
name>_<timestamp>



Integration with Gradle

23

Attribute Mandatory Description Default

reportType No "standard" only creates metric information of system
and module level. "full" creates metric information
of all levels.

standard

reportFormat No "xml", "html" or "xml, html" html

elementCountToSplit
HtmlReport

No Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), 0 (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
HtmlDetailsPage

No If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
a browser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), 0 (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule No If set to 'true', individual HTML reports are created
per module.

false

baselineReportPath No Path of the baseline XML report that the current
report is compared against

No default

deltaReportPath No Path of the output file that the delta info is
written to. This log file is only generated if a
baselineReportPath has been specified.

<reportDirectory>/
<reportFileName>
_delta.log

prepareForSonarQube No Creates an XML report and stores it at ${basedir}/
${target}/sonargraph/sonargraph-sonarqube-
report.xml, where the SonarQube Sonargraph plugin
expects it.

false

Table 7.1. Configuration for Task/Extension "sonargraphReport"

Related topics:

• Section 7.1, “Gradle Tips and Best Practices”

• Section 7.4, “Gradle FailSet Configuration”

• Section 7.5, “Example Gradle Build File”

7.3. Configuration for Task
"sonargraphDynamicReport"
The following table lists all parameters that are available to create a report for a Java project where no Sonargraph system has
been defined. A Sonargraph system is created on the fly based on the workspace information contained in the Gradle project
setup. The build can be marked as failed based on a failSet. See Section 7.4, “Gradle FailSet Configuration”.

Attribute Mandatory Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of
SonargraphBuild. Can be used in combination with
'autoUpdate'. As an example, if you specify '8.7' the
newest available version starting with '8.7' will be
used. If you specify '8.7.0.361' you are locked on

same



Integration with Gradle

24

Attribute Mandatory Description Default

that specific version of SonargraphBuild. There are
two special values: "same" and "newest". If "same"
is defined the version of SonargraphBuild must
be the same as the version of the Maven plugin. If
"newest" is defined the plugin will always try to use
the newest version of SonargraphBuild.

skip No Skip SonargraphBuild. false

autoUpdate No If the plugin is configured to download
SonargraphBuild automatically, this parameter
decides if it also should be updated automatically if
a new version becomes available.

false

useHttpProxyHost No If true, the proxy configuration of the Gradle
settings is used. The plugin will use this proxy for
all HTTP communication. Check the  Gradle online
documentation  for details.

false

repository No URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

 

installationDirectory No Installation directory of SonargraphBuild.
If unspecified the plugin will automatically
download SonargraphBuild. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of SonargraphBuild. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile No Path of the log file to be used for SonargraphBuild. ${project.buildDir}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

systemBaseDirectory No The directory where the Sonargraph System
(${artifactId}.sonargraph) is created.

${project.buildDir}

systemId No A system id should stay constant over the lifetime
of a software system and should be also unique with
respect to other systems. If you anticipate that the
the group id or artifact id of the root pom might
change you should assign a value to this parameter.

${project.group}_
${project.name}

https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy


Integration with Gradle

25

Attribute Mandatory Description Default

useGroupIdInModuleName No If true the module names will use group id and
artifact id as their name, separated by an underscore.
By default only the artifact id is used as the module
name.

false

includeTestCode No If true the workspace will also contain the test
source and test class file directories.

false

includeEmptyModules No If true the workspace will also contain empty
modules (without any source and class file
directories).

false

productionSourceSets No Comma separated list of source set names that
contain production code. This parameter is only
needed when you are not using the gradle default
"main".

main

testSourceSets No Comma separated list of source set names that
contain test code. This parameter is only needed
when you are not using the gradle default "test".

test

virtualModel No The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is "Modifiable.vm", if virtual
models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph
Architect license.

No default

qualityModelFile No The path to the quality model file (xyz.sgqm)
that should be applied for the report creation.
Built-in quality models are the language-
independent "Sonargraph:Default.sgqm" and
language-specific "Sonargraph:Java.sgqm",
"Sonargraph:CSharp.sgqm" and
"Sonargraph:CPlusPlus.sgqm". NOTE: All scripts,
analyzer configurations and architecture files
present in the system are ignored!

No default

snapshotDirectory No Target directory for the created snapshot. Only
if either this parameter or snapshotFileName is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

${project.buildDir}

snapshotFileName No The target file name (without extension). Only
if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph Architect license.

<system-
name>_<timestamp>

reportDirectory No Target directory for the created report ${project.buildDir}/
sonargraph

reportFileName No The target file name (without extension) <system-
name>_<timestamp>

reportType No "standard" only creates metric information of system
and module level. "full" creates metric information
of all levels.

standard

reportFormat No "xml", "html" or "xml, html" html

elementCountToSplit
HtmlReport

No Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the

1000



Integration with Gradle

26

Attribute Mandatory Description Default

lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), 0 (use default value), 1 (always
split), positive number > 1 (threshold for split)

maxElementCountFor
HtmlDetailsPage

No If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
a browser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), 0 (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule No If set to 'true', individual HTML reports are created
per module.

false

baselineReportPath No Path of the baseline XML report that the current
report is compared against

No default

deltaReportPath No Path of the output file that the delta info is
written to. This log file is only generated if a
baselineReportPath has been specified.

<reportDirectory>/
<reportFileName>
_delta.log

prepareForSonarQube No Creates an XML report and stores it at ${basedir}/
${target}/sonargraph/sonargraph-sonarqube-
report.xml, where the SonarQube Sonargraph plugin
expects it.

false

Table 7.2. Configuration for Task/Extension "sonargraphDynamicReport"

Related topics:

• Section 7.1, “Gradle Tips and Best Practices”

• Section 7.4, “Gradle FailSet Configuration”

• Section 7.5, “Example Gradle Build File”

7.4. Gradle FailSet Configuration
The following elements allow to mark a build as failed. An example is shown in the next section Section 7.5, “Example Gradle
Build File”.

TIP

The issue type that must be specified for include/exclude definitions can be determined via the Properties View of
Sonargraph .

TIP

If you want the build to fail only for newly introduced issues, apply resolutions like "Ignore" or "Fix" to the already
know issues in Sonargraph and only filter for resolution value "none".

TIP

If you want the build to fail because of certain metric values (e.g. Lines of Code per Source File), define a threshold for
that metric in Sonargraph to create issues if files grow too large.



Integration with Gradle

27

TIP

The include/exclude definitions are applied in the following sequence, regardless of their definition order:

1. First all include definitions are matched against the set of existing issues.

2. Then the exclude definitions are applied and the set of previously matched issues is reduced accordingly.

Element Parameter Mandatory Description Default

failSet failOnEmptyWorkspace No Marks the build as failed if modules
and root directories are detected but no
components are found. Possible values
are "true" or "false".

true

include/exclude issueType Yes Name of the issue type or "any" for
wildcard matching.

No default

include/exclude severity No Severity of the issue. Possible values
are: error, warning, info, none, any

any

include/exclude resolution No The issue's resolution type. Possible
values are: task, ignore, any, none

none

Table 7.3. Configuration Parameters for Build Failure

7.5. Example Gradle Build File
The following example shows how to integrate the SonargraphBuild Gradle plugin into your project. For multi-project builds it
is sufficient to only add the plugin to the root project. It runs as an aggregator after all modules have been compiled. The example
project in the installation contains a complete build.gradle file. Typically you would run the plugin with a command-line like the
following to ensure that everything is compiled from scratch before the report is created:

gradlew clean build sonargraphReport

The following shows the relevant section of a build.gradle file that demonstrates the configuration of the Sonargraph functionality:



Integration with Gradle

28

apply plugin: 'com.hello2morrow.sonargraph'

task wrapper(type: Wrapper) 
{
    gradleVersion = '2.11'
}

buildscript
{
    repositories
    {
        mavenLocal()
        mavenCentral()
        maven
        {
            url 'http://maven.hello2morrow.com/repository'
        }
        maven
        {
            url 'http://maven.hello2morrow.com/snapshots'
        }
    }
    
    dependencies
    {
        classpath('com.hello2morrow:sonargraph-gradle-plugin:9.8.1') 
    }
}

sonargraphReport
{
    // This is a activation code for Sonargraph-Explorer Build which you can use for testing.
    // Replace with your own if you have one.
    activationCode = "36E2-0F3E-643F-B4F2"
    failSet 
    {
        failOnEmptyWorkspace = true
        include(issueType: "any", severity: "error", resolution: "none")
        include(issueType: "ArchitectureViolation")
        include(issueType: "any", severity: "warning")
        exclude(issueType: "ScriptCompilationError", resolution: "none")
        exclude(issueType: "ThresholdViolation")
    }
}

sonargraphDynamicReport
{
    activationCode = "36E2-0F3E-643F-B4F2"
    qualityModelFile = "Sonargraph:Java.sgqm" //default Java quality model
    failSet 
    {
        failOnEmptyWorkspace = true
        include(issueType: "any", severity: "error", resolution: "none")
        include(issueType: "ArchitectureViolation")
        include(issueType: "any", severity: "warning")
        exclude(issueType: "ScriptCompilationError", resolution: "none")
        exclude(issueType: "ThresholdViolation")
    }
}

In this example the build will fail if the project contains a package cycle or an architecture violation without a resolution.
Since the parameter 'installationDirectory' is not defined, the Gradle plugin will automatically download the newest release of
SonargraphBuild and also will keep it updated automatically. Of course this requires that the build server has access to the Internet.

NOTE

The boolean parameters must be set without any quotes.



Integration with Gradle

29

NOTE

Variable substitution in parameters does not work with single quotes, use double quotes instead.



30

Chapter 8. Reporting Changes
Reports for large systems provide an overwhelming amount of information. Most of the times a report containing the changes
compared to a baseline is enough - similar to a newspaper versus a whole encyclopedia. This delta feature is currently
implemented in our Open Source project "Sonargraph Integration Access" that is hosted on GitHub at https://github.com/
sonargraph/sonargraph-integration-access.

This functionality is available in SonargraphBuild version 9.4.2 and newer.

The delta report can be generated by specifying a previously generated XML report file as a baseline. The delta report is a plain
text file. An example report is shown below (lines have been truncated) that shows differences in issues:

Delta of System Reports:
   Report1 (baseline): D:\00_repos\sonargraph-integration-access\src\test\diff\AlarmClockMain_01.xml
   Report2           : D:\00_repos\sonargraph-integration-access\src\test\diff\AlarmClockMain_02.xml

System Info: 
   Name: AlarmClockMain
   ID: 6db0a52dfa66892be8a4bc2bb7cf1720
   Path: D:\00_repos\sonar-sonargraph-integration\src\test\AlarmClockMain\AlarmClockMain.sonargraph

Delta of Systems
   System 1 (Baseline): AlarmClockMain from Nov 30, 2016 5:01:13 PM
   System 2           : AlarmClockMain from Dec 30, 2016 5:01:13 PM

- Issue delta:    
    Removed (13):
        EmptyArchitectureElement, generated by Core: Artifact 'Foundation', line 1, resolved 'false'
        Potentially dead method, generated by ./Java/BadSmells/FindDeadCode.scr: Method has ...
        Potentially dead type, generated by ./Java/BadSmells/FindDeadCode.scr: Type has no ...
        Duplicate Code Block with 2 occurrences, block size '52', resolved 'false'
         Occurrence in ./com/h2m/alarm/model/AlarmClock.java, start '52', block size '52', ...
         Occurrence in ./com/h2m/alarm/presentation/Main.java, start '34', block size '52', ...
        JavaFileClassFileMissing, generated by JavaLanguageProvider: Missing class file for ...
    Improved (1):
        Previous: ThresholdViolation, generated by ./Java/BadSmells/FindDeadCode.scr: Potentially ...    
    Worsened (1):
        Previous: ThresholdViolation, generated by Core: Total Lines = 106 (allowed range: 0 to ...    
    Added (6):
        Supertype uses subtype, generated by ./Core/SuperTypeUsesSubType.scr: Reference to ...
        ArchitectureViolation, generated by ./Layers.arc: [Local Variable] 'Model' cannot access ...        
        

If present, the report also shows differences in the core system configuration (i.e. licensed features, active analyzers, metric
provider, metric ids, etc.), workspace configuration and resolutions.

Current Limitations
The following changes only indirectly affect the Sonargraph issues, but will be treated as changes by the delta detector. The
issues in the baseline report will be reported as removed and the issues from the new report as added, despite the fact that the
issues are logically the same:

1. Cycle groups issues and duplicate code block issues consist of several parts that contribute to their unique IDs. If one of these
parts changes (for example a source file has been renamed) then the issue's ID is changed.

2. If a script or an architecture file is renamed, the origin of the issues generated by those resources is changed.

3. For some issues the originating line within a source file is stored and used for comparison. Changing unrelated lines in the
source file before the issue's origin therefore will cause the issue to be treated as changed.

NOTE

As with every modification: Frequent and small changes are easier to review than big-bang refactorings.

https://github.com/sonargraph/sonargraph-integration-access
https://github.com/sonargraph/sonargraph-integration-access


Reporting Changes

31

Ideas for feature improvements are to include the baseline report as filter in Sonargraph Architect/Explorer to let the user focus
on changed issues.



32

Chapter 9.  Integration with SonarQube
For Java projects the findings of Sonargraph can be stored and visualized in  SonarQube  using the Sonargraph Integration plugin.

The plugin is compatible with SonarQube versions 6.7.3 and higher.

The plugin is available here:

1. The SonarQube Marketplace accessible from within the SonarQube server's web interface.

2. GitHub  https://github.com/sonargraph/sonar-sonargraph-integration/releases.

3. hello2morrow's web site  https://www.hello2morrow.com/products/downloads.

9.1. Overall Process of Integration
We assume you have already a SonarQube server running and see the project of interest in the server's web interface. To add
Sonargraph's analysis results you need to:

1. Install the Sonargraph Integration plugin in your SonarQube server.

2. Use the built-in Sonargraph quality profile or add individual Sonargraph Integration rules to the profile you want to use.
Assign your project to this profile.

3. Define and analyze the project with Sonargraph, either using the Explorer or Architect version. You need the system definition.
Alternatively the system definition could be obtained dynamically with our support for dynamic system creation.

4. Create an XML report with Sonargraph Build of that project using either Maven, Gradle, Ant or the Shell support prior to
the SonarQube analysis with one of the scanners. Make sure the that the XML report is in the right spot so the Sonargraph
Integration plugin can find it .

9.2. SonarQube Configuration
Localizing the Sonargraph XML Report

The default location of the xml report file is 'target/sonargraph/sonargraph-sonarqube-report.xml' relative to every module.

In a multi-module system the xml report file must be stored in every module and the top-level project.

Sonargraph calculates metrics and provides issues on module and system level. The system level is equivalent to SonarQube's
Project in a multi module system. In a single-module system the module/project will contain both classes of information.

NOTE

Using Maven or Gradle with the prepareForSonarQube flag will copy the produced xml report automatically into all
modules.

NOTE

If you want to avoid having a copy of the xml report file in all modules you can alternatively use one absolute location.

Sonargraph Script Metrics and Issues

Issues created from an automated script are activated (or deactivated) with the single rule 'Sonargraph Integration: Script Issue'.

Metrics created from an automated script are now stored in a properties file and are automatically considered after a restart of
the SonarQube server. The properties file is stored at '.sonargraphintegration/metrics.properties'.

http://www.sonarqube.org/
https://github.com/sonargraph/sonar-sonargraph-integration
https://www.hello2morrow.com/products/downloads


Integration with SonarQube

33

NOTE

When introducing script metrics for the first time a warning message is created in the console of the SonarQube server
when a restart is required because of a modified metrics.properties file.

Related topics:

• See the section about "Workspace Profiles" in the user manual of the standalone application, if the root directories on your
build server do not match the workspace definition.

• Chapter 6, Integration with Maven

• Chapter 7, Integration with Gradle

• Chapter 5, Integrating with Ant

9.3. SonarQube Maven Configuration
If you use the SonarQube Maven plugin, you must set the following parameter in the configuration of the SonargraphBuild
Maven plugin in your project's pom.xml:

<configuration>
    <prepareForSonarQube>true</prepareForSonarQube>
    ...            
</configuration>

The SonargraphBuild Maven plugin will automatically create an XML report (if not already configured) and will copy the report
to ${target}/sonargraph/sonargraph-sonarqube-report.xml for the root project and all modules (excluding those with packaging
"pom").

The example project contains an example pom.xml and also a batch file that demonstrates how the check can be called from
the command-line.

Related topics:

• Chapter 6, Integration with Maven

• Section 6.5, “Example POM”

NOTE

An example command-line using only one xml report location (added line-breaks for readability):

mvn clean package 
   sonargraph:create-report -Dsonargraph.reportFormat=xml 
    -Dsonargraph.reportDirectory=D:/temp/report -Dsonargraph.reportFileName=MyReport 
   sonar:sonar -Dsonar.sonargraph.integration:report.path=D:/temp/report/MyReport.xml

9.4. SonarQube Gradle Configuration
If you use the SonarQube Gradle plugin, you must set the following parameter in the configuration of the SonargraphBuild tasks
in your project's build.gradle:

sonargraphReport
{
    activationCode = "36E2-0F3E-643F-B4F2"
    prepareForSonarQube = "true"
}

The SonargraphBuild Gradle plugin will automatically create an XML report (if not already configured) and will copy the report
to ${target}/sonargraph/sonargraph-sonarqube-report.xml for the root project and all modules.



Integration with SonarQube

34

Related topics:

• Chapter 7, Integration with Gradle

• Section 6.5, “Example POM”

9.5. SonarQube Ant Runner Configuration
If you use the SonarQube Ant Runner the Sonargraph XML report must have been created and this report must be configured
for the Sonargraph SonarQube plugin using the following parameter:

<property name="sonar.sonargraph.integration:report.path" value="${path.target.report}" />

Related topics:

• Chapter 5, Integrating with Ant



35

Chapter 10.  Integration with SonarQube
using Sonargraph Integration plugin 2.1.4
or lower
For Java projects the findings of Sonargraph can be stored and visualized in  SonarQube  using the SonarQube Sonargraph
Integration Plugin. The plugin is available via the SonarQube update center and on the plugin's GitHub page at https://github.com/
sonargraph/sonar-sonargraph-integration/releases. The plugin is compatible with SonarQube versions 5.3 and higher.

NOTE

The plugin reads the information of the XML report that has been generated using SonargraphBuild. You need to
configure your build pipeline accordingly.

NOTE

The number of reported Sonargraph issues might be different in SonarQube for the following reasons: As far as we know,
SonarQube requires a physical resource to attach an issue. There is no equivalent SonarQube resource for "logical"
Sonargraph elements like "logical namespaces", so there are no SonarQube issues created for package cycles, for
example. If you want to track package cycles, configure relevant metrics like "Number of cyclic packages", "Biggest
Package Cycle Group", etc. to be shown in a dashboard widget or make them part of your Quality Gate.

On the other hand an individual SonarQube issue is attached to the source file of each duplicate code block occurrence of
a Sonargraph duplicate code issue. The same applies to all source files involved in Sonargraph component cycle groups.

Our recommendation: Use SonarQube only as a reporting dashboard and use Sonargraph Architect/Explorer for
detailed analysis. The usability and interactions for Sonargraph issues is much better in the rich-client application!

NOTE

The plugin is currently only available for Java systems.

10.1. SonarQube Configuration
The following list describes the necessary steps to get Sonargraph issues and metrics integrated in SonarQube. Additional details
are given below.

1. Download the latest SonarQube LTS version. SonarQube's API changes fast, so we don't guarantee that everything works
flawless with the latest and greatest SonarQube version. If you spot a problem, please let us know!

2. Download the latest Sonargraph plugin and copy it into <sonarqube-inst>/extensions/plugins (or use the Update Center, once
it is available there).

3. Start the SonarQube server.

4. Change the current quality profile or create a new one that include at least one of the "Sonargraph Integration" rules. Assign
your project to this profile. Details about SonarQube Quality Profiles can be found here:  https://docs.sonarqube.org/display/
SONAR/Quality+Profiles

If no Sonargraph rules are activated, the plugin will skip this project. You can either search for rules using the term "Sonargraph
Integration", or the tag "sonargraph-integration".

5. Change the dashboard configuration to include the "Sonargraph Integration" widgets (for details, see below). NOTE: Project
dashboards have been dropped since SonarQube version 6.1.

6. For the full functionality of Sonargraph, you need an "Architect" license. If you don't have one, just register on our
hello2morrow web site and request a trial license. Alternatively, use a free Sonargraph Explorer license with reduced feature
set (no architecture checks, no scripts execution, etc.)

http://www.sonarqube.org/
https://github.com/sonargraph/sonar-sonargraph-integration
https://github.com/sonargraph/sonar-sonargraph-integration
https://docs.sonarqube.org/display/SONAR/Quality+Profiles
https://docs.sonarqube.org/display/SONAR/Quality+Profiles


Integration with SonarQube
using Sonargraph Integration

plugin 2.1.4 or lower

36

7. Configure your build to run SonargraphBuild prior to the SonarQube scanner. Check the previous chapters for details and
don't forget to configure the "prepareForSonarQube" flag!

The Sonargraph SonarQube Plugin repository at  https://github.com/sonargraph/sonar-sonargraph-integration  contains an
example multi-module Maven project in src/test/AlarmClockMain. There are various build files and batch files available that
demonstrate how the analysis can be executed.

8. Execute the build and check in the console log that the Sonargraph Integration plugin has been executed. In SonarQube
the Sonargraph Integration widgets should now display metrics determined by Sonargraph and if your projects contains
architecture violations or cyclic dependencies, these should be visible as issues.

Configure your dashboard widgets to show relevant Sonargraph metrics. The Quality Gate can be adjusted to contain those
metrics as well.

9. If you have difficulties setting up the integration, check the console log first for any errors reported by the SonargraphBuild
execution or the Sonargraph SonarQube Plugin.

If your system is really big and contains a lot of modules, check the info below about how to "Handling Large Systems".

Configuration of Dashboard Widgets

The following screenshot shows the available Sonargraph widgets that can be included in your SonarQube dashboard.

NOTE

The Sonargraph widgets are no longer available for SonarQube versions 6.1 and newer, since SonarQube project
dashboards have been dropped.

Figure 10.1. SonarQube Dashboard Configuration

https://github.com/sonargraph/sonar-sonargraph-integration


Integration with SonarQube
using Sonargraph Integration

plugin 2.1.4 or lower

37

Include Custom Sonargraph Metrics and Issues

Core metrics and rules of Sonargraph are pre-defined in the plugin. If you want to track custom metrics that are generated via

scripts, you first need to export the report meta-data via the standalone application's menu "File" → "Export Meta-Data...". The
directory of this meta-data file needs to be specified in the plugin's configuration page. The additional metrics will be available
after a restart of the SonarQube server and an additional execution of the SonarQube checks.

NOTE

This configuration is affecting all projects that use the Sonargraph plugin. If you have several projects with different
metrics, store the separate meta-data files in the same directory. The plugin will merge the info of the different
configuration files.

Related topics:

• See the section about "Workspace Profiles" in the user manual of the standalone application, if the root directories on your
build server do not match the workspace definition.

• Chapter 6, Integration with Maven

• Chapter 7, Integration with Gradle

• Chapter 5, Integrating with Ant

10.2. SonarQube Maven Configuration
If you use the SonarQube Maven plugin, you must set the following parameter in the configuration of the SonargraphBuild
Maven plugin in your project's pom.xml:

<configuration>
    <prepareForSonarQube>true</prepareForSonarQube>
    ...            
</configuration>

The SonargraphBuild Maven plugin will automatically create an XML report (if not already configured) and will copy the report
to ${target}/sonargraph/sonargraph-sonarqube-report.xml for the root project and all modules (excluding those with packaging
"pom").

The example project contains an example pom.xml and also a batch file that demonstrates how the check can be called from
the command-line.

Related topics:

• Chapter 6, Integration with Maven

• Section 6.5, “Example POM”

NOTE

For very large systems with a high number of modules, do not use the prepareForSonarQube flag. This causes the
generated report to be copied into each project's target folder.

Instead, use the parameters to specify the report format ("xml"), the report's target directory and file name and
use the parameter "sonar.sonargraph_integration.report.path" as explained in Section 9.5, “SonarQube Ant Runner
Configuration”. This causes the same report instance to be re-used for every module being analyzed by SonarQube.

An example command-line with the aforementioned parameters (added line-breaks for readability):

mvn clean package 
   sonargraph:create-report -Dsonargraph.reportFormat=xml 
    -Dsonargraph.reportDirectory=D:/temp/report -Dsonargraph.reportFileName=MyReport 
   sonar:sonar -Dsonar.sonargraph_integration.report.path=D:/temp/report/MyReport.xml



Integration with SonarQube
using Sonargraph Integration

plugin 2.1.4 or lower

38

10.3. SonarQube Gradle Configuration
If you use the SonarQube Gradle plugin, you must set the following parameter in the configuration of the SonargraphBuild tasks
in your project's build.gradle:

sonargraphReport
{
    activationCode = "36E2-0F3E-643F-B4F2"
    prepareForSonarQube = "true"
}

The SonargraphBuild Gradle plugin will automatically create an XML report (if not already configured) and will copy the report
to ${target}/sonargraph/sonargraph-sonarqube-report.xml for the root project and all modules.

Related topics:

• Chapter 7, Integration with Gradle

• Section 6.5, “Example POM”

10.4. SonarQube Ant Runner Configuration
If you use the SonarQube Ant Runner the Sonargraph XML report must have been created and this report must be configured
for the Sonargraph SonarQube plugin using the following parameter:

<property name="sonar.sonargraph_integration.report.path" value="${path.target.report}" />

The example project contains this configuration in the Ant build file.

Related topics:

• Chapter 5, Integrating with Ant



39

Chapter 11.  Integration with Jenkins
With Jenkins Sonargraph Integration Plugin for  Jenkins  jobs the findings of Sonargraph can be used to let builds fail, or mark
them unstable. Additionally Sonargraph metric values are stored for every build and can be visualized as charts.

11.1. Jenkins Server Configuration
The first step is to configure one or more versions of Sonargraph Build in "Manage Jenkins" → "Configure System". Click
"Sonargraph Build installations..."

Figure 11.1. Jenkins - Sonargraph Build Configuration

and select a name, a version and an installer.

Figure 11.2. Jenkins - New Sonargraph Build

11.2. Jenkins Job Configuration
Add post build action "Sonargraph Integration Report Generation & Analysis" to your job.

Figure 11.3. Job - Post Build Action

First decide if Sonargraph Build is used to create the report,

https://jenkins-ci.org/


Integration with Jenkins

40

Figure 11.4. Report - Generate With Sonargraph Build

or there already exists a report generated by an upstream build action.

Figure 11.5. Report - Pre Generated

When Sonargraph Build is used to create the report fill out all required information:

Figure 11.6. Report - Standard Options

By pressing "Advanced..." some more options pop up:

Figure 11.7. Report - Advanced Options

11.3. Charts Configuration
To see some charts, a meta-data file must be configured, and either all contained charts/metrics are shown, or a list of charts/
metrics to be shown can be given. If you want to track custom metrics that are generated via scripts, you first need to export the

report meta-data via the standalone application's menu "File" → "Export Meta-Data...".



Integration with Jenkins

41

Figure 11.8. Job - Chart Configuration

Figure 11.9. Job - Select Charts

11.4. Build Configuration
Finally the reasons for marking the build as failed or unstable can be set:

Figure 11.10. Mark build failed or instable

Related topics:

• See the section about "Workspace Profiles" in the user manual of the standalone application, if the root directories on your
build server do not match the workspace definition.

• Chapter 6, Integration with Maven



42

Chapter 12. FAQ
This section summarizes common problems and their solutions.

Different Results in Sonargraph and SonargraphBuild

If you notice differences in the number of issues or metrics reported by SonargraphBuild, this might be due to the following
reasons:

1. The SonargraphBuild integrations for Maven and Gradle use as default the workspace information about root directories as
provided by Maven or Gradle. Thus the number of root directories might be different, if the Sonargraph workspace does not
contain all available root directories. If you know that all root directories contained in the Sonargraph workspace are present
at build-time, deactivate this dynamic workspace configuration by setting the parameter "overrideSonargraphWorkspace" to
"false".

2. Check if test code should be part of the workspace. As default it is excluded in SonargraphBuild, because the default value
of the parameter "includeTestCode" is "false".

3. If the above points did not provide an answer, check chapter Chapter 8, Reporting Changes on how to create a detailed report
about differences.



43

Chapter 13. Trademark Attributions,
Library License Texts, and Source Code
Eclipse is a trademark of Eclipse Foundation, Inc.

IntelliJ is a trademark of JetBrains s.r.o.

Java and all Java-based trademarks are trademarks of Oracle Corporation in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft, and Windows are trademarks of Microsoft Corporation in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.



44

Chapter 14. Legal Notice
All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

• Neither the name of hello2morrow GmbH nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



45

Appendix A.  SonargraphBuild API
Documentation
 SonargraphBuild API is documented via JavaDoc that is available within the installation of the product.

Link to JavaDoc of SonargraphBuild API.

./javadoc/index.html


46

Index
A
Activation Code, 2, 2
Ant Integration, 10

B
Build Server Integration

Jenkins, 39
SonarQube, 32, 35

C
Command-line Interface, 5
Configuration

Build Failure, 8
Report Creation, 5

F
FAQ, 42

G
Gradle

FailSet Configuration, 26
sonargraphDynamicReport, 23

Gradle Configuration
sonargraphReport, 20
Tips, 20

Gradle Integration, 20

I
Installation Requirements, 4

J
Jenkins Integration, 39

Build Configuration, 41
Charts Configuration, 40
Job Configuration, 39
Server Configuration, 39

L
License, 2
License Server Settings, 3

M
Maven

dynamic-report, 15
FailSet Configuration, 18

Maven Configuration
create-report, 12
Tips, 11

Maven Integration, 11

P
Prerequisites, 4



Index

47

Proxy Settings, 3

R
Reporting Changes, 30

S
SonargraphBuild API, 45
SonarQube Integration, 32, 35

Ant Runner Configuration, 34, 38
Configuration, 32, 35
Gradle Configuration, 33, 38
Maven Configuration, 33, 37
Overall Process of Integration, 32


	SonargraphBuild User Manual
	Table of Contents
	Chapter 1. Sonargraph's Next Generation - SonargraphBuild
	Chapter 2.  Licensing
	2.1. Getting an Activation Code or a License
	2.2. Activation Code Based Licensing
	2.3. Proxy Settings
	2.4. License Server Settings

	Chapter 3.  Getting Started
	3.1. Installation Requirements
	3.2. Prerequisites

	Chapter 4. Executing from the Command-line
	4.1. Report Creation
	4.2. Specify Conditions for Build Failure

	Chapter 5. Integrating with Ant
	Chapter 6. Integration with Maven
	6.1. Maven Tips and Best Practices
	6.2. Parameters of Goal "create-report"
	6.3. Configuration for goal "dynamic-report"
	6.4. Maven FailSet Configuration
	6.5. Example POM

	Chapter 7. Integration with Gradle
	7.1. Gradle Tips and Best Practices
	7.2. Parameters of Task "sonargraphReport"
	7.3. Configuration for Task "sonargraphDynamicReport"
	7.4. Gradle FailSet Configuration
	7.5. Example Gradle Build File

	Chapter 8. Reporting Changes
	Chapter 9.  Integration with SonarQube
	9.1. Overall Process of Integration
	9.2. SonarQube Configuration
	9.3. SonarQube Maven Configuration
	9.4. SonarQube Gradle Configuration
	9.5. SonarQube Ant Runner Configuration

	Chapter 10.  Integration with SonarQube using Sonargraph Integration plugin 2.1.4 or lower
	10.1. SonarQube Configuration
	10.2. SonarQube Maven Configuration
	10.3. SonarQube Gradle Configuration
	10.4. SonarQube Ant Runner Configuration

	Chapter 11.  Integration with Jenkins
	11.1. Jenkins Server Configuration
	11.2. Jenkins Job Configuration
	11.3. Charts Configuration
	11.4. Build Configuration

	Chapter 12. FAQ
	Chapter 13. Trademark Attributions, Library License Texts, and Source Code
	Chapter 14. Legal Notice
	Appendix A.  SonargraphBuild API Documentation
	Index

