
Sonargraph-Build User Manual

Version 10.3.0

Sonargraph-Build User Manual: Version 10.3.0
Copyright © 2020 hello2morrow GmbH

iii

Table of Contents
1. Sonargraph's Next Generation - Sonargraph-Build .. 1
2. Licensing ... 2

2.1. Getting an Activation Code or a License .. 2
2.2. Activation Code Based Licensing .. 2
2.3. Proxy Settings ... 3
2.4. License Server Settings ... 3

3. Getting Started ... 4
3.1. Installation Requirements ... 4
3.2. Prerequisites .. 4

4. Executing from the Command-line ... 5
4.1. Report Creation .. 6
4.2. Specify Conditions for Build Failure .. 10

4.2.1. Fail on Issues .. 10
5. Integrating with Ant .. 12
6. Integrating with Maven .. 13

6.1. Maven Tips and Best Practices ... 13
6.2. Parameters of Goal "create-report" ... 15
6.3. Configuration for goal "dynamic-report" ... 20
6.4. Specify Conditions for Build Failure .. 24

6.4.1. Maven FailSet Configuration .. 24
6.4.2. Example POM ... 25

7. Integrating with Gradle .. 26
7.1. Gradle Tips and Best Practices .. 26
7.2. Parameters of Task "sonargraphReport" .. 27
7.3. Configuration for Task "sonargraphDynamicReport" ... 32
7.4. Configuration for Task "resendFailedUploads" ... 37
7.5. Specify Conditions for Build Failure .. 39

7.5.1. Gradle FailSet Configuration .. 39
7.6. Example Gradle Build File ... 40

8. Reporting Changes .. 41
8.1. Compute the System Delta (Deprecated) ... 42

9. Integrating with SonarQube .. 44
9.1. Overall Process of Integration ... 44
9.2. SonarQube Configuration ... 44
9.3. SonarQube Maven Configuration ... 45
9.4. SonarQube Gradle Configuration ... 46
9.5. SonarQube Scanner / Ant Runner Configuration ... 46

10. Integrating with Jenkins .. 47
10.1. Global Configuration ... 47

10.1.1. Tool Installation for Sonargraph Build .. 47
10.2. Sonargraph License Server ... 48
10.3. Job Configuration .. 48

10.3.1. Add post-build action .. 48
10.4. Use Pre-Generated Report .. 48
10.5. Generate Report with Sonargraph Build .. 49

10.5.1. Advanced Options .. 49
10.5.2. Logging .. 51
10.5.3. Baseline .. 51
10.5.4. Chart Configuration .. 51
10.5.5. Mark Build .. 52

10.6. Configure Jenkins Logging ... 52
11. FAQ .. 54
12. Trademark Attributions, Library License Texts, and Source Code ... 55
13. Legal Notice ... 56
A. Sonargraph-Build API Documentation .. 57

Sonargraph-Build User Manual

iv

Index .. 58

1

Chapter 1. Sonargraph's Next Generation -
Sonargraph-Build
Sonargraph-Build integrates quality checks into the continuous integration build and can create XML and HTML reports
via an Ant task, Maven goal, Gradle task or shell scripts. These reports contain all information about quality issues and
calculated metrics. The XML report can be used for further downstream processing via transformations. A library to access
the information via a Java API is called Sonargraph Integration Access and is available at GitHub. The XML schema for the
report can be found there at https://github.com/sonargraph/sonargraph-integration-access/tree/master/src/main/resources/com/
hello2morrow/sonargraph/integration/access/persistence/report.

Sonargraph-Build additionally offers the possibility to mark the build as failed based on issues detected during the analysis. So,
if you have written custom queries via Groovy scripts that check on the proper usage of an external library or detect a code smell,
you can be sure that it is detected immediately.

If you start using Sonargraph-Build on an existing project and want to ensure that the quality is constantly improving, Sonargraph-
Build can be configured to fail only on new and worsened issues.

https://github.com/sonargraph/sonargraph-integration-access
https://github.com/sonargraph/sonargraph-integration-access/tree/master/src/main/resources/com/hello2morrow/sonargraph/integration/access/persistence/report
https://github.com/sonargraph/sonargraph-integration-access/tree/master/src/main/resources/com/hello2morrow/sonargraph/integration/access/persistence/report

2

Chapter 2. Licensing
When you start Sonargraph you will be asked for an activation code or a license file. For additional licensing and pricing
information please contact <sales@hello2morrow.com> or <support@hello2morrow.com> and check our web
site .

2.1. Getting an Activation Code or a License
When you have purchased a Sonargraph license, an activation code or a license file will be delivered to you.

There might be a program for free Sonargraph licenses which are time-limited and/or size-limited. Please register on our website
and check the available programs.

In order to replace a valid license by a new one, choose "Help" → "Manage License..." from the user menu in the GUI-based
product. Sonargraph licenses are bound to a named user. The usage by a different user is a violation of the license agreement.

2.2. Activation Code Based Licensing
Activation code based licensing activates Sonargraph licenses via Internet or a local license server by requesting a so-called
ticket. Every activation code is customer specific and represents a pool of Sonargraph user licenses as purchased and licensed
to the specific customer. Activation code based licensing technically requires that Sonargraph has Internet access or that a local
license server is reachable. There are two types of activation code based licenses available:

1. Flexible User License (if you bought Sonargraph before version 9.0 you have flexible user licenses)

2. Floating License (new with Sonargraph 9.0)

Flexible user licenses support a feature that allows customer-driven transfer of a Sonargraph user license to another user after
some amount of time. This works like this:

• When an activation code based license is requested, Sonargraph automatically requests a license ticket from the hello2morrow
license server. This ticket expires after some time, for example after 30 days. During these 30 days, the use of the Sonargraph
installation that requested the ticket is licensed (by the user who ran Sonargraph when the license ticket was requested).
Sonargraph can be used during this period without any access to the Internet.

• After the ticket of a Sonargraph installation has expired (in our example scenario, this happens on the 31st day after the ticket
has been requested), one of two things typically happen:

1. The same Sonargraph installation is started again. Sonargraph then notices that the license ticket has expired and lets the
user know about it by presenting a dialog to manually request a new ticket from the hello2morrow license server, for the
same activation code or a different one if desired. The new ticket again is valid for the same time period. You can toggle

the feature at ' Help → Renew License Ticket Automatically ' to have Sonargraph silently perform license ticket requests
using the current activation code, without further user interaction.

2. Alternatively, the user of the installation might not continue to work with Sonargraph; then the license is now, after the
expiration of the ticket in the Sonargraph installation, available to some other user. The hello2morrow license server will
supply a license ticket to the next user that requests one for the given activation code.

Note that the number of license tickets that can be supplied by the license server for some activation code might be more than
one. For example, a company might license Sonargraph for 20 users. The same activation code can be used by all of them, but
as soon as the 21st license ticket is requested for this activation code, this request will be denied. A new request for a ticket will
only be fulfilled after one of the already supplied tickets has expired, so that at any one moment, at most 20 non-expired license
tickets exist for the activation code.

It is not required that the same user requests a replacement of an expired license ticket; any user that knows the activation code
can request one of the free tickets. This mechanism reduces the effort needed for license management in a changing user group.

https://www.hello2morrow.com/products/sonargraph/architect_pricelist
https://www.hello2morrow.com/products/sonargraph/architect_pricelist

Licensing

3

However, in order to avoid any misuse we strongly encourage you to restrict the information about your activation code to those
persons who are supposed to use Sonargraph.

If you have any suspicion about misuse please inform <support@hello2morrow.com> immediately. We can promptly
deactivate an activation code so that any further misuse is stopped and provide a new activation code to you.

Floating licenses bind a ticket to an instance of Sonargraph while it is running. As soon as Sonargraph is terminated the license
can be used by another user.

Most of our customers are using our Internet based license server, so there is no need for you to operate your own license server as
long as the machines running Sonargraph have access to the Internet. If this is not the case or you want to avoid being dependent
on the availability of hello2morrow's web-based license server you can request the usage of a local license server by contacting
us via <sales@hello2morrow.com> or <support@hello2morrow.com>. Once your request has been approved, you
can download hello2morrow's local license server and run it on your premises. If you have a flexible user license it is also possible
to run Sonargraph with file based licenses.

2.3. Proxy Settings
If you use hello2morrow's Internet servers and Activation code based licensing, you need Internet access. If your network
configuration does not allow direct Internet access, but provides access through an HTTP proxy instead, you can specify the host
name and port of the proxy server. If the proxy server access is password protected, you can supply a user name and a password
in order to authenticate.

For the GUI-based product, the proxy settings can be changed via "Preferences..." → "Proxy Settings" .

Check the user manual of Sonargraph-Build for proxy configuration options of the build server integrations.

2.4. License Server Settings
I you use your own license server you need to configure the access to it. You must specify the host name and port of the license
server.

For the GUI-based product, the proxy settings can be changed via "Preferences..." → "License Server Settings" .

4

Chapter 3. Getting Started
This chapter summarizes what is needed for Sonargraph-Build to run.

3.1. Installation Requirements
The following prerequisites must be fulfilled for Sonargraph-Build :

1. Microsoft™ Windows™ , Mac OS-X or Linux® operating system.

2. Java Runtime Environment 1.8 or higher

3. At least 2048 MB RAM (Win32: 1400 MB)

NOTE

Sonargraph keeps all information in main memory. For very large systems, you need to increase the memory for the
JVM in case you run into out of memory exceptions.

3.2. Prerequisites
1. If you plan to run Sonargraph-Build via ANT or the command line you need to download it from our web site: https://

www.hello2morrow.com/products/downloads and extract the Zip file to a convenient location. If you are using Maven for
your build process you only need to install Sonargraph-Build if your build server has no Internet connectivity.

2. If the machine that executes Sonargraph-Build has Internet access, use an activation code parameter to obtain a ticket from
your pool of licenses. If the machine does not have Internet access, you need to obtain a license file and pass the location of
this file as a parameter to your build.

3. For integration with Shell script or Ant a "software system" must have been created via Sonargraph containing a valid
workspace configuration including modules and root directories.

Integrations with Maven and Gradle allow to dynamically create a "software system" on the fly and create a report for it.
Those integrations can be used to create an initial software system that is refined using the Sonargraph rich-client application.

4. When it comes to the usage of virtual models with Sonargraph-Build in general the same things apply as in the Sonargraph
rich-client application.

A virtual model might affect metric values since the structure of the system can be changed with refactorings and issues can
be transformed into tasks or ignored. So depending on what you want you should specify which virtual model to use. If you
want to process the unaltered metrics and structure in your build you need to specify the 'Parser' virtual model (or an 'empty'
virtual model - without any refactorings or resolutions).

All build integrations offer a 'virtual model' parameter. If not specified the default is the 'Modifiable.vm'.

https://www.hello2morrow.com/products/downloads
https://www.hello2morrow.com/products/downloads

5

Chapter 4. Executing from the Command-
line
Sonargraph-Build can be executed as a standalone Java application which enables the integration in any kind of continuous
integration environment. The necessary configuration is straight-forward and an example shell script is provided in the directory
<inst-dir>/example/bin. The batch script starts Sonargraph-Build and specifies an XML file for the detailed configuration as
first program argument.

NOTE

Sonargraph-Build returns an exit code indicating the execution status:

• 0 : Successful execution

• 1 : Execution failed because of failset properties

• 2 : Execution failed because of handled exception, e.g. configuration error, license error, etc.

• 3 : Execution failed because of unexpected exception. Please check the log file for details.

TIP

All parameters can also be set as program arguments and will override the values set in the XML configuration file.
Example (for details of classpath configuration, see example batch files in the installation):

java -cp <classpath> com.hello2morrow.sonargraph.build.client.SonargraphBuildRunner ./startup.xml
 snapshotDirectory=../System.sonargraph

NOTE

The attribute "logLevel" affects the logging after the Sonargraph-Build engine has been started. Setting it to "debug"
and below will generate additional debug information into the report.

WARNING

Setting the attribute "reportType" to "standard" only generates metric values for "system" and "module" levels. "full"
generates values for all element levels, but results in a significant larger report!

The splitting of the HTML report into different files is controlled by the attribute "elementCountToSplitHtmlReport".
The resulting detail pages contain tables of issues / resolutions of a specific issue type. The maximum number of items
shown is limited by the parameter "maxElementCountForHtmlDetailsPage".

WARNING

The attribute "qualityModelFile" can be used to apply a fixed set of scripts, architecture files and analyzer configurations
across several systems.

The reported issues are most likely very different from the results of analyzing the system with the Sonargraph
application. If you specify a "qualityModelFile", it is advisable to specify the "Parser" virtual model, since resolutions
e.g. for architecture violations probably will not match.

Executing from the Command-line

6

4.1. Report Creation
The following table lists all parameters that are available to create a report for an existing Sonargraph system:

Attribute Mandatory Description Default

installationDirectory Yes Installation directory of Sonargraph-Build No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

waitForLicense No If license is ticket based, this parameter specifies
the number of minutes that will be waited for a
license to become available if all license tickets are
currently in use. Waiting period between tries is 60
seconds. Possible values are: -1 (infinitely), 0 (do
not wait), positive number > 0

-1

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of Sonargraph-Build. If no value is
specified, all languages will be initialized.

Java, CSharp, CPlusPlus

logFile No Path of the log file to be used for Sonargraph-Build. ${currentDir}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

progressInfo No Level of progress info, either "none", "basic" or
"detailed". "detailed" expects that the output console
supports backspace characters.

none

compilerDefinitionPath No The path to the active compiler definition file to
be used for parsing a C/C++ system. If a built-in
or automatically generated definition should be
used, prefix the definition with "CPlusPlus:", e.g.
CPlusPlus:GnuCpp.cdef.

NOTE: If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the active definition
specified with the standalone application will be
used.

If empty, the default
compiler definition
for the build server's
operating system is
used: GnuCpp.cdef
(Linux), CLang.cdef
(Mac), VisualCpp*.cdef
(Windows, generated
definition for the
latest Visual Studio
installation)

systemDirectory Yes Directory of the Sonargraph System
(xyz.sonargraph)

No default

virtualModel No The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is "Modifiable.vm", if virtual

No default

Executing from the Command-line

7

Attribute Mandatory Description Default

models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph-
Architect license.

workspaceProfile No The profile file name (e.g. "BuildProfile.xml") for
transforming the workspace paths to match the build
environment.

No default

qualityModelFile No The path to the quality model file (xyz.sgqm)
that should be applied for the report creation.
Built-in quality models are the language-
independent "Sonargraph:Default.sgqm" and
language-specific "Sonargraph:Java.sgqm",
"Sonargraph:CSharp.sgqm" and
"Sonargraph:CPlusPlus.sgqm". NOTE: All scripts,
analyzer configurations and architecture files
present in the system are ignored!

No default

snapshotDirectory No Target directory for the created snapshot. Only
if either this parameter or snapshotFileName is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph-Architect license.

Current directory

snapshotFileName No The target file name (without extension). Only
if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph-Architect license.

<system-
name>_<timestamp>

reportDirectory No Target directory for the created report Current directory

reportFileName No The target file name (without extension) <system-
name>_<timestamp>

reportType No "standard" only creates metric information of system
and module level. "full" creates metric information
of all levels.

standard

reportFormat No "xml", "html" or "xml, html" html

elementCountToSplit
HtmlReport

No Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), 0 (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
HtmlDetailsPage

No If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
a browser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), 0 (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule No If set to 'true', individual HTML reports are created
per module.

false

baselineReportPath No Path of the baseline XML report that the current
report is compared against. If specified, the system
diff report is generated into the reportDirectory
and has the filename <reportFileName>_diff. If
no reportFileName is specified, the diff report's
filename is <system-name>_diff_<timestamp>. If

No default

Executing from the Command-line

8

Attribute Mandatory Description Default

you want to generate the textual delta report, you
need to set the parameter 'computeDeprecatedDelta'
to 'true'.

deltaReportPath No Deprecated! Path of the output file that the
deprecated delta info is written to. This file is only
generated if a baselineReportPath has been specified
and the parameter 'computeDeprecatedDelta' is set
to 'true'. Note that this functionality will be removed
soon.

<reportDirectory>/
<reportFileName>
_delta.log

computeDeprecatedDelta No Set this to 'true' to generate the deprecated textual
report delta. Note that this functionality will be
removed soon.

false

proxyHost No Proxy host No default

proxyPort No Proxy port No default

proxyUsername No Proxy user name No default

proxyPassword No Proxy password No default

pythonInterpreterPath No The path to a valid Python 3 interpreter to be used
for the build.

NOTE: If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the Python interpreter
specified with the standalone application will be
used.

PATH is searched
for a valid Python 3
interpreter. If none
can be found in this
parameter is not set the
build will fail.

uploadHostUrl No The host and port of the Sonargraph-Enterprise
server (upcoming product). If this parameter is
defined Sonargraph-Build will upload the report to
this server. If the upload fails for some reason the
report will be copied to a configurable directory (see
parameter 'failedUploadDirectory') that collects all
failed uploads. This directory is used by another task
named 'resendFailedUploads' that should be invoked
on a regular base. It is assumed that the server is
internal, so as of now proxy settings are ignored.
Must start with "http://".

No default

clientKey Only if
'uploadHostUrl'
is set

The client key for the Sonargraph-Enterprise server.
Uploading reports only works with the right client
key, which can be found on the settings page of
Sonargaph-Enterprise. The settings page is only
visible in administrator mode.

No default

failedUploadDirectory No If the upload to the server configured in the
parameter 'uploadHostUrl' fails for some treason the
report that failed to upload is copied to this directory
for later pickup by the task 'resendFailedUploads'.
If you have a distributed build that directory should
ideally point to a shared network storage drive.

System specific in user
home directory

branch No If reports are uploaded to the Sonargraph-
Enterprise server (upcoming product, see parameter
'uploadHostUrl') it is useful to associate the report
with the version control system branch name to
avoid mixing data of different branches. If the
branch name is not given we assume 'default'. If you

default

Executing from the Command-line

9

Attribute Mandatory Description Default

are only uploading data of the same branch you do
not need to pass the branch name, otherwise it is
highly recommended.

commitId No This parameter is only used in conjunction with
'uploadHostUrl' and should be used if the uploaded
report should be associated with a specific version
control commit id.

No default

version No This parameter is only used in conjunction with
'uploadHostUrl' and should be used if the uploaded
report should be associated with a specific software
version. If you are using git flow, you would want
to use this parameter for every commit of the master
branch, since each commit is associated with a
software release.

No default

Table 4.1. Configuration for Element "sonargraphBuild"

Example

This is an example configuration for creating an XML and HTML report:

<sonargraphBuild
 activationCode="_your activation code_"
 languages="Java"
 installationDirectory="../.."
 systemDirectory="../javaProject/AlarmClock.sonargraph"
 reportDirectory="./_temp/report"
 reportFileName=""
 reportType="full"
 reportFormat="xml,html"
 snapshotFileName="./_temp/AlarmClock.snapshot"
 proxyHost=""
 proxyPort=""
 proxyUsername=""
 proxyPassword=""
 logLevel="warn">
</sonargraphBuild>

Executing from the Command-line

10

4.2. Specify Conditions for Build Failure
Sonargraph-Build can mark the build as failed based on detected issues.

4.2.1. Fail on Issues
Sonargraph-Build can check for the existence of specific issues and mark the build as failed. The nested "failSet" element of
the "sonargraphBuild" element can include any number of "include" and "exclude" definitions based on the issues that are either
built-in (like duplicate warnings, cycle group warnings, etc.) or custom issues created via Groovy scripts.

TIP

Support for quality gates has been introduced with Sonargraph version 10.3, making it easier to define conditions for
breaking the build: Simply define the quality gates in Sonargraph, activate them and define a failSet for the issue type
"QualityGateIssue". For more details on quality gates, check the user manual of Sonargraph Architect.

Please note, that a commercial license is required for the quality gate feature.

TIP

The issue type that must be specified for include/exclude definitions can be determined via the Properties View of
Sonargraph.

TIP

If you want the build to fail only for newly introduced issues, apply resolutions like "Ignore" or "Fix" to the already
known issues in Sonargraph and only filter for resolution value "none".

TIP

The include/exclude definitions are applied in the following sequence, regardless of their definition order:

1. First all include definitions are matched against the set of existing issues.

2. Then the exclude definitions are applied and the set of previously matched issues is reduced accordingly.

Element Parameter Mandatory Description Default

failSet failOnEmptyWorkspace No Marks the build as failed if modules
and root directories are detected but no
components are found. Possible values
are "true" or "false".

true

include/exclude issueType Yes Name of the issue type or "any" for
wildcard matching.

No default

include/exclude severity No Severity of the issue. Possible values
are: error, warning, info, none, any

any

include/exclude resolution No The issue's resolution type. Possible
values are: task, ignore, any, none

none

Table 4.2. Configuration Parameters for Build Failure

Example

This is an example failSet definition:

Executing from the Command-line

11

<sonargraphBuild
...
 <failSet failOnEmptyWorkspace="false">
 <include issueType="QualityGateIssue" />
 <include issueType="any" severity="error" resolution="none"/>
 <exclude issueType="ScriptCompilationError"/>
 <include issueType="Supertype uses subtype"/>
 <include issueType="any" severity="warning"/>
 <exclude issueType="ThresholdViolation"/>
 </failSet>
</sonargraphBuild>

The console output provides some basic information about the number of issues matched by either "include" and "exclude":

Failed:
Sonargraph: Start creating report...
Sonargraph: Opening system...
Sonargraph: Refreshing system...
Sonargraph: Creating report...
Sonargraph: Check if build should be marked as failed...
Include filter [issueType=any, severity=error, resolution=none] matches 0 issue(s).
Include filter [issueType=Supertype uses subtype, severity=any, resolution=none] matches 0 issue(s).
Include filter [issueType=any, severity=warning, resolution=none] matches 2 issue(s).
Exclude filter [issueType=ScriptCompilationError, severity=any, resolution=none] removes 0 previously matched issue(s).
Exclude filter [issueType=ThresholdViolation, severity=any, resolution=none] removes 0 previously matched issue(s).
Summary: Build failed as 2 issue(s) match the specified failset on virtual model 'Modifiable.vm'.
Sonargraph: Finished.

12

Chapter 5. Integrating with Ant
The provided SonargraphReportTask makes it easy to integrate Sonargraph-Build into Apache Ant based builds and generate
HTML or XML reports containing info about metrics and issues of a software system. Additionally, using the optional "failSet"
element, the Ant build can be marked as failed if certain issues exist.

Prerequisites:

1. You need at least Ant 1.8.3 installed.

2. Set the environment variable ANT_HOME.

3. Include ANT_HOME/bin in your PATH environment variable.

The following shows the SonargraphReportTask definition:

<taskdef name="sonargraphBuild"
 classname="com.hello2morrow.sonargraph.build.client.ant.SonargraphReportTask">
 <classpath>
 <fileset dir="${sonargraph.build.installation}/plugins">
 <include name="org.eclipse.osgi_3.1*.jar" />
 <include name="com.hello2morrow.sonargraph.build.client*.jar"/>
 </fileset>
 <fileset dir="${sonargraph.build.installation}/client" includes="*.jar" />
 </classpath>
</taskdef>

An example Ant build.xml is provided in the directory <inst-dir>/example/ant. The parameters are the same as for the shell
integration described in Chapter 4, Executing from the Command-line.

13

Chapter 6. Integrating with Maven
The Sonargraph-Build Maven plugin makes it easy to check the quality of your projects. The plugin is able to automatically
download and install Sonargraph-Build if your build server has Internet connectivity. You can make the build fail depending
on issues detected by Sonargraph-Build.

There are two different goals available:

1. create-report: Creates a report for an existing system.

2. dynamic-report: Creates a system on-the-fly and creates a report for it. This is currently only available for Java systems.

3. help: Displays information about the other two goals and can be parameterized to show more details.

Prerequisites:

1. You need at least Maven 3.0.5 installed.

2. The plugin requires at least a Java 8 runtime.

3. The plugin cannot be used together with Tycho.

6.1. Maven Tips and Best Practices
TIP

Add the following repository to your Maven settings.xml, so you do not need to repeat it in your project's pom.xml:

<pluginRepository>
 <id>hello2morrow.maven.repository</id>
 <url>https://maven.hello2morrow.com/repository</url>
</pluginRepository>

TIP

The goals are not configured to be executed within any default Maven lifecycle phase. Typically you would run the
plugin with a command-line like the following to ensure that everything is compiled from scratch before the report is
created. The first command-line explicitly specifies a version, the second one uses the Maven prefix resolution (check
Maven Prefix Resolution for details):

mvn clean compile com.hello2morrow:sonargraph-maven-plugin:10.3.0:create-report

mvn clean compile sonargraph:create-report

TIP

All parameters of the top-level goals (i.e. not the failSet) can equally be set via the command-line using system properties
of the form

-Dsonargraph.<parameter-name>=<value>

TIP

To enforce certain rules, specify a failSet that lets the build fail based on detected issues. See Section 6.4.1, “Maven
FailSet Configuration”

NOTE

The plugin cannot be used together with Tycho.

https://maven.apache.org/guides/introduction/introduction-to-plugin-prefix-mapping.html

Integrating with Maven

14

You need to use another option to execute Sonargraph. See Chapter 4, Executing from the Command-line,
Chapter 5, Integrating with Ant. If the class root paths of the Sonargraph workspace do not match the Maven target
directories, check the section about "Workspace Profiles" in the user manual of the standalone application: http://
eclipse.hello2morrow.com/doc/standalone/content/workspace_profiles.html

NOTE

The attribute "logLevel" affects the logging after the Sonargraph-Build engine has been started. Setting it to "debug"
and below will generate additional debug information into the XML report.

WARNING

Setting the attribute "reportType" to "standard" only generates metric values for "system" and "module" levels. "full"
generates values for all element levels, but results in a significant larger report!

The splitting of the HTML report into different files is controlled by the attribute "elementCountToSplitHtmlReport".
The resulting detail pages contain tables of issues / resolutions of a specific issue type. The maximum number of items
shown is limited by the parameter "maxElementCountForHtmlDetailsPage".

WARNING

The attribute "qualityModelFile" can be used to apply a fixed set of scripts, architecture files and analyzer configurations
across several systems.

The reported issues are most likely very different from the results of analyzing the system with the Sonargraph
application. If you specify a "qualityModelFile", it is advisable to specify the "Parser" virtual model, since resolutions
e.g. for architecture violations probably will not match.

http://eclipse.hello2morrow.com/doc/standalone/content/workspace_profiles.html
http://eclipse.hello2morrow.com/doc/standalone/content/workspace_profiles.html

Integrating with Maven

15

6.2. Parameters of Goal "create-report"
The following table lists all parameters that are available to create a report for an existing Sonargraph system. The class root
directories are replaced by the output directories known to Maven.

NOTE

If Maven generates additional output directories dynamically that must be part of the Sonargraph workspace, the
Sonargraph plugin must be executed within the same process as the plugins that generate the additional directories.

The build can be marked as failed based on a failSet. See Section 6.4.1, “Maven FailSet Configuration”.

Attribute Mandatory Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of
Sonargraph-Build. Can be used in combination with
'autoUpdate'. As an example, if you specify '8.7' the
newest available version starting with '8.7' will be
used. If you specify '8.7.0.361' you are locked on
that specific version of Sonargraph-Build. There are
two special values: "same" and "newest". If "same"
is defined the version of Sonargraph-Build must
be the same as the version of the Maven plugin. If
"newest" is defined the plugin will always try to use
the newest version of Sonargraph-Build.

same

skip No Skip Sonargraph-Build. false

autoUpdate No If the plugin is configured to download Sonargraph-
Build automatically, this parameter decides if it also
should be updated automatically if a new version
becomes available.

false

useHttpProxyHost No The id of a proxy entry in the Maven settings. If
defined the plugin will use this proxy for all HTTP
communication.

No default

repository No URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

installationDirectory No Installation directory of Sonargraph-Build.
If unspecified the plugin will automatically
download Sonargraph-Build. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

waitForLicense No If license is ticket based, this parameter specifies
the number of minutes that will be waited for a
license to become available if all license tickets are
currently in use. Waiting period between tries is 60
seconds. Possible values are: -1 (infinitely), 0 (do
not wait), positive number > 0

-1

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

Integrating with Maven

16

Attribute Mandatory Description Default

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of Sonargraph-Build. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile No Path of the log file to be used for Sonargraph-Build. ${baseDir}/${target}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

progressInfo No Level of progress info, either "none", "basic" or
"detailed". "detailed" expects that the output console
supports backspace characters.

none

compilerDefinitionPath No The path to the active compiler definition file to
be used for parsing a C/C++ system. If a built-in
or automatically generated definition should be
used, prefix the definition with "CPlusPlus:", e.g.
CPlusPlus:GnuCpp.cdef.

NOTE: If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the active definition
specified with the standalone application will be
used.

If empty, the default
compiler definition
for the build server's
operating system is
used: GnuCpp.cdef
(Linux), CLang.cdef
(Mac), VisualCpp*.cdef
(Windows, generated
definition for the
latest Visual Studio
installation)

systemDirectory No Directory of the Sonargraph System
(xyz.sonargraph)

${baseDir}/
${artifact.id}.sonargraph

overrideSonargraphWorkspace No If true the output directories defined in the
Sonargraph system will be overridden by the ones
provided by the client.

true

includeTestCode No If true the workspace will also contain the test
source and test class file directories.

false

includeEmptyModules No If true the workspace will also contain empty
modules (without any source and class file
directories).

false

virtualModel No The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is "Modifiable.vm", if virtual
models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph-
Architect license.

No default

qualityModelFile No The path to the quality model file (xyz.sgqm)
that should be applied for the report creation.
Built-in quality models are the language-
independent "Sonargraph:Default.sgqm" and
language-specific "Sonargraph:Java.sgqm",
"Sonargraph:CSharp.sgqm" and
"Sonargraph:CPlusPlus.sgqm". NOTE: All scripts,
analyzer configurations and architecture files
present in the system are ignored!

No default

Integrating with Maven

17

Attribute Mandatory Description Default

snapshotDirectory No Target directory for the created snapshot. Only
if either this parameter or snapshotFileName is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph-Architect license.

${basedir}/${target}

snapshotFileName No The target file name (without extension). Only
if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph-Architect license.

<system-
name>_<timestamp>

reportDirectory No Target directory for the created report ${basedir}/${target}/
sonargraph

reportFileName No The target file name (without extension) <system-
name>_<timestamp>

reportType No "standard" only creates metric information of system
and module level. "full" creates metric information
of all levels.

standard

reportFormat No "xml", "html" or "xml, html" html

elementCountToSplit
HtmlReport

No Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), 0 (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
HtmlDetailsPage

No If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
a browser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), 0 (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule No If set to 'true', individual HTML reports are created
per module.

false

baselineReportPath No Path of the baseline XML report that the current
report is compared against. If specified, the system
diff report is generated into the reportDirectory
and has the filename <reportFileName>_diff. If
no reportFileName is specified, the diff report's
filename is <system-name>_diff_<timestamp>. If
you want to generate the textual delta report, you
need to set the parameter 'computeDeprecatedDelta'
to 'true'.

No default

deltaReportPath No Deprecated! Path of the output file that the
deprecated delta info is written to. This file is only
generated if a baselineReportPath has been specified
and the parameter 'computeDeprecatedDelta' is set
to 'true'. Note that this functionality will be removed
soon.

<reportDirectory>/
<reportFileName>
_delta.log

computeDeprecatedDelta No Set this to 'true' to generate the deprecated textual
report delta. Note that this functionality will be
removed soon.

false

prepareForSonarQube No Creates an XML report and stores it at ${basedir}/
${target}/sonargraph/sonargraph-sonarqube-

false

Integrating with Maven

18

Attribute Mandatory Description Default

report.xml, where the SonarQube Sonargraph plugin
expects it.

pythonInterpreterPath No The path to a valid Python 3 interpreter to be used
for the build.

NOTE: If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the Python interpreter
specified with the standalone application will be
used.

PATH is searched
for a valid Python 3
interpreter. If none
can be found in this
parameter is not set the
build will fail.

uploadHostUrl No The host and port of the Sonargraph-Enterprise
server (upcoming product). If this parameter is
defined Sonargraph-Build will upload the report to
this server. If the upload fails for some reason the
report will be copied to a configurable directory (see
parameter 'failedUploadDirectory') that collects all
failed uploads. This directory is used by another task
named 'resendFailedUploads' that should be invoked
on a regular base. It is assumed that the server is
internal, so as of now proxy settings are ignored.
Must start with "http://".

No default

clientKey Only if
'uploadHostUrl'
is set

The client key for the Sonargraph-Enterprise server.
Uploading reports only works with the right client
key, which can be found on the settings page of
Sonargaph-Enterprise. The settings page is only
visible in administrator mode.

No default

branch No If reports are uploaded to the Sonargraph-
Enterprise server (upcoming product, see parameter
'uploadHostUrl') it is useful to associate the report
with the version control system branch name to
avoid mixing data of different branches. If the
branch name is not given we assume 'default'. If you
are only uploading data of the same branch you do
not need to pass the branch name, otherwise it is
highly recommended.

default

commitId No This parameter is only used in conjunction with
'uploadHostUrl' and should be used if the uploaded
report should be associated with a specific version
control commit id.

No default

version No This parameter is only used in conjunction with
'uploadHostUrl' and should be used if the uploaded
report should be associated with a specific software
version. If you are using git flow, you would want
to use this parameter for every commit of the master
branch, since each commit is associated with a
software release.

No default

Table 6.1. Configuration for goal "create-report"

Related topics:

• Section 6.1, “Maven Tips and Best Practices”

• Section 6.4.1, “Maven FailSet Configuration”

Integrating with Maven

19

• Section 6.4.2, “Example POM”

Integrating with Maven

20

6.3. Configuration for goal "dynamic-report"
The following table lists all parameters that are available to create a report for a Java project where no Sonargraph system has been
defined. A Sonargraph system is created on the fly based on the workspace information contained in the Maven project setup.

NOTE

If your Maven build generates source and class roots dynamically, the "dynamic-report" goal should be called in the
same process as those plugins that generate the additional roots. The following Maven execution also makes the dynamic
roots available to Sonargraph:

mvn compile sonargraph:dynamic-report

Whereas using the following two separate Maven invocations, the dynamic roots will NOT be visible to Sonargraph:

mvn compile
mvn sonargraph:dynamic-report

The build can be marked as failed based on a failSet. See Section 6.4.1, “Maven FailSet Configuration”.

Attribute Mandatory Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of
Sonargraph-Build. Can be used in combination with
'autoUpdate'. As an example, if you specify '8.7' the
newest available version starting with '8.7' will be
used. If you specify '8.7.0.361' you are locked on
that specific version of Sonargraph-Build. There are
two special values: "same" and "newest". If "same"
is defined the version of Sonargraph-Build must
be the same as the version of the Maven plugin. If
"newest" is defined the plugin will always try to use
the newest version of Sonargraph-Build.

same

skip No Skip Sonargraph-Build. false

autoUpdate No If the plugin is configured to download Sonargraph-
Build automatically, this parameter decides if it also
should be updated automatically if a new version
becomes available.

false

useHttpProxyHost No The id of a proxy entry in the Maven settings. If
defined the plugin will use this proxy for all HTTP
communication.

No default

repository No URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

installationDirectory No Installation directory of Sonargraph-Build.
If unspecified the plugin will automatically
download Sonargraph-Build. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

waitForLicense No If license is ticket based, this parameter specifies
the number of minutes that will be waited for a
license to become available if all license tickets are
currently in use. Waiting period between tries is 60

-1

Integrating with Maven

21

Attribute Mandatory Description Default

seconds. Possible values are: -1 (infinitely), 0 (do
not wait), positive number > 0

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of Sonargraph-Build. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile No Path of the log file to be used for Sonargraph-Build. ${baseDir}/${target}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

progressInfo No Level of progress info, either "none", "basic" or
"detailed". "detailed" expects that the output console
supports backspace characters.

none

systemBaseDirectory No The directory where the Sonargraph System
(${artifactId}.sonargraph) is created.

${baseDir}/${target}

systemId No A system id should stay constant over the lifetime
of a software system and should be also unique with
respect to other systems. If you anticipate that the
group id or artifact id of the root pom might change
you should assign a value to this parameter.

${groupdId}_
${artifactId}

useGroupIdInModuleName No If true the module names will use group id and
artifact id as their name, separated by an underscore.
By default only the artifact id is used as the module
name.

false

includeTestCode No If true the workspace will also contain the test
source and test class file directories.

false

includeEmptyModules No If true the workspace will also contain empty
modules (without any source and class file
directories).

false

virtualModel No The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is "Modifiable.vm", if virtual
models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph-
Architect license.

No default

qualityModelFile No The path to the quality model file (xyz.sgqm)
that should be applied for the report creation.
Built-in quality models are the language-
independent "Sonargraph:Default.sgqm" and
language-specific "Sonargraph:Java.sgqm",
"Sonargraph:CSharp.sgqm" and

No default

Integrating with Maven

22

Attribute Mandatory Description Default

"Sonargraph:CPlusPlus.sgqm". NOTE: All scripts,
analyzer configurations and architecture files
present in the system are ignored!

snapshotDirectory No Target directory for the created snapshot. Only
if either this parameter or snapshotFileName is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph-Architect license.

${basedir}/${target}

snapshotFileName No The target file name (without extension). Only
if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph-Architect license.

<system-
name>_<timestamp>

reportDirectory No Target directory for the created report ${basedir}/${target}/
sonargraph

reportFileName No The target file name (without extension) <system-
name>_<timestamp>

reportType No "standard" only creates metric information of system
and module level. "full" creates metric information
of all levels.

standard

reportFormat No "xml", "html" or "xml, html" html

elementCountToSplit
HtmlReport

No Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), 0 (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
HtmlDetailsPage

No If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
a browser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), 0 (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule No If set to 'true', individual HTML reports are created
per module.

false

baselineReportPath No Path of the baseline XML report that the current
report is compared against. If specified, the system
diff report is generated into the reportDirectory
and has the filename <reportFileName>_diff. If
no reportFileName is specified, the diff report's
filename is <system-name>_diff_<timestamp>. If
you want to generate the textual delta report, you
need to set the parameter 'computeDeprecatedDelta'
to 'true'.

No default

deltaReportPath No Deprecated! Path of the output file that the
deprecated delta info is written to. This file is only
generated if a baselineReportPath has been specified
and the parameter 'computeDeprecatedDelta' is set
to 'true'. Note that this functionality will be removed
soon.

<reportDirectory>/
<reportFileName>
_delta.log

Integrating with Maven

23

Attribute Mandatory Description Default

computeDeprecatedDelta No Set this to 'true' to generate the deprecated textual
report delta. Note that this functionality will be
removed soon.

false

prepareForSonarQube No Creates an XML report and stores it at ${basedir}/
${target}/sonargraph/sonargraph-sonarqube-
report.xml, where the SonarQube Sonargraph plugin
expects it.

false

uploadHostUrl No The host and port of the Sonargraph-Enterprise
server (upcoming product). If this parameter is
defined Sonargraph-Build will upload the report to
this server. If the upload fails for some reason the
report will be copied to a configurable directory (see
parameter 'failedUploadDirectory') that collects all
failed uploads. This directory is used by another task
named 'resendFailedUploads' that should be invoked
on a regular base. It is assumed that the server is
internal, so as of now proxy settings are ignored.
Must start with "http://".

No default

clientKey Only if
'uploadHostUrl'
is set

The client key for the Sonargraph-Enterprise server.
Uploading reports only works with the right client
key, which can be found on the settings page of
Sonargaph-Enterprise. The settings page is only
visible in administrator mode.

No default

branch No If reports are uploaded to the Sonargraph-
Enterprise server (upcoming product, see parameter
'uploadHostUrl') it is useful to associate the report
with the version control system branch name to
avoid mixing data of different branches. If the
branch name is not given we assume 'default'. If you
are only uploading data of the same branch you do
not need to pass the branch name, otherwise it is
highly recommended.

default

commitId No This parameter is only used in conjunction with
'uploadHostUrl' and should be used if the uploaded
report should be associated with a specific version
control commit id.

No default

version No This parameter is only used in conjunction with
'uploadHostUrl' and should be used if the uploaded
report should be associated with a specific software
version. If you are using git flow, you would want
to use this parameter for every commit of the master
branch, since each commit is associated with a
software release.

No default

Table 6.2. Configuration for goal "dynamic-report"

Related topics:

• Section 6.1, “Maven Tips and Best Practices”

• Section 6.4.1, “Maven FailSet Configuration”

• Section 6.4.2, “Example POM”

Integrating with Maven

24

6.4. Specify Conditions for Build Failure
Sonargraph-Build can mark the build as failed based on detected issues.

6.4.1. Maven FailSet Configuration
The following elements allow to mark a build as failed. An example is shown in Section 6.4.2, “Example POM”.

TIP

Support for quality gates has been introduced with Sonargraph version 10.3, making it easier to define conditions for
breaking the build: Simply define the quality gates in Sonargraph, activate them and define a failSet for the issue type
"QualityGateIssue". For more details on quality gates, check the user manual of Sonargraph Architect.

Please note, that a commercial license is required for the quality gate feature.

TIP

The issue type that must be specified for include/exclude definitions can be determined via the Properties View of
Sonargraph.

TIP

If you want the build to fail only for newly introduced issues, apply resolutions like "Ignore" or "Fix" to the already
known issues in Sonargraph and only filter for resolution value "none".

TIP

The include/exclude definitions are applied in the following sequence, regardless of their definition order:

1. First all include definitions are matched against the set of existing issues.

2. Then the exclude definitions are applied and the set of previously matched issues is reduced accordingly.

Element Parameter Mandatory Description Default

failSet failOnEmptyWorkspace No Marks the build as failed if modules
and root directories are detected but no
components are found. Possible values
are "true" or "false".

true

include/exclude issueType Yes Name of the issue type or "any" for
wildcard matching.

No default

include/exclude severity No Severity of the issue. Possible values
are: error, warning, info, none, any

any

include/exclude resolution No The issue's resolution type. Possible
values are: task, ignore, any, none

none

Table 6.3. Configuration Parameters for Build Failure

Integrating with Maven

25

6.4.2. Example POM
The following example shows how to integrate the Sonargraph Maven plugin into your project specific pom file. For multi-
module projects it is sufficient to only add the plugin to the pom of the root project. It runs as an aggregator after all modules
have been compiled. The example project in the installation contains a complete pom.xml. Typically you would run the plugin
with a command-line like the following to ensure that everything is compiled from scratch before the report is created. The first
command-line explicitly specifies a version, the second one uses the Maven prefix resolution (check Maven Prefix Resolution
for details):

mvn clean compile com.hello2morrow:sonargraph-maven-plugin:10.3.0:create-report

mvn clean compile sonargraph:create-report

The following shows the relevant section of a pom.xml file that demonstrates the configuration of the Sonargraph functionality:

 <pluginRepositories>
 <pluginRepository>
 <id>hello2morrow.maven.repository</id>
 <url>https://maven.hello2morrow.com/repository</url>
 </pluginRepository>
 </pluginRepositories>
 <build>
 <plugins>
 <plugin>
 <groupId>com.hello2morrow</groupId>
 <artifactId>sonargraph-maven-plugin</artifactId>
 <version>10.3.0</version>
 <configuration>
 <systemDirectory>${basedir}/crm-domain-example.sonargraph</systemDirectory>
 <activationCode>...</activationCode>
 <autoUpdate>true</autoUpdate>
 <failSet>
 <failOnEmptyWorkspace>true</failOnEmptyWorkspace>
 <includes>
 <include>
 <issueType>ArchitectureViolation</issueType>
 </include>
 <include>
 <issueType>any</issueType>
 <severity>error</severity>
 </include>
 </includes>
 <excludes>
 <exclude>
 <issueType>ScriptCompilationError</issueType>
 <resolution>none</resolution>
 </exclude>
 </excludes>
 </failSet>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>create-report</goal>
 <goal>dynamic-report</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

https://maven.apache.org/guides/introduction/introduction-to-plugin-prefix-mapping.html

26

Chapter 7. Integrating with Gradle
The Sonargraph-Build Gradle plugin makes it easy to check the quality of your projects. The plugin is able to automatically
download and install Sonargraph-Build if your build server has Internet connectivity. You can make the build fail depending
on issues detected by Sonargraph-Build.

There are different Gradle "tasks" available for which parameters can be defined in Gradle "extensions":

1. sonargraphReport: Creates a report for an existing system.

2. sonargraphDynamicReport: Creates a system on-the-fly and creates a report for it. This is currently only available for Java
systems.

3. resendFailedUploads: Attempts to re-send reports that failed to upload to Sonargraph-Enterprise (upcoming product).

Prerequisites:

1. You need at least Gradle 2.9 installed.

2. The plugin requires at least a Java 8 runtime.

7.1. Gradle Tips and Best Practices
TIP

To enforce certain rules, specify a failSet that lets the build fail based on detected issues. See Section 7.5.1, “Gradle
FailSet Configuration”

NOTE

The attribute "logLevel" affects the logging after the Sonargraph-Build engine has been started. Setting it to "debug"
and below will generate additional debug information into the XML report.

WARNING

Setting the attribute "reportType" to "standard" only generates metric values for "system" and "module" levels. "full"
generates values for all element levels, but results in a significant larger report!

The splitting of the HTML report into different files is controlled by the attribute "elementCountToSplitHtmlReport".
The resulting detail pages contain tables of issues / resolutions of a specific issue type. The maximum number of items
shown is limited by the parameter "maxElementCountForHtmlDetailsPage".

WARNING

The attribute "qualityModelFile" can be used to apply a fixed set of scripts, architecture files and analyzer configurations
across several systems.

The reported issues are most likely very different from the results of analyzing the system with the Sonargraph
application. If you specify a "qualityModelFile", it is advisable to specify the "Parser" virtual model, since resolutions
e.g. for architecture violations probably will not match.

Integrating with Gradle

27

7.2. Parameters of Task "sonargraphReport"
The following table lists all parameters that are available to create a report for an existing Sonargraph system. The build can be
marked as failed based on a failSet. See Section 7.5.1, “Gradle FailSet Configuration”.

Attribute Mandatory Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of
Sonargraph-Build. Can be used in combination with
'autoUpdate'. As an example, if you specify '8.7' the
newest available version starting with '8.7' will be
used. If you specify '8.7.0.361' you are locked on
that specific version of Sonargraph-Build. There are
two special values: "same" and "newest". If "same"
is defined the version of Sonargraph-Build must
be the same as the version of the Maven plugin. If
"newest" is defined the plugin will always try to use
the newest version of Sonargraph-Build.

same

skip No Skip Sonargraph-Build. false

autoUpdate No If the plugin is configured to download Sonargraph-
Build automatically, this parameter decides if it also
should be updated automatically if a new version
becomes available.

false

useHttpProxyHost No If true, the proxy configuration of the Gradle
settings is used. The plugin will use this proxy for
all HTTP communication. Check the Gradle online
documentation for details.

false

repository No URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

installationDirectory No Installation directory of Sonargraph-Build.
If unspecified the plugin will automatically
download Sonargraph-Build. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

waitForLicense No If license is ticket based, this parameter specifies
the number of minutes that will be waited for a
license to become available if all license tickets are
currently in use. Waiting period between tries is 60
seconds. Possible values are: -1 (infinitely), 0 (do
not wait), positive number > 0

-1

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy

Integrating with Gradle

28

Attribute Mandatory Description Default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of Sonargraph-Build. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile No Path of the log file to be used for Sonargraph-Build. ${project.buildDir}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

progressInfo No Level of progress info, either "none", "basic" or
"detailed". "detailed" expects that the output console
supports backspace characters.

none

compilerDefinitionPath No The path to the active compiler definition file to
be used for parsing a C/C++ system. If a built-in
or automatically generated definition should be
used, prefix the definition with "CPlusPlus:", e.g.
CPlusPlus:GnuCpp.cdef.

NOTE: If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the active definition
specified with the standalone application will be
used.

If empty, the default
compiler definition
for the build server's
operating system is
used: GnuCpp.cdef
(Linux), CLang.cdef
(Mac), VisualCpp*.cdef
(Windows, generated
definition for the
latest Visual Studio
installation)

systemDirectory No Directory of the Sonargraph System
(xyz.sonargraph)

${project.buildDir}/
${project.group}
.sonargraph

overrideSonargraphWorkspace No If true the output directories defined in the
Sonargraph system will be overridden by the ones
provided by the client.

true

includeTestCode No If true the workspace will also contain the test
source and test class file directories.

false

includeEmptyModules No If true the workspace will also contain empty
modules (without any source and class file
directories).

false

productionSourceSets No Comma separated list of source set names that
contain production code. This parameter is only
needed when you are not using the gradle default
"main".

main

testSourceSets No Comma separated list of source set names that
contain test code. This parameter is only needed
when you are not using the gradle default "test".

test

virtualModel No The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is "Modifiable.vm", if virtual
models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph-
Architect license.

No default

qualityModelFile No The path to the quality model file (xyz.sgqm)
that should be applied for the report creation.
Built-in quality models are the language-
independent "Sonargraph:Default.sgqm" and
language-specific "Sonargraph:Java.sgqm",

No default

Integrating with Gradle

29

Attribute Mandatory Description Default

"Sonargraph:CSharp.sgqm" and
"Sonargraph:CPlusPlus.sgqm". NOTE: All scripts,
analyzer configurations and architecture files
present in the system are ignored!

snapshotDirectory No Target directory for the created snapshot. Only
if either this parameter or snapshotFileName is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph-Architect license.

${project.buildDir}

snapshotFileName No The target file name (without extension). Only
if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph-Architect license.

<system-
name>_<timestamp>

reportDirectory No Target directory for the created report ${project.buildDir}/
sonargraph

reportFileName No The target file name (without extension) <system-
name>_<timestamp>

reportType No "standard" only creates metric information of system
and module level. "full" creates metric information
of all levels.

standard

reportFormat No "xml", "html" or "xml, html" html

elementCountToSplit
HtmlReport

No Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), 0 (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
HtmlDetailsPage

No If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
a browser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), 0 (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule No If set to 'true', individual HTML reports are created
per module.

false

baselineReportPath No Path of the baseline XML report that the current
report is compared against. If specified, the system
diff report is generated into the reportDirectory
and has the filename <reportFileName>_diff. If
no reportFileName is specified, the diff report's
filename is <system-name>_diff_<timestamp>. If
you want to generate the textual delta report, you
need to set the parameter 'computeDeprecatedDelta'
to 'true'.

No default

deltaReportPath No Deprecated! Path of the output file that the
deprecated delta info is written to. This file is only
generated if a baselineReportPath has been specified
and the parameter 'computeDeprecatedDelta' is set
to 'true'. Note that this functionality will be removed
soon.

<reportDirectory>/
<reportFileName>
_delta.log

Integrating with Gradle

30

Attribute Mandatory Description Default

computeDeprecatedDelta No Set this to 'true' to generate the deprecated textual
report delta. Note that this functionality will be
removed soon.

false

prepareForSonarQube No Creates an XML report and stores it at ${basedir}/
${target}/sonargraph/sonargraph-sonarqube-
report.xml, where the SonarQube Sonargraph plugin
expects it.

false

pythonInterpreterPath No The path to a valid Python 3 interpreter to be used
for the build.

NOTE: If the standalone Sonargraph application
is used on the same machine with the same user
and this parameter is empty, the Python interpreter
specified with the standalone application will be
used.

PATH is searched
for a valid Python 3
interpreter. If none
can be found in this
parameter is not set the
build will fail.

uploadHostUrl No The host and port of the Sonargraph-Enterprise
server (upcoming product). If this parameter is
defined Sonargraph-Build will upload the report to
this server. If the upload fails for some reason the
report will be copied to a configurable directory (see
parameter 'failedUploadDirectory') that collects all
failed uploads. This directory is used by another task
named 'resendFailedUploads' that should be invoked
on a regular base. It is assumed that the server is
internal, so as of now proxy settings are ignored.
Must start with "http://".

No default

clientKey Only if
'uploadHostUrl'
is set

The client key for the Sonargraph-Enterprise server.
Uploading reports only works with the right client
key, which can be found on the settings page of
Sonargaph-Enterprise. The settings page is only
visible in administrator mode.

No default

failedUploadDirectory No If the upload to the server configured in the
parameter 'uploadHostUrl' fails for some treason the
report that failed to upload is copied to this directory
for later pickup by the task 'resendFailedUploads'.
If you have a distributed build that directory should
ideally point to a shared network storage drive.

System specific in user
home directory

branch No If reports are uploaded to the Sonargraph-
Enterprise server (upcoming product, see parameter
'uploadHostUrl') it is useful to associate the report
with the version control system branch name to
avoid mixing data of different branches. If the
branch name is not given we assume 'default'. If you
are only uploading data of the same branch you do
not need to pass the branch name, otherwise it is
highly recommended.

default

commitId No This parameter is only used in conjunction with
'uploadHostUrl' and should be used if the uploaded
report should be associated with a specific version
control commit id.

No default

version No This parameter is only used in conjunction with
'uploadHostUrl' and should be used if the uploaded
report should be associated with a specific software

No default

Integrating with Gradle

31

Attribute Mandatory Description Default

version. If you are using git flow, you would want
to use this parameter for every commit of the master
branch, since each commit is associated with a
software release.

Table 7.1. Configuration for Task/Extension "sonargraphReport"

Related topics:

• Section 7.1, “Gradle Tips and Best Practices”

• Section 7.5.1, “Gradle FailSet Configuration”

• Section 7.6, “Example Gradle Build File”

Integrating with Gradle

32

7.3. Configuration for Task
"sonargraphDynamicReport"
The following table lists all parameters that are available to create a report for a Java project where no Sonargraph system has
been defined. A Sonargraph system is created on the fly based on the workspace information contained in the Gradle project
setup. The build can be marked as failed based on a failSet. See Section 7.5.1, “Gradle FailSet Configuration”.

Attribute Mandatory Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of
Sonargraph-Build. Can be used in combination with
'autoUpdate'. As an example, if you specify '8.7' the
newest available version starting with '8.7' will be
used. If you specify '8.7.0.361' you are locked on
that specific version of Sonargraph-Build. There are
two special values: "same" and "newest". If "same"
is defined the version of Sonargraph-Build must
be the same as the version of the Maven plugin. If
"newest" is defined the plugin will always try to use
the newest version of Sonargraph-Build.

same

skip No Skip Sonargraph-Build. false

autoUpdate No If the plugin is configured to download Sonargraph-
Build automatically, this parameter decides if it also
should be updated automatically if a new version
becomes available.

false

useHttpProxyHost No If true, the proxy configuration of the Gradle
settings is used. The plugin will use this proxy for
all HTTP communication. Check the Gradle online
documentation for details.

false

repository No URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

installationDirectory No Installation directory of Sonargraph-Build.
If unspecified the plugin will automatically
download Sonargraph-Build. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

waitForLicense No If license is ticket based, this parameter specifies
the number of minutes that will be waited for a
license to become available if all license tickets are
currently in use. Waiting period between tries is 60
seconds. Possible values are: -1 (infinitely), 0 (do
not wait), positive number > 0

-1

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy

Integrating with Gradle

33

Attribute Mandatory Description Default

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of Sonargraph-Build. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile No Path of the log file to be used for Sonargraph-Build. ${project.buildDir}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

progressInfo No Level of progress info, either "none", "basic" or
"detailed". "detailed" expects that the output console
supports backspace characters.

none

systemBaseDirectory No The directory where the Sonargraph System
(${artifactId}.sonargraph) is created.

${project.buildDir}

systemId No A system id should stay constant over the lifetime
of a software system and should be also unique with
respect to other systems. If you anticipate that the
group id or artifact id of the root pom might change
you should assign a value to this parameter.

${project.group}_
${project.name}

useGroupIdInModuleName No If true the module names will use group id and
artifact id as their name, separated by an underscore.
By default only the artifact id is used as the module
name.

false

includeTestCode No If true the workspace will also contain the test
source and test class file directories.

false

includeEmptyModules No If true the workspace will also contain empty
modules (without any source and class file
directories).

false

productionSourceSets No Comma separated list of source set names that
contain production code. This parameter is only
needed when you are not using the gradle default
"main".

main

testSourceSets No Comma separated list of source set names that
contain test code. This parameter is only needed
when you are not using the gradle default "test".

test

virtualModel No The virtual model to be used when checking for
issues. This parameter overrides the default virtual
model that is set when the system is opened. The
default virtual model is "Modifiable.vm", if virtual
models are licensed, "Parser" if not licensed.
Parameter can only be used with Sonargraph-
Architect license.

No default

qualityModelFile No The path to the quality model file (xyz.sgqm)
that should be applied for the report creation.
Built-in quality models are the language-
independent "Sonargraph:Default.sgqm" and
language-specific "Sonargraph:Java.sgqm",
"Sonargraph:CSharp.sgqm" and
"Sonargraph:CPlusPlus.sgqm". NOTE: All scripts,

No default

Integrating with Gradle

34

Attribute Mandatory Description Default

analyzer configurations and architecture files
present in the system are ignored!

snapshotDirectory No Target directory for the created snapshot. Only
if either this parameter or snapshotFileName is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph-Architect license.

${project.buildDir}

snapshotFileName No The target file name (without extension). Only
if either this parameter or snapshotDirectory is
provided, a snapshot will be generated. Parameter
can only be used with Sonargraph-Architect license.

<system-
name>_<timestamp>

reportDirectory No Target directory for the created report ${project.buildDir}/
sonargraph

reportFileName No The target file name (without extension) <system-
name>_<timestamp>

reportType No "standard" only creates metric information of system
and module level. "full" creates metric information
of all levels.

standard

reportFormat No "xml", "html" or "xml, html" html

elementCountToSplit
HtmlReport

No Issue and resolution tables might contain too many
items making it impossible to open the HTML
report in a browser. This parameter controls the
lower limit of items that will cause separate files
being generated per issue type. Possible values are:
-1 (never split), 0 (use default value), 1 (always
split), positive number > 1 (threshold for split)

1000

maxElementCountFor
HtmlDetailsPage

No If HTML report is split because of too many issues
and/or resolutions, detail tables might contain too
many items making it impossible to open the page in
a browser. This parameter controls the upper limit of
elements shown in the table. Possible values are: -1
(no limit), 0 (use default limit), positive number > 1
(maximum number of elements contained in page)

2000

splitByModule No If set to 'true', individual HTML reports are created
per module.

false

baselineReportPath No Path of the baseline XML report that the current
report is compared against. If specified, the system
diff report is generated into the reportDirectory
and has the filename <reportFileName>_diff. If
no reportFileName is specified, the diff report's
filename is <system-name>_diff_<timestamp>. If
you want to generate the textual delta report, you
need to set the parameter 'computeDeprecatedDelta'
to 'true'.

No default

deltaReportPath No Deprecated! Path of the output file that the
deprecated delta info is written to. This file is only
generated if a baselineReportPath has been specified
and the parameter 'computeDeprecatedDelta' is set
to 'true'. Note that this functionality will be removed
soon.

<reportDirectory>/
<reportFileName>
_delta.log

computeDeprecatedDelta No Set this to 'true' to generate the deprecated textual
report delta. Note that this functionality will be
removed soon.

false

Integrating with Gradle

35

Attribute Mandatory Description Default

prepareForSonarQube No Creates an XML report and stores it at ${basedir}/
${target}/sonargraph/sonargraph-sonarqube-
report.xml, where the SonarQube Sonargraph plugin
expects it.

false

uploadHostUrl No The host and port of the Sonargraph-Enterprise
server (upcoming product). If this parameter is
defined Sonargraph-Build will upload the report to
this server. If the upload fails for some reason the
report will be copied to a configurable directory (see
parameter 'failedUploadDirectory') that collects all
failed uploads. This directory is used by another task
named 'resendFailedUploads' that should be invoked
on a regular base. It is assumed that the server is
internal, so as of now proxy settings are ignored.
Must start with "http://".

No default

clientKey Only if
'uploadHostUrl'
is set

The client key for the Sonargraph-Enterprise server.
Uploading reports only works with the right client
key, which can be found on the settings page of
Sonargaph-Enterprise. The settings page is only
visible in administrator mode.

No default

failedUploadDirectory No If the upload to the server configured in the
parameter 'uploadHostUrl' fails for some treason the
report that failed to upload is copied to this directory
for later pickup by the task 'resendFailedUploads'.
If you have a distributed build that directory should
ideally point to a shared network storage drive.

System specific in user
home directory

branch No If reports are uploaded to the Sonargraph-
Enterprise server (upcoming product, see parameter
'uploadHostUrl') it is useful to associate the report
with the version control system branch name to
avoid mixing data of different branches. If the
branch name is not given we assume 'default'. If you
are only uploading data of the same branch you do
not need to pass the branch name, otherwise it is
highly recommended.

default

commitId No This parameter is only used in conjunction with
'uploadHostUrl' and should be used if the uploaded
report should be associated with a specific version
control commit id.

No default

version No This parameter is only used in conjunction with
'uploadHostUrl' and should be used if the uploaded
report should be associated with a specific software
version. If you are using git flow, you would want
to use this parameter for every commit of the master
branch, since each commit is associated with a
software release.

No default

Table 7.2. Configuration for Task/Extension "sonargraphDynamicReport"

Related topics:

• Section 7.1, “Gradle Tips and Best Practices”

• Section 7.5.1, “Gradle FailSet Configuration”

Integrating with Gradle

36

• Section 7.6, “Example Gradle Build File”

Integrating with Gradle

37

7.4. Configuration for Task "resendFailedUploads"
Here are all the parameters for the "resendFailedUploads" task. This task should be run at least once per day to retry sending
failed uploads to the Sonargraph-Enterprise server.

Attribute Mandatory Description Default

sonargraphBuildVersion No Allows you to use a specific or restricted version of
Sonargraph-Build. Can be used in combination with
'autoUpdate'. As an example, if you specify '8.7' the
newest available version starting with '8.7' will be
used. If you specify '8.7.0.361' you are locked on
that specific version of Sonargraph-Build. There are
two special values: "same" and "newest". If "same"
is defined the version of Sonargraph-Build must
be the same as the version of the Maven plugin. If
"newest" is defined the plugin will always try to use
the newest version of Sonargraph-Build.

same

skip No Skip Sonargraph-Build. false

autoUpdate No If the plugin is configured to download Sonargraph-
Build automatically, this parameter decides if it also
should be updated automatically if a new version
becomes available.

false

useHttpProxyHost No If true, the proxy configuration of the Gradle
settings is used. The plugin will use this proxy for
all HTTP communication. Check the Gradle online
documentation for details.

false

repository No URL of Json file containing information about
available Sonargraph Build versions with their
download locations.

installationDirectory No Installation directory of Sonargraph-Build.
If unspecified the plugin will automatically
download Sonargraph-Build. The version to be
downloaded can be controlled by the parameter
'sonargraphBuildVersion'.

No default

activationCode No Sonargraph license activation code. If this parameter
is not specified, you must specify a license file
parameter (see below).

No default

waitForLicense No If license is ticket based, this parameter specifies
the number of minutes that will be waited for a
license to become available if all license tickets are
currently in use. Waiting period between tries is 60
seconds. Possible values are: -1 (infinitely), 0 (do
not wait), positive number > 0

-1

licenseServerPort No Port of license server to be used. This parameter is
ignored if licenseServerHost is not set.

8080

licenseServerHost No Host name or IP address of license server. If
this parameter is not specified, the web-based
hello2morrow license server will be used for
activation code based licenses.

No default

licenseFile No Sonargraph license file location. If this parameter is
not specified, you must specify the activation code
parameter (see above).

No default

https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy

Integrating with Gradle

38

Attribute Mandatory Description Default

languages No The languages that should be initialized, separated
by ",". The fewer languages are specified the faster
the startup of Sonargraph-Build. Possible values:
Java, CSharp, CPlusPlus.

Java

logFile No Path of the log file to be used for Sonargraph-Build. ${project.buildDir}/
sonargraph_build.log

logLevel No Level of logging detail. One of: off, error, warn,
info, debug, trace, all

info

progressInfo No Level of progress info, either "none", "basic" or
"detailed". "detailed" expects that the output console
supports backspace characters.

none

uploadHostUrl Yes The host and port of the Sonargraph-Enterprise
server (upcoming product). If this parameter is
defined Sonargraph-Build will upload the report to
this server. If the upload fails for some reason the
report will be copied to a configurable directory (see
parameter 'failedUploadDirectory') that collects all
failed uploads. This directory is used by another task
named 'resendFailedUploads' that should be invoked
on a regular base. It is assumed that the server is
internal, so as of now proxy settings are ignored.
Must start with "http://".

No default

clientKey Yes The client key for the Sonargraph-Enterprise server.
Uploading reports only works with the right client
key, which can be found on the settings page of
Sonargaph-Enterprise. The settings page is only
visible in administrator mode.

No default

failedUploadDirectory No If the upload to the server configured in the
parameter 'uploadHostUrl' fails for some treason the
report that failed to upload is copied to this directory
for later pickup by the task 'resendFailedUploads'.
If you have a distributed build that directory should
ideally point to a shared network storage drive.

System specific in user
home directory

Table 7.3. Configuration for Task/Extension "resendFailedUploads"

Related topics:

• Section 7.1, “Gradle Tips and Best Practices”

• Section 7.6, “Example Gradle Build File”

Integrating with Gradle

39

7.5. Specify Conditions for Build Failure
Sonargraph-Build can mark the build as failed based on detected issues.

7.5.1. Gradle FailSet Configuration
The following elements allow to mark a build as failed. An example is shown in the next section Section 7.6, “Example Gradle
Build File”.

TIP

Support for quality gates has been introduced with Sonargraph version 10.3, making it easier to define conditions for
breaking the build: Simply define the quality gates in Sonargraph, activate them and define a failSet for the issue type
"QualityGateIssue". For more details on quality gates, check the user manual of Sonargraph Architect.

Please note, that a commercial license is required for the quality gate feature.

TIP

The issue type that must be specified for include/exclude definitions can be determined via the Properties View of
Sonargraph.

TIP

If you want the build to fail only for newly introduced issues, apply resolutions like "Ignore" or "Fix" to the already
known issues in Sonargraph and only filter for resolution value "none".

TIP

The include/exclude definitions are applied in the following sequence, regardless of their definition order:

1. First all include definitions are matched against the set of existing issues.

2. Then the exclude definitions are applied and the set of previously matched issues is reduced accordingly.

Element Parameter Mandatory Description Default

failSet failOnEmptyWorkspace No Marks the build as failed if modules
and root directories are detected but no
components are found. Possible values
are "true" or "false".

true

include/exclude issueType Yes Name of the issue type or "any" for
wildcard matching.

No default

include/exclude severity No Severity of the issue. Possible values
are: error, warning, info, none, any

any

include/exclude resolution No The issue's resolution type. Possible
values are: task, ignore, any, none

none

Table 7.4. Configuration Parameters for Build Failure

Integrating with Gradle

40

7.6. Example Gradle Build File
The following examples shows how to integrate the Sonargraph-Build Gradle plugin into your project. For multi-project builds it
is sufficient to only add the plugin to the root project. It runs as an aggregator after all modules have been compiled. The example
project in the installation contains a complete build.gradle file. Typically you would run the plugin with a command-line like the
following to ensure that everything is compiled from scratch before the report is created:

gradlew clean build sonargraphReport

FailSet Configuration

The following shows the relevant section of a build.gradle file that demonstrates the configuration of the failSet functionality.
The file is contained as part of the example project in the Sonargraph-Build installation.

In this example the build will fail if the project contains a package cycle or an architecture violation without a resolution. Since the
parameter 'installationDirectory' is not defined, the Gradle plugin will automatically download the newest release of Sonargraph-
Build and also will keep it updated automatically. Of course this requires that the build server has access to the Internet.

apply plugin: 'com.hello2morrow.sonargraph'

buildscript
{
 repositories
 {
 mavenLocal()
 mavenCentral()
 maven
 {
 url 'https://maven.hello2morrow.com/repository'
 }
 maven
 {
 url 'https://maven.hello2morrow.com/snapshots'
 }
 }

 dependencies
 {
 classpath('com.hello2morrow:sonargraph-gradle-plugin:10.3.0')
 }
}

sonargraph
{
 activationCode = "36E2-0F3E-643F-B4F2"
 qualityModelFile = "Sonargraph:Java.sgqm" // quality model used by task 'sonargraphDynamicReport'
 failSet
 {
 failOnEmptyWorkspace = true
 include(issueType: "any", severity: "error", resolution: "none")
 include(issueType: "ArchitectureViolation")
 include(issueType: "any", severity: "warning")
 exclude(issueType: "ThresholdViolation")
 }
}

NOTE

Boolean and numeric parameters must be set without any quotes.

NOTE

Variable substitution in parameters does not work with single quotes, use double quotes instead.

41

Chapter 8. Reporting Changes
Reports for large systems provide an overwhelming amount of information. Most of the times a report containing the changes
compared to a baseline is enough - like a newspaper versus a whole encyclopedia. From Sonargraph-Build version 9.13.0
onwards, an additional system diff HTML report is generated if a baseline XML report is specified via the parameter
"baselineReportPath". The full and diff reports are inter-linked.

NOTE

This functionality is only available in the commercial version of Sonargraph.

The resulting diff report contains only the changes. The following screenshot shows the top part of a sample report:

Figure 8.1. System Diff HTML Report

The report is divided in sections equal to the tabs of the "System Diff" view in the Sonargraph application. If the sections contain
changes, this is indicated by the prefix "(!)" in the top-left navigation section.

This feature has been introduced with the Sonargraph release 9.13 and we will continue improving the precision of the results in
upcoming releases. Feedback is always welcome and can be sent to <support@hello2morrow.com>.

Upcoming Improvements in Next Versions

We plan the following improvements for the next versions of Sonargraph-Build to further improve the matching of issues
contained in the baseline and the current system:

Reporting Changes

42

• Support for XML and plain text format for the diff report to make integration of the information easy in other environments.

• Detection if a Sonargraph module is renamed.

• Once SCM information is included in Sonargraph, the rename of script or architecture files can be detected.

• Once SCM information is included in Sonargraph, rename of an element or one of its parents can be detected.

NOTE

As with every modification: Frequent and small changes are easier to review than big-bang refactorings.

8.1. Compute the System Delta (Deprecated)
This functionality is available in Sonargraph-Build version 9.4.2 and newer. It is now deprecated and will be removed in a future
release. To use the delta feature, you need to set the parameter "computeDeprecatedDelta" to "true", configure the parameter
"baselineReportPath" and optionally the parameter "deltaReportPath" when creating a report.

The delta computation of two XML reports is implemented in our Open Source project "Sonargraph Integration Access" that
is hosted on GitHub at https://github.com/sonargraph/sonargraph-integration-access . Thus, you can embed the report delta
computation easily within your own custom build pipeline if the integration with Sonargraph-Build does not satisfy your
requirements. The functionality is available in Integration Access 3.0.0 and newer. It can be called with the following command-
line and two mandatory arguments: The first being the baseline report and the second the XML report that is compared against
the baseline. If no output file is specified as the third parameter, the info is printed to the console.

 java -cp ../../target/sonargraph-integration-access-3.0.0.jar
 com.hello2morrow.sonargraph.integration.access.ReportDiff
 <path-to-baseline-report-xml> <path-to-report-xml> <optional: output-file-path>

The delta report is currently plain text. An example report is shown below (lines have been truncated) that shows differences
in issues:

Delta of System Reports:
 Report1 (baseline): D:\00_repos\sonargraph-integration-access\src\test\diff\AlarmClockMain_01.xml
 Report2 : D:\00_repos\sonargraph-integration-access\src\test\diff\AlarmClockMain_02.xml

 System Info:
 Name: AlarmClockMain
 ID: 6db0a52dfa66892be8a4bc2bb7cf1720
 Path: D:\00_repos\sonar-sonargraph-integration\src\test\AlarmClockMain\AlarmClockMain.sonargraph

 Delta of Systems
 System 1 (Baseline): AlarmClockMain from Nov 30, 2016 5:01:13 PM
 System 2 : AlarmClockMain from Dec 30, 2016 5:01:13 PM

 - Issue delta:
 Removed (13):
 EmptyArchitectureElement, generated by Core: Artifact 'Foundation', line 1, resolved 'false'
 Potentially dead method, generated by ./Java/BadSmells/FindDeadCode.scr: Method has ...
 Potentially dead type, generated by ./Java/BadSmells/FindDeadCode.scr: Type has no ...
 Duplicate Code Block with 2 occurrences, block size '52', resolved 'false'
 Occurrence in ./com/h2m/alarm/model/AlarmClock.java, start '52', block size '52', ...
 Occurrence in ./com/h2m/alarm/presentation/Main.java, start '34', block size '52', ...
 JavaFileClassFileMissing, generated by JavaLanguageProvider: Missing class file for ...
 Improved (1):
 Previous: ThresholdViolation, generated by ./Java/BadSmells/FindDeadCode.scr: Potentially ...
 Worsened (1):
 Previous: ThresholdViolation, generated by Core: Total Lines = 106 (allowed range: 0 to ...
 Added (6):
 Supertype uses subtype, generated by ./Core/SuperTypeUsesSubType.scr: Reference to ...
 ArchitectureViolation, generated by ./Layers.arc: [Local Variable] 'Model' cannot access ...

https://github.com/sonargraph/sonargraph-integration-access

Reporting Changes

43

If present, the report also shows differences in the core system configuration (i.e. licensed features, active analyzers, metric
provider, metric ids, etc.), workspace configuration and resolutions.

Current Limitations
The following changes only indirectly affect the Sonargraph issues, but will be treated as changes by the diff detector. The issues
in the baseline report will be reported as removed and the issues from the new report as added, despite the fact that the issues
are logically the same:

1. Cycle group and duplicate code block issues consist of several parts that contribute to their unique IDs. If one of these parts
changes (for example a source file has been renamed) then the issue's ID is changed.

2. If a module or root directory is renamed, the fully qualified names of contained elements change and thus the issues changed.

3. If a script or an architecture file is renamed, the origin of the issues generated by those resources is changed.

4. For some issues the originating line within a source file is stored and used for comparison. Changing unrelated lines in the
source file before the issue's origin therefore will cause the issue to be treated as changed.

NOTE

As with every modification: Frequent and small changes are easier to review than big-bang refactorings.

44

Chapter 9. Integrating with SonarQube
For Java projects the findings of Sonargraph can be stored and visualized in SonarQube using the Sonargraph Integration plugin.

The plugin is compatible with SonarQube versions 6.7.3 and higher.

The plugin is available here:

1. The SonarQube Marketplace accessible from within the SonarQube server's web interface.

2. GitHub https://github.com/sonargraph/sonar-sonargraph-integration/releases.

3. hello2morrow's web site https://www.hello2morrow.com/products/downloads.

9.1. Overall Process of Integration
We assume you have already a SonarQube server running and see the project of interest in the server's web interface. To add
Sonargraph's analysis results you need to:

1. Install the Sonargraph Integration plugin in your SonarQube server.

2. Use the built-in Sonargraph quality profile or add individual Sonargraph Integration rules to the profile you want to use.
Assign your project to this profile.

3. Define and analyze the project with Sonargraph, either using the Explorer or Architect version. You need the system definition.
Alternatively the system definition could be obtained dynamically with our support for dynamic system creation.

4. Create an XML report with Sonargraph Build of that project using either Maven, Gradle, Ant or the Shell support prior to
the SonarQube analysis with one of the scanners. Make sure the that the XML report is in the right spot so the Sonargraph
Integration plugin can find it .

9.2. SonarQube Configuration
Localizing the Sonargraph XML Report

The default location of the xml report file is 'target/sonargraph/sonargraph-sonarqube-report.xml' relative to the root module.

Sonargraph calculates metrics and provides issues on module and system level. The system level is equivalent to SonarQube's
Project in a multi module system. In a single-module system the module/project will contain both classes of information.

NOTE

Using Maven or Gradle with the prepareForSonarQube flag, the produced xml report will be automatically copied to
the default location.

NOTE

As of SonarQube version 7.6 the support for modules is removed from the user interface. Sonargraph issues and metrics
created for modules are no longer visible and are no longer processed by the Sonargraph SonarQube plugin from version
4.0 onwards.

Sonargraph Script Metrics and Issues

Issues created from an automated script are activated (or deactivated) with the single rule 'Sonargraph Integration: Script Issue'.

Metric definitions created from an automated script need to be known by both the SonarQube server and the SonarQube scanner
(running locally during the build). The custom metric definitions are detected during the scan and are stored in system-specific

http://www.sonarqube.org/
https://github.com/sonargraph/sonar-sonargraph-integration
https://www.hello2morrow.com/products/downloads

Integrating with SonarQube

45

properties files. The properties files are located at '.sonargraphintegration/<system-id>.properties' and must be copied to the
SonarQube server's directory '<user-home>/.sonargraphintegration'.

NOTE

When introducing script metrics for the first time a warning message is written to the console at the end of a SonarQube
analysis about the changed custom metrics properties file. Copy the properties file to the SonarQube server's directory
'<user-home>/.sonargraphintegration' and restart the server. The new metrics will be available after the next SonarQube
analysis.

NOTE

Due to the static nature of SonarQube metrics, support for custom Sonargraph metrics in SonarQube requires that the
Sonargraph custom metric properties files must be kept in sync on the SonarQube scanner and server sides! If you are
working with dynamic build agents, some setup work is needed to copy the properties files to the correct location '<user-
home>/.sonargraphintegration' on the build agent.

NOTE

Sonargraph issues about workspace setup, architecture constistency, etc. are not present in SonarQube, because there
is no matching counterpart that SonarQube issues can be attached to. Those kind of issues are reported as warning
messages at the end of the Sonargraph SonarQube analysis.

Related topics:

• See the section about "Workspace Profiles" in the user manual of the standalone application, if the root directories on your
build server do not match the workspace definition.

• Chapter 6, Integrating with Maven

• Chapter 7, Integrating with Gradle

• Chapter 5, Integrating with Ant

9.3. SonarQube Maven Configuration
If you use the SonarQube Maven plugin, you must set the following parameter in the configuration of the Sonargraph-Build
Maven plugin in your project's pom.xml:

<configuration>
 <prepareForSonarQube>true</prepareForSonarQube>
 ...
</configuration>

The Sonargraph-Build Maven plugin will automatically create an XML report (if not already configured) and will copy the report
to ${target}/sonargraph/sonargraph-sonarqube-report.xml for the root project.

The example project contains an example pom.xml and also a batch file that demonstrates how the check can be called from
the command-line.

Related topics:

• Chapter 6, Integrating with Maven

• Section 6.4.2, “Example POM”

NOTE

An example command-line using a different XML report location (added line-breaks for readability):

Integrating with SonarQube

46

mvn clean package
 sonargraph:create-report -Dsonargraph.reportFormat=xml
 -Dsonargraph.reportDirectory=D:/temp/report -Dsonargraph.reportFileName=MyReport
 sonar:sonar -Dsonar.sonargraph.integration:report.path=D:/temp/report/MyReport.xml

9.4. SonarQube Gradle Configuration
If you use the SonarQube Gradle plugin, you must set the following parameter in the configuration of the Sonargraph-Build tasks
in your project's build.gradle:

sonargraphReport
{
 activationCode = "36E2-0F3E-643F-B4F2"
 prepareForSonarQube = "true"
}

The Sonargraph-Build Gradle plugin will automatically create an XML report (if not already configured) and will copy the report
to ${target}/sonargraph/sonargraph-sonarqube-report.xml for the root project.

Related topics:

• Chapter 7, Integrating with Gradle

• Section 6.4.2, “Example POM”

9.5. SonarQube Scanner / Ant Runner
Configuration
If you use the SonarQube Scanner or Ant Runner, the Sonargraph XML report must have been created and this report must be
configured for the Sonargraph SonarQube plugin using the following property (example for Ant Runner):

<property name="sonar.sonargraph.integration:report.path" value="${path.target.report}" />

Related topics:

• Chapter 5, Integrating with Ant

• Chapter 4, Executing from the Command-line

47

Chapter 10. Integrating with Jenkins
With Jenkins Sonargraph Integration Plugin for Jenkins jobs the findings of Sonargraph can be used to let builds fail, or mark
them unstable. Additionally Sonargraph metric values are stored for every build and can be visualized as charts.

10.1. Global Configuration
The first step is to configure one or more versions of Sonargraph Build in "Manage Jenkins" → "Global Tool Configuration"

10.1.1. Tool Installation for Sonargraph Build

NOTE

This global configuration is only required when you are going to use the "Generate with Sonargraph Build" option in
"Sonargraph Integration Generation & Analysis" post-build action.

To see the global configuration options after installing the plugin, go to "Manage Jenkins" → "Global Tool Configuration" . You
will find the "Sonargraph Build" section.

Figure 10.1. Jenkins - Sonargraph Build Installations

Press button "Sonargraph Build Installations..." to see the list of already installed Sonargraph Build installations Jenkins knows
about, if any. To add a new "Installation" of Sonargraph Build press button "Add Sonargraph Build", give it a descriptive name,
use default Installer "Install from hello2morrow" for it, and select a Sonargraph Build version from the version drop down box.

Figure 10.2. Jenkins - New Sonargraph Build

NOTE

Version "newest" automatically updates your Sonargraph Build installation to the most recent version.

https://jenkins-ci.org/

Integrating with Jenkins

48

10.2. Sonargraph License Server
Sonargraph uses a web-based hello2morrow license server for activation code based licenses by default. If you run your own

local Sonargraph license server configure it at "Manage Jenkins" → "Configure System".

Figure 10.3. Jenkins - License Server Configuration

10.3. Job Configuration
Use the post-build action "Sonargraph Integration Report Generation & Analysis" to create Sonargraph's XML and HTML reports
(or use a pre-generated XML report) and to configure how the Sonargraph analysis should affect the final result of the build. For
every Sonargraph metric supported by this plugin, you have the following options:

• Don't mark: Will not change the build result in any way.

• Build unstable: If the value for this metric is greater than zero, the build result will be set as "unstable".

• Build failed: If the value for this metric is greater than zero, the build result will be set as "failure".

Take into account that if you have set to mark the build unstable for one metric, failed for any other and both metric's value are
greater than zero, the worst state will prevail, so the build will be marked as failure in this case. Besides controlling the build
result, the plugin also generates graphics to monitor the trend of metrics across builds and it will display the full Sonargraph
HTML report for each build.

NOTE

For the free Jenkins / SonarQube license, only the options for "cyclic elements" and "empty workspace" are available.

10.3.1. Add post-build action

Add post build action "Sonargraph Integration Report Generation & Analysis" to your job.

Figure 10.4. Job - Add Post Build Action

10.4. Use Pre-Generated Report
Use this option to use a pre-generated Sonargraph report. To do so you must use Sonargraph Maven plugin, Sonargraph Gradle
plugin, or Sonargraph Ant task in another upstream build step. Enter the path to the Sonargraph XML report file that has been
generated via the ANT task of Sonargraph. This path must be relative to the workspace.

Integrating with Jenkins

49

Figure 10.5. Report - Pre Generated

• Sonargraph XML Report Enter the path to the pre-generated Sonargraph XML report file (without extension ".xml"). This
path must be relative to the workspace.

10.5. Generate Report with Sonargraph Build
Use this option to let Sonargraph Build create a Sonargraph report.

Figure 10.6. Report - Generate With Sonargraph Build

• Sonargraph System Directory Enter the path to the Sonargraph system (*.sonargraph) directory. This path must be relative
to the workspace.

• Sonargraph License File Sonargraph license file location. If this parameter is not specified, you must specify the activation
code parameter.

• Sonargraph Activation Code Sonargraph license activation code. If this parameter is not specified, you must specify a license
file parameter.

10.5.1. Advanced Options

Integrating with Jenkins

50

Figure 10.7. Report - Advanced Options

• Skip Skip Sonargraph Jenkins Plugin.

• Use Proxy Use Jenkins proxy configuration when connecting to Sonargraph license server.

• Workspace Profile The profile file name (e.g. "BuildProfile.xml") for transforming the workspace paths to match the build
environment.

• Quality Model File Use a built-in Quality Model, or an external Quality Model instead of the Quality Model included in
Sonargraph Software System. Must be either a file within workspace with extension "sgqm", or one of the built-in Quality
Models

• Sonargraph:Default.sgqm (language-independent)

• Sonargraph:Java.sgqm (language-specific)

• Sonargraph:CSharp.sgqm (language-specific)

• Sonargraph:CPlusPlus.sgqm (language-specific)

• Virtual Model The virtual model to be used when checking for issues. This parameter overrides the default virtual model
that is set when the system is opened.

Licensing:

• Sonargraph Explorer Changing virtual models is not supported, "Parser" model is taken.

• Sonargraph Architect Changing virtual models is supported, "Modifiable.vm" is taken by default.

• Snapshot Directory Target directory for the created snapshot. Only if either this parameter or snapshotFileName is provided,
a snapshot will be generated. Parameter can only be used with Sonargraph Architect license.

• Snapshot File Name The target file name (without extension). Only if either this parameter or snapshotDirectory is provided,
a snapshot will be generated. Parameter can only be used with Sonargraph Architect license.

• Sonargraph Build Version Select the Sonargraph Build version.

Integrating with Jenkins

51

• JDK Select a JDK to be used for Sonargraph Build.

• Java Select if your Sonargraph system uses Java.

• C\# Select if your Sonargraph system uses C\#.

• C++ Select if your Sonargraph system uses C+.

• Python Select if your Sonargraph system uses Python.

10.5.2. Logging

Figure 10.8. Job - Logging

• Log level Level of logging detail. One of: off, error, warn, info, debug, trace, all. Default: info.

• Log file Path of the log file to be used for SonargraphBuild (relative to workspace of Jenkins job). Default:
sonargraph_build.log.

10.5.3. Baseline

Figure 10.9. Job - Baseline

• Baseline Report Path Path to the baseline Sonargraph XML report file (without extension ".xml"). This path must be relative
to the workspace.

10.5.4. Chart Configuration
Besides controlling the build result, the plugin also generates graphics to monitor the trend of metrics across builds and it will
display the full Sonargraph HTML report for each build.

Figure 10.10. Job - Chart Configuration

Either select the charts that you want to show by their language, or show all of them by selecting "All charts".

Integrating with Jenkins

52

Figure 10.11. Job - Select Charts

10.5.5. Mark Build
For every Sonargraph metric supported by this plugin, you have the following options:

• Don't mark: Will not change the build result in any way.

• Build unstable: If the value for this metric is greater than zero, the build result will be set as "unstable".

• Build failed: If the value for this metric is greater than zero, the build result will be set as "failure".

Take into account that if you have set to mark the build unstable for one metric, failed for any other and both metric's value are
greater than zero, the worst state will prevail, so the build will be marked as failure in this case.

NOTE

For the free Jenkins / SonarQube license, only the options for "cyclic elements" and "empty workspace" are available.

Figure 10.12. Mark build

Related topics:

• See the section about "Workspace Profiles" in the user manual of the standalone application, if the root directories on your
build server do not match the workspace definition.

• Chapter 6, Integrating with Maven

10.6. Configure Jenkins Logging

Integrating with Jenkins

53

Sonargraph's Jenkins integration uses the standard Jenkins logger mechanism to provide feedback to the user about the events
that occur during the execution of the post-build action or the generation of the graphics. To enable this feature follow these steps:

• Go to "Manage Jenkins" -> "System Log".

• Click "Add new log recorder" button.

• Provide the name you wish for this log recorder.

• In the field logger, provide the value with the exact value "com.hello2morrow.sonargraph.integration.jenkins" (Without the
quotation marks).

• Select the logging level for this logger.

Now you should have the new log recorder configured like this:

Figure 10.13. Jenkins - Logging Configuration

• Click the save button.

When first created this log recorder is going to be empty and you will be able to see messages as the post-build actions are
executed and graphics are generated.

54

Chapter 11. FAQ
This section summarizes common problems and their solutions.

Different Results in Sonargraph and Sonargraph-Build

If you notice differences in the number of issues or metrics reported by Sonargraph-Build, this might be due to the following
reasons:

1. The Sonargraph-Build integrations for Maven and Gradle use as default the workspace information about root directories as
provided by Maven or Gradle. Thus the number of root directories might be different, if the Sonargraph workspace does not
contain all available root directories. If you know that all root directories contained in the Sonargraph workspace are present
at build-time, deactivate this dynamic workspace configuration by setting the parameter "overrideSonargraphWorkspace" to
"false".

2. Check if test code should be part of the workspace. As default it is excluded in Sonargraph-Build, because the default value
of the parameter "includeTestCode" is "false".

3. If the above points did not provide an answer, check chapter Chapter 8, Reporting Changes on how to create a detailed report
about differences.

55

Chapter 12. Trademark Attributions,
Library License Texts, and Source Code
Eclipse is a trademark of Eclipse Foundation, Inc.

IntelliJ is a trademark of JetBrains s.r.o.

Java and all Java-based trademarks are trademarks of Oracle Corporation in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft, and Windows are trademarks of Microsoft Corporation in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

56

Chapter 13. Legal Notice
All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

• Neither the name of hello2morrow GmbH nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

57

Appendix A. Sonargraph-Build API
Documentation
 Sonargraph-Build API is documented via JavaDoc that is available within the installation of the product.

Link to JavaDoc of Sonargraph-Build API.

./javadoc/index.html

58

Index
A
Activation Code, 2, 2
Ant Integration, 12

B
Build Failure

Gradle, 39
Maven, 24
Shell, 10

Build Server Integration
Jenkins, 47
SonarQube, 44

C
Command-line Interface, 5
Configuration

Report Creation, 6

F
FAQ, 54

G
Gradle

Build Failure, 39
FailSet Configuration, 39
resendFailedUploads, 37
sonargraphDynamicReport, 32

Gradle Configuration
sonargraphReport, 27
Tips, 26

Gradle Integration, 26

I
Installation Requirements, 4

J
Jenkins Integration, 47

Add post-build action, 48
Advanced Options, 49
Baseline, 51
Chart Configuration, 51
Configure Jenkins Logging, 52
Generate Report with Sonargraph Build, 49
Global Configuration, 47
Job Configuration, 48
Logging, 51
Mark Build, 52
Sonargraph License Server, 48
Tool Installation for Sonargraph Build, 47
Use Pre-Generated Report, 48

L
License, 2

Index

59

License Server Settings, 3

M
Maven

Build Failure, 24
dynamic-report, 20
FailSet Configuration, 24

Maven Configuration
create-report, 15
Tips, 13

Maven Integration, 13

P
Prerequisites, 4
Proxy Settings, 3

R
Reporting Changes, 41

System Delta (Deprecated), 42

S
Shell

Build Failure, 10
Configuration, 5

Sonargraph-Build API, 57
SonarQube Integration, 44

Ant Runner Configuration, 46
Configuration, 44
Gradle Configuration, 46
Maven Configuration, 45
Overall Process of Integration, 44
Scanner Configuration, 46

	Sonargraph-Build User Manual
	Table of Contents
	Chapter 1. Sonargraph's Next Generation - Sonargraph-Build
	Chapter 2. Licensing
	2.1. Getting an Activation Code or a License
	2.2. Activation Code Based Licensing
	2.3. Proxy Settings
	2.4. License Server Settings

	Chapter 3. Getting Started
	3.1. Installation Requirements
	3.2. Prerequisites

	Chapter 4. Executing from the Command-line
	4.1. Report Creation
	4.2. Specify Conditions for Build Failure
	4.2.1. Fail on Issues

	Chapter 5. Integrating with Ant
	Chapter 6. Integrating with Maven
	6.1. Maven Tips and Best Practices
	6.2. Parameters of Goal "create-report"
	6.3. Configuration for goal "dynamic-report"
	6.4. Specify Conditions for Build Failure
	6.4.1. Maven FailSet Configuration
	6.4.2. Example POM

	Chapter 7. Integrating with Gradle
	7.1. Gradle Tips and Best Practices
	7.2. Parameters of Task "sonargraphReport"
	7.3. Configuration for Task "sonargraphDynamicReport"
	7.4. Configuration for Task "resendFailedUploads"
	7.5. Specify Conditions for Build Failure
	7.5.1. Gradle FailSet Configuration

	7.6. Example Gradle Build File

	Chapter 8. Reporting Changes
	8.1. Compute the System Delta (Deprecated)

	Chapter 9. Integrating with SonarQube
	9.1. Overall Process of Integration
	9.2. SonarQube Configuration
	9.3. SonarQube Maven Configuration
	9.4. SonarQube Gradle Configuration
	9.5. SonarQube Scanner / Ant Runner Configuration

	Chapter 10. Integrating with Jenkins
	10.1. Global Configuration
	10.1.1. Tool Installation for Sonargraph Build

	10.2. Sonargraph License Server
	10.3. Job Configuration
	10.3.1. Add post-build action

	10.4. Use Pre-Generated Report
	10.5. Generate Report with Sonargraph Build
	10.5.1. Advanced Options
	10.5.2. Logging
	10.5.3. Baseline
	10.5.4. Chart Configuration
	10.5.5. Mark Build

	10.6. Configure Jenkins Logging

	Chapter 11. FAQ
	Chapter 12. Trademark Attributions, Library License Texts, and Source Code
	Chapter 13. Legal Notice
	Appendix A. Sonargraph-Build API Documentation
	Index

